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Abstract
This paper deals with the development of statistical methodology for timely detection of incident
disease clusters in space and time. The increasing availability of data on both the time and the
location of events enables the construction of multivariate surveillance techniques, which may
enhance the ability to detect localized clusters of disease relative to the surveillance of the overall
count of disease cases across the entire study region. We introduce the surveillance conditional
predictive ordinate as a general Bayesian model-based surveillance technique that allows us to
detect small areas of increased disease incidence when spatial data are available. To address the
problem of multiple comparisons, we incorporate a common probability that each small area
signals an alarm when no change in the risk pattern of disease takes place into the analysis. We
investigate the performance of the proposed surveillance technique within the framework of
Bayesian hierarchical Poisson models using a simulation study. Finally, we present a case study of
salmonellosis in South Carolina.

Keywords
public health surveillance; spatial data; Bayesian hierarchical models; lagged loss function;
conditional predictive ordinate; multiple comparisons

1. Introduction
On the past decade, following the intentional release of anthrax in the USA in 2001, there
has been a growing interest in the development of statistical methodology for early detection
of disease outbreaks. The ability to rapidly detect unusual aggregations of disease is of
critical importance to facilitate timely public health response and, consequently, to reduce
morbidity and mortality. A wide range of statistical methods including process control
charts, time-series methods, and regression techniques have been proposed for surveillance
of univariate time series of counts of disease [1, 2]. However, the increased need for
outbreak detection has coincided with an increasing availability of data, especially data on
the location of events. As a consequence, practical statistical surveillance usually implies
analyzing multiple time series simultaneously. The use of spatial information promises to
increase the power to detect small localized outbreaks of disease relative to the surveillance
of the total count across a larger region, where sharp increases in a relatively small number
of regional counts may be diluted by the natural variation associated with overall counts. In
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addition, spatiotemporal surveillance facilitates public health interventions once an incident
disease cluster is identified.

Unlike testing methods [3–5], modeling for spatiotemporal disease surveillance is relatively
recent, and this is a very active area of statistical research [6]. Models describing the
behavior of diseases in space and time allow covariate effects to be estimated and provide
better insight into etiology, spread, prediction, and control of diseases. Most spatiotemporal
models have been developed for retrospective analyses of complete data sets often with the
objective of estimating the true relative risk of a disease of interest across a geographic study
region. However, surveillance data in public health accumulate over time, and sequential
estimation of the model using all the data collected so far is essential to early detection of
disease outbreaks.

When small area disease data in the form of counts are available, Poisson models with a
mean which is a function of the expected counts of disease and the unknown area-specific
relative risks are commonly used to describe the behavior of diseases. Recently, these
models have been applied in a surveillance context. Lawson et al. [7] proposed to monitor
the model-based residuals of the fitted model in sequential time periods to detect changes in
the risk pattern of a disease. More recently, Zhou and Lawson [8] have presented an
approximate procedure where a spatial-only model is fitted at each time period to the current
spatial data and outbreak detection is carried out by comparing the estimated relative risks
for the small areas with a baseline level, which is calculated as an exponentially weighted
moving average (EWMA) of historical estimates. Other statistical models proposed in a
surveillance context include generalized linear mixed models [9], hidden Markov models
[10], and log-Gaussian Cox processes [11] for point processes.

In this paper, we use Bayesian hierarchical Poisson models to describe the space–time
behavior of disease. We show how the conditional predictive ordinate (CPO) [12, 13], which
is a Bayesian diagnostic to detect observations discrepant from a given model, can be
adapted in a surveillance context to detect small areas of unusual disease aggregation. For
each small area and time period, we define the surveillance CPO (SCPO) as the conditional
predictive density of the new observation given the data collected so far. We then carry out a
parallel approach across the different areas under surveil-lance, where in each area alarms
are sounded if the corresponding SCPO is below a specified critical level. When many areas
are monitored simultaneously, it is important to deal with the problem of multiple
comparisons [14]. Otherwise, because we are performing separate evaluations for each small
area to determine whether the areas are significant at some fixed critical level, an
inappropriate number of false alarms could be obtained. From the Bayesian viewpoint, there
is no need to introduce a penalty term for performing hundreds of simultaneous tests [15]. A
natural approach would be to assume that there is a common probability that a given area
signals an alarm when no change in the relative risk pattern takes place. Here, we assume
that the number of alarms sounded at each time point under the null follows a binomial
distribution with parameters the number of small areas under surveillance and the
probability of false alarm. With the aim of reducing the probability of false alarms while
keeping a high outbreak detection capability, an alarm for an out-of-control system will be
generated at a particular time period if the probability of observing at least the same number
of small areas signaling an alarm is below a specified critical level. All the areas showing an
increased disease incidence will then be reported. Finally, we show how the SCPO can be
easily extended to incorporate information from spatial neighbors, which facilitates outbreak
detection when changes in disease risk affect neighboring areas simultaneously.

We organize this paper as follows. In the next section, we describe the modeling framework.
In Section 3, we introduce the SCPO. Section 4 deals with the multiple comparisons
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problem. Section 5 describes the measures used for the evaluation of the proposed
surveillance technique and shows the results obtained in a simulation study. Section 6
provides an application to reported salmonellosis cases in South Carolina from January 1995
to December 2003.

2. Spatiotemporal modeling
In what follows, we assume that we will monitor a map of m small areas over T time
periods, yit being the count of disease in area i, i = 1, 2, . . . , m, and temporal period t, t = 1,
2, . . . , T. When small area count data are available, it is common to consider hierarchical
Poisson models. At the first level of the model, the Poisson distribution is considered for
modeling the within-area variability of the counts

(1)

where the expected count of disease eit represents the background population effect and θit
is the unknown area-specific relative risk. At the second level of the model, the logarithm of
the relative risk is usually decomposed in additive components representing spatial,
temporal, space–time interaction, and possible covariate effects [16]. A model could be
assumed for the log relative risk of the form [17]

(2)

where ρ is the overall level of the relative risk; ui and vi represent respectively spatially
correlated and uncorrelated extra variation; τt is a component describing the temporal
variation; and δit represents the interaction between spatial and temporal effects in the maps.
To capture the extent of variation present in count data, the prior distributions for these
parameters are usually defined as follows. The prior distribution for the intercept is assumed

to be zero mean Gaussian with variance . The conditional autoregressive model proposed
by Besag et al. [18] is used as a prior for the spatially correlated effect, that is,

where u(i) = (u1, u2, . . . , ui – 1, ui+1, . . . , um), ni is the set of spatial neighbors of the ith

region, ūni is the mean of the neighborhood, mi is the cardinality of ni, and  is the
correlated spatial component variance. Here, the neighborhood is assumed to consist of first-
order spatial neighbors defined by a common boundary. Different definitions could also be
considered. For instance, a region could be a neighbor if the centroid is within a certain
distance of the region in question. Note that this conditional autoregressive model is useful
in defining a correlated heterogeneity prior distribution. The uncorrelated spatial effect
defined as

allows for uncorrelated extra variation. Because the unobserved effects within a study area
could take on a variety of forms, it is always prudent to include both spatial random effects.
An autoregressive prior distribution is usually defined for the temporal effect
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where ν is the autoregressive parameter and  is the variance. This allows for a type of
nonparametric temporal effect (random walk when ν = 1). Finally, the prior distribution for
the space–time interaction term can be specified as

where  is the spatiotemporal component variance. More complex prior distributions for
this interaction component can be found in [19]. However, because identifiability of highly
structured interaction from main effects may be doubtful, we consider this simpler
description.

Lawson et al. [7] and Vidal and Lawson [20] applied this spatiotemporal model in a
surveillance context, where they monitored model-based residuals of the fitted model in
sequential time periods to detect changes in risk. It is important to emphasize that the
sequential refitting of the model presents a problem because, as time progresses, the size of
the data and the parameter space will expand. Within the Markov chain Monte Carlo
(MCMC) framework [21], this implies restarting the simulation process from scratch at each
time period, which can be very time consuming and hampers application in real-time
contexts.

In the surveillance context, as in this study, the model must be chosen that it can describe the
overall behavior of disease in space and time and also that it is sensitive to temporal changes
in the spatiotemporal structure. A relatively simple model capturing the normal historical
variation without absorbing the changes in the model fit is advisable [22]. In this paper, we
investigate the adequacy of two models for spatiotemporal disease surveillance: the
convolution model originally proposed by Besag et al. (Besag–York–Mollié (BYM) model,
[18])

(3)

and the spatiotemporal (ST) model defined by

(4)

Convolution models with both uncorrelated and correlated heterogeneity are simple models
where the relative risk, which is described solely in terms of spatial effects, is assumed to be
constant over time. Given their robustness and good performance in recovering the true
disease relative risk surface [23,24], these models are widely used in disease mapping. The
spatiotemporal model (4), while still providing a parsimonious representation, allows for a
more flexible modeling of the spatiotemporal variation in disease incidence, where unusual
departures from predictable patterns based on the overall spatial risk surface can be captured
by the space–time interaction component. Consequently, this model is more likely to absorb
changes in risk in the model fit. If time series data are available over a relatively long period
and an overall time trend is present, we may include a temporal effect (model (2)) in the
aforementioned equations so that we can effectively detect changes in disease incidence
beyond those expected on the basis of the main spatial and temporal effects. Otherwise,
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because we are interested in monitoring changes in disease risk over time, modeling the
temporal variation is not advisable.

Prior distributions for the model parameters are specified as for those in model (2). Here, a
fully Bayesian analysis is carried out and, consequently, prior distributions must be specified
for all the hyper-parameters. We are interested in noninformative prior distributions so that
inference for parameters is based only on the assumed model and the observed data. Various
noninformative prior distributions have been suggested in Bayesian literature for variance
parameters in hierarchical models. A common practice is to put a vague inverse
Gamma(0.5,0.005) prior on the variance parameters [25]. A Gamma(0.01,0.01) prior for
precision parameters is an alternative choice, which is less likely to cause identifiability
problems for the two types of heterogeneity in convolution models [26]. Recently, the use of
a noninformative uniform distribution has been recommended as a robust prior for standard
deviation parameters [27]. In what follows, we assume a uniform distribution in the interval
(0,10) for σρ, whereas we use a Gamma(2,0.5) prior for the precision parameters τu, τv, and
τδ, which provides reasonable noninformativeness.

The joint posterior distribution for the ST model, proportional to the product of the
likelihood function and the prior distributions, is given by

This posterior distribution is analytically intractable but can be sampled using MCMC
simulation techniques. We can obtain the posterior distribution for the BYM model by
removing in the previous equation the terms associated with the space–time interaction
effects.

2.1. Lagged loss function
An important issue relating to the estimation of spatiotemporal models is that the size of the
data and possibly the parameter space will expand as time progresses. Under conventional
MCMC sampling, the available sample of parameter values at each time period must be
discarded and a new sample has to be drawn by restarting the simulation process from
scratch, which can be time consuming or even unfeasible. With the use of a spatial-only
model, a fixed parameter space is assured. However, as new data arrive, the estimation of
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the model in a surveillance context can still be relatively slow. For model (4), both the data
set and the parameter space enlarge. One approach to this problem is the use of particle
filtration, which resamples the past realizations from the posterior distribution to provide
reweighted estimates to take account of incoming data and parameters [28]. However, these
methods crucially depend on having sampled enough of the process variation at the
beginning of the surveillance exercise to allow subsequent resample. Otherwise, as data
become available, the ability of the samples to cover the posterior region of interest may
deteriorate.

An alternative approach adopted in the estimation of spatiotemporal models in a surveillance
context, which prevents refitting the whole data set and allows for a static data size, is the
use of a lagged loss function or ‘sliding window’ with fixed time units within which the
effects are estimated [10, 11, 17]. This mechanism, also known as batch processing [29], has
been widely used in public health applications. For instance, in the univariate case, the log-
linear regression model of Farrington et al. [30] is applied to the early detection of
aberrations in laboratory-based surveillance data received at the Communicable Disease
Surveillance Centre in the UK. At each time period, the estimated model using a set of
recent values with similar conditions is used to predict a threshold above which an observed
count is declared to be unusual.

In our particular setting, this procedure is equivalent to working with the generalized
likelihood function given by

where δk takes the value 1 if t – l + 1 ≤ k ≤ t, l being the length of the sliding window, and
the value 0 otherwise. That is,

which corresponds to the full likelihood function when l = t. Let us assume that the BYM
model is used to describe the relative risk surface.

Let us assume that the BYM model is used to describe the relative risk surface. Let Φ = {ρ,
u1, u2, . . . ,um, v1, v2, . . . , vm} be the model parameter vector and yt = (y1t, y2t, . . . , ymt)′
the m × 1 data vector at time t . When the lagged loss function approach is used to estimate
the model, only the most recent data are allowed to update the model through the posterior
distribution

(5)

For the ST model in Equation (4), the parameter vector at each time period is divided into
two sets: Φ = {ρ, u1, u2, . . . , um, v1, v2, . . . , vm, δt – l+1, δt – l+2 . . . , δt} and Δ = {δ1,
δ2, . . . , δt – l} being the vector (δ1t, δ2t, . . . , δmt)′. Infereneces about Φ, the parameter
vector of interest, are based on the posterior distribution πG(Φ|yt – l+1, yt – l+2, . . . , yt).
Hence, parameter estimates based on the posterior distribution (5) and those derived from
the conventional posterior distribution, π(Φ|y1, y2, . . . , yt) = f(y1, y2, . . . , yt – l|Φ)πG (Φ|
yt – l+1, yt – l+2, . . . , yt), will be similar if the data within the sliding window provide the
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same information as the whole history of the process. When no change in the relative risk
pattern takes place, the longer the window length, the higher the estimation accuracy.
However, in an online surveillance context where changes in risk are expected, we want the
spatial effects to adapt to those changes quickly so that the surveillance technique can detect
further changes as new data become available. As Jiang and Zhang [31] stressed, the use of
a shorter window length is fundamental for discarding the out-of-date information
effectively and achieving fast tracking of the changed parameters. Otherwise, windows that
are too wide will smooth over possible shifts in the process. We consider different window
lengths in this paper. This allows us to examine their ability to estimate and detect changes
in the relative risk pattern of disease.

In an effort to overcome the estimation problem arising when hierarchical Poisson models
are used in a surveillance context, Zhou and Lawson [8] presented an approximate
procedure where the BYM model is fitted at each time period to the current spatial data.
Changes in the risk pattern are then detected by comparing the estimated relative risks for
each of the small areas with a baseline level calculated as an EWMA of historical estimates.
There is, however, only heuristic justification for the proposed procedure. First, a sliding
window of length 1 cannot guarantee accurate model estimates, specially for large Poisson
mean values. In addition, an EWMA approach is only justified under Gaussian model
assumptions.

3. Monitoring changes in relative risk patterns
As time progresses, a decision concerning whether the disease incidence has increased has
to be made sequentially on the basis of the data collected so far. That is, at each time point,
we are interested in evaluating how unusual the observations for the new time period are. A
commonly used approach when addressing a problem involving both spatial and temporal
components is to perform a parallel surveil-lance for each location and sound a general
alarm when there is an alarm for any of the small areas. For instance, Höhle et al. [32]
applied the Farrington algorithm [30] for the monitoring and surveillance of multivariate
count time series in veterinary public health. An alarm for the whole system is generated if
there is at least one observation above the threshold predicted by the corresponding
univariate algorithm. A reduction of the multivariate surveillance problem is an alternative
technique. In this case, either the observations at each time period or the alarm statistics of
the parallel surveillance methods are transformed into a scalar statistic, which will be
monitored over time. For a global increase in disease incidence, Wessman [33] showed that
there exists a sufficient univariate reduction of the multivariate observation process. Hence,
without loss of information, univariate surveillance methods can be applied to monitor the
resultant scalar statistic. Likelihood-ratio-based surveillance procedures [34] have also been
proposed to jointly handle correlated time series count data (see [35] and the references
therein for a detailed overview of multivariate surveillance). Determining what type of
change we aim to detect becomes then a crucial issue. For instance, a method derived to
detect a global change may not be capable of detecting a small cluster of increased disease
incidence.

In our surveillance context, we believe that a global increase in the incidence in all the areas
occurring at the same time point is unlikely, and so our primary concern is to design a
surveillance technique that, at each time period, alerts us to any small area of increased
disease incidence in need of further investigation. Therefore, we propose to carry out a
parallel approach across the different areas under surveillance, where different signals will
be generated for those areas of unusual disease aggregation. By making the univariate
surveillance tests dependent on the fitted spatiotemporal model, we overcome the
information loss problem associated with the parallel approach, which leads to insufficient
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and suboptimal surveillance methods [36]. In addition, we focus here on detection of sudden
jumps in risk, and so no accumulation of information over time is made (for detection of an
increasing incidence, see for instance, [37]).

A possible approach within this framework is the analysis of residuals. Lawson et al. [7]
introduced surveillance residuals as the difference between the observed data for the new
time period and the data predicted under the model when it is fitted using the data from
previous periods. The absolute value of the surveillance residuals (summed over space) is
monitored over time to detect changes in risk. Once a change is detected, the p-value surface
is analyzed to determine the location and extension of possible outbreaks. For each small
area and time point, the Bayesian p-value is defined as the probability that replicated data,
based on the posterior predictive distribution, could be more extreme than the observed data,
that is,

extremely small p-values indicating that the observation for the new time period is not
representative of the data expected under the fitted model. Note that the equivalent of a
parametric bootstrap [38] in the Bayesian setting is necessary to generate the set of

simulated counts , which can be cumbersome on some occasions. In addition, fitting the
model with data in sliding windows leads to misleading results because, due to censoring
effects, bigger residuals at the start of the surveillance window can be confounded with
changes in risk [20].

We do not pursue this approach here. Instead, we show how the conditional predictive
ordinate [12] can be adapted for a surveillance context to detect small areas of unusual
disease aggregation.

3.1. Surveillance conditional predictive ordinate
Box [39] emphasized the complementary roles of the posterior and predictive distributions
arguing that the posterior distribution provides a basis for estimation of parameters
conditional on the adequacy of the entertained model, whereas the predictive distribution
enables criticism of the entertained model in light of current data. Geisser [12] introduced
the CPO as a Bayesian diagnostic to detect observations discrepant from a given model. Let
y = (y1, y2, . . . , yn)′ be the vector of conditionally independent observations with density f
(yi|/θ) under model  and y(i) = (y1, y2, . . . , yi – 1, yi+1, . . . , yn)′ the data vector with yi
deleted. For the ith observation, the CPO is defined as

small CPO values indicating a poor fit by the model. Gelfand et al. [13] further discussed the
CPO, proposing a cross-validation approach which is based on conditional predictive
distributions arising from single observation deletion to address model determination. A

surrogate for the marginal likelihood f(y) can be defined as  [40], which
leads to the pseudo-Bayes factor that can be used as an alternative strategy to overall model
selection. For the purpose of model assessment, the presence of many small CPOs criticizes
the model.

Corberán-Vallet and Lawson Page 8

Stat Med. Author manuscript; available in PMC 2012 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Let yt = (y1t, y2t, . . . , ymt)′ be the m × 1 data vector at time point t,  the
vector of all the observations up to time t, and θt= (θ1t, θ2t, . . . ,θmt)′ the relative risk vector
at time t. In our surveillance context, the CPO at each time period

can be used to detect an overall process change. However, as a global measure, localized
clusters of insufficient size may be missed because of dilution effects.

In this paper, we propose to modify the CPO to obtain what we call the surveillance CPO
(SCPO), which is computed for each new observation using only the data from previous
time periods. Otherwise, the inclusion of observations from the new time period may lead to
a different model for the relative risk pattern. In particular, we define the SCPO for the ith
small area and time point t as

(6)

In general, f(yit|θi,t – 1, y1:t – 1) can be computed as

where f(yit|θi,t) is Poisson and π(θit|θi,t – 1, y1:t–1) can be derived from the model describing
the relative risk surface. For the spatiotemporal model (4), log(θit) can be stated as log(θi,t–
1)+ Δδit, where Δδit = δit – δi,t–1 represents the variation in risk at time t. In our surveillance
context, we can assume that Δδit = 0, that is θit = θi,t –1, if no change in risk takes place at
time t. On the basis of this approximation, a Monte Carlo estimate for the SCPO, which does
not have a close form, can be obtained from a posterior sampling algorithm as

(7)

where  is a set of relative risks sampled from the posterior distribution that
corresponds to the previous time period. Hence, if there is no change in risk yit will be
representative of the data expected under the previously fitted model. Otherwise, SCPO
values close to zero will be obtained. When the BYM model is assumed to describe the
relative risk surface, the constant risk θi will be considered instead of the relative risk at the
previous time point. If the lagged loss function approach described in Section 2.1 is used,
the model describing the structure of the risks will be estimated using only the data in the
interval [t – l, t – 1], l being the length of the sliding window.

As we have mentioned before, one advantage of this surveillance technique is that it depends
on the joint model for the multivariate time series, which accounts for the spatial correlation
in the data. Yet, one limitation of the proposed approach is that it may fail to detect both
emerging outbreaks of disease occurring in some neighboring areas which are small in
magnitude to be detected by individual tests or outbreaks occurring on the border between
areas, which may be missed because they do not conform to the predefined geographical
areas. On those occasions, a different technique using information from spatial neighbors
may facilitate the outbreak detection work. For the ith small area, let ni = {i1, i2, . . . , imi} be
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the set of first-order spatial neighbors, mi being the cardinality of ni. We propose to consider
a multi-variate extension of the SCPO incorporating information from the spatial
neighborhood as an alternative surveillance technique to the univariate SCPO. This
multivariate extension, which is denoted here as clustered SCPO (CSCPO), is defined as

(8)

values of the CSCPO close to 0 indicating clusters of neighboring areas of unusual disease
incidence. Once a sample of relative risk values has been drawn from the posterior
distribution that corresponds to the previous time period, π(θ1,t –1, θ2,t –1, . . . , θi,t – 1, . . . ,
θm,t–1|y1:t–1), the CSCPO can be approximated as

3.2. Monitoring measures
Effective measures based on the SCPO values have to be constructed to assess the system
state each time new observations become available. For the univariate SCPO, a possible
approach is to trigger an alarm for the ith small area if the corresponding SCPO is below a
specified critical level. However, setting the same cutoff value for all the areas may lead to
misleading results because the value of the SCPO depends on the mean of the Poisson
distribution. For small values of the mean, the probability mass of the Poisson distribution is
tightly concentrated near zero. As the mean and, consequently, the variance increase, the
distribution becomes less concentrated around the mean and the probability associated with
each value decreases. Here, we propose to scale the SCPO by dividing by the value of the
posterior predictive density at the posterior mean of the Poisson distribution, that is,

(9)

where  is the posterior mean of the relative risk at the previous time period. Hence, the
scaled SCPO will take values close to 1 if the observation at time t is close to the data
expected under the fitted model and values close to 0 otherwise. An alarm for the ith small

area will be triggered at time t if . Notice that the first
condition detects discrepant observations, and the second one prevents us from signaling an
alarm for those areas of decreased disease incidence.

If the CSCPO is used instead, an alarm will be sounded for the ith small area at time t if the
corresponding scaled CSCPOit given by

(10)
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is below a specified critical level,  and . In
this case, the first two conditions determine if the total number of counts of disease in the
neighborhood is significantly higher than expected. The last condition is necessary to
properly identify those areas with more counts of disease than expected in a neighborhood
of increased disease incidence.

4. Multiple comparisons problem
In the spatiotemporal disease surveillance setting, it is important to consider the problem of
multiple comparisons. Otherwise, because we are performing separate evaluations for each
small area to determine whether the areas are significant at some fixed level α, the
probability of false alarm will be close to 1 for large values of m. Benjamini and Hochberg
[41] proposed to control the false discovery rate, which is defined as the expected proportion
of false rejections among all rejected hypothesis. This procedure, which has proved to be a
more powerful approach than the Bonferroni correction to address the problem of
multiplicity, has been the object of numerous studies in recent years [42,43].

From a Bayesian viewpoint, even though there is no need to introduce a penalty term for
performing multiple comparisons simultaneously [15], the multiple comparisons problem
has to be carefully addressed to assure a good performance of the surveillance procedure.
Yet, little work has been done that deals with multiple testing in spatial and spatiotemporal
surveillance. Kleinman et al. [9] suggested not reporting the individual p-values directly but
the number of tests that would be required to see a p-value as small as the one observed so
that the user focuses on the more alarming values. However, this approach does not prevent
the signaling of an alarm at every time period. Zhou and Lawson [8] proposed a parallel
approach which signals an alarm for an out-of-control system if any small area is
significantly anomalous. For a critical level equal to 0.05, the probability of signaling a false
alarm when no change in risk takes place can be higher than 0.5. By reducing the value of
the critical level for the individual comparisons, the probability of a false alarm is reduced
but also the power of the method for outbreak detection. Besides, on those occasions,
although the surveillance procedure may be able to detect a small area of increased disease
incidence and trigger an alarm, it would hardly recover the true outbreak behavior.

A natural Bayesian approach is to assume that there is a common probability that a given
area signals an alarm when no change in risk takes place, that is,

α being the specified critical level for the individual comparisons. We can then model the
number of alarms sounded at each time period under the null by the binomial distribution
with parameters m, the number of small areas under surveillance, and α*, the probability of
each area signaling a false alarm. Let nt be the number of small areas signaling an alarm at
time t. In an effort to reduce the probability of false alarm while keeping a high outbreak
detection capability, we propose to evaluate the probability of observing nt or more alarms,
that is,
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and generate an alarm for an out-of-control system if this probability is below a critical level
β, which controls the probability of false alarm at each time period. It is important to
emphasize here that we consider two different alarm strategies and, consequently, two
different critical levels. First, on the basis of the sSCPO and α, alarms are sounded for those
areas of increased incidence. If the number of unusual observations is significant according
to β, an alarm for an out-of-control system will be triggered and all the alarms associated
with small areas of unusual aggregation of disease will then be reported. By setting β = 1, an
alarm for an out-of-control system will be triggered whenever there is, at least, one small
area significantly anomalous. So, this approach can be seen as a generalization of previous
approaches. Because we do not reduce the critical level of the individual comparisons, an
important advantage of this procedure is that it allows us to detect those small areas of
increased disease incidence, and so it is likely to recover the true outbreak behavior.

From a fully Bayesian viewpoint, a tri-level hierarchical model allowing for joint estimation
of the model parameters and the probability of a false alarm α* would be advisable [44].
However, because the probability of interest depends on the SCPO, this is not a feasible
procedure. Note that for each area and time period, a set of relative risks sampled from the
posterior distribution that corresponds to the previous time period is required to compute the
SCPO (Equation (7)). A possible solution is to apply the surveillance procedure to a set of
historical data under the null, that is, when there is no change in risk, to estimate the number
of alarms at each time period and, therefore, the probability of false alarm.

This approach can also be applied when working with the CSCPO, which is computed for
each small area taking into account the information from the spatial neighborhood. In that
case, α* represents the probability that a given area signals a false alarm based on the
CSCPO.

5. Simulation study
To assess the effectiveness of the proposed surveillance procedure for outbreak detection,
we conducted a simulation study. In this section, we show a summary of the results obtained
in four different surveillance scenarios mimicking possible disease outbreak patterns.

5.1. Data
We used the US state of Georgia, which consists of m = 159 counties, as the base map to
generate the observed disease count data at county level for T = 20 time periods. Having a
study region with a large number of subregions is ideal because it allows a wide range of
different outbreak sizes to be simulated. We used the number of inpatients from asthma in
2007, obtained from the Georgia Department of Community Health, to calculate the
expected counts for the mapped area. Note that we assumed a constant expected count rate
over time, which is reasonable if we assume the population does not change during the
surveillance exercise. The importance of evaluating surveillance procedures using
epidemiologically and spatially appropriate data has been stressed in literature. Asthma is a
convenient choice because, as one of the most common chronic diseases in the USA, it has
become a major public health challenge.

The model considered for the true relative risks under the null was

where ρ is zero mean Gaussian with precision τρ; (v1, v2, . . . , vm) is assumed to be a
realization of a multivariate Gaussian distribution with zero mean vector and precision
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matrix τvIm; and each δi = (δi1, δi2, . . . , δiT) is assumed to follow a random walk
independently of all other counties, that is, δit ~ N(δi,t–1, τδ); we set the precision parameters
τρ, τv, and τδ equal to 10,000, 100, and 2500 respectively, which produced a small variation
in disease risk over both space and time.

We considered four different scenarios representing possible changes in the relative risk
pattern over space and time: isolated local jumps, clustered local jumps, and a global jump
(Figure 1). As we have mentioned before, a global change affecting all the counties at the
same time point is unlikely. Yet, it is important to assess the behavior of our surveillance
technique in that scenario. We assumed that irreversible changes occurred at time period t =
18 so that enough historical data were available to evaluate the effect of the window length
on the performance of the procedure.

Scenarios 1 and 2. Local jumps in risk were generated for nine counties at time t = 18. In
scenario 1, a jump of 60% is defined as

where Tc = {18, 19, 20}. Note that this jump is proportional to the relative risk.
Consequently, those counties with high values of the relative risk will undergo more
noticeable jumps. However, the contrary may occur on some occasions. In scenario 2, the
simulated jumps took the form

so local jumps of different intensities, varying between 28% and 75%, were generated, the
counties with the smallest relative risks being the ones undergoing the biggest increases.

Scenario 3. Clustered jumps in risk of different intensities were generated for three different
regions

Scenario 4. An irreversible global jump in risk of 30% was generated at time period t = 18

Once the values for the expected counts and the relatives risks were specified, the observed
counts in the mapped area were generated using the Poisson model

To allow for sampling variability, we simulated 500 data sets for each of the relative risk
patterns. After experimenting with a range of different number of replications, we chose this
number as a balance choice between accuracy and computational efficiency. The results
presented are averaged over these 500 realizations.
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5.2. Evaluation of the surveillance method
It is not evident how to measure the performance of a multivariate surveillance method
where repeated decisions are made over time. A trade-off between false alarms and short
delay times or detection probability must be struck, so a single optimality criterion is not
always enough and evaluation by several measures might be necessary to characterize the
behavior when the process is in and out of control.

The surveillance method developed in this paper is envisaged as a screening instrument that
allows us to identify small areas with a sudden jump in risk and, consequently, prompting
further investigation. Hence, sensitivity and specificity are advisable measures. Let us divide
the results obtained for each scenario during the outbreak period Tc into true alarms (TA),
false alarms (FA), false no alarms (FNA), and true no alarms (TNA) (Table I). In particular,
we define the sensitivity as the proportion of all the areas undergoing a change in risk which
signal an alarm at any time during the outbreak period, that is, TA / (TA + FNA). Similarly,
the specificity is given by the proportion of in-control regions which are correctly identified
as such, TNA / (FA + TNA). Note that our definition of sensitivity and specificity may
differ from others proposed in a surveillance context (see, for example, [8, 10]). The reason
is that our primary concern is in detecting all the areas of increased disease incidence.
Hence, we are more concerned with recovering the true outbreak behavior, rather than just
detecting a small area of unusual disease aggregation when a change in risk takes place. It is
important to mention that when a sliding window approach is used to estimate the model
describing the behavior of disease, the proposed sensitivity and specificity are time
independent. For each time point t ∈ Tc, the spatiotemporal model is fitted using only the
data observed between t – l and t – 1, l being the length of the sliding window. Unusual
observations at time t are then detected by the corresponding SCPO.

As Sonesson and Bock [36] pointed out, timeliness is of extreme interest in public health
surveillance, and so additional measures accounting for timeliness in detection should be
considered together with the common test characteristics of sensitivity and specificity. In
this study, we consider the median time to outbreak detection (MTD), which is defined as
follows. For each small area undergoing an outbreak, we define the time to detection as the
number of time periods from the beginning of the outbreak until the first alarm is triggered,
the outbreak taking place at any time during the surveillance period. If no alarm is sounded,
that is, if the outbreak is missing, an infinite time to detection is assigned. The MTD is then
given by the median of the times to detection corresponding to those areas of increased
incidence. Consequently, an MTD equal to infinite means that the surveillance technique has
not detected, at least, half of the areas of increased incidence. This measure avoids some of
the problems arising when using the mean time to detection: if missed outbreaks are ignored
when computing the mean, a method that alerts late can have a larger mean than a method
that does not alert at all.

Finally, to characterize the behavior of the surveillance mechanism when the process is in
control, we consider the probability of a false alarm for an out-of-control system (PrFA)
when the proposed procedure for addressing the multiple comparisons problem is applied.
This probability can be estimated by the total number of time points associated with a false
alarm divided by the total number of non-outbreak time periods. The commonly used
average in-control run length (ARL0) can be estimated from the PrFA taking into account
their relationship under the null when evidence against the in-control situation is not
aggregated over time. We do not present ARL0 but favor PrFA here.
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5.3. Results
We sequentially fitted the two models described in Section 2, the BYM and the ST models,
as new data became available. We considered different window lengths to assess their
influence on model estimation and outbreak detection capability. We carried out the
posterior sampling using mixed Gibbs–Metropolis steps. We fixed a burn-in period of
25,000 iterations to assess the convergence of MCMC chains. To reduce the correlation for
the samples, we kept one posterior sample in five iterations after the burn-in until a set of
5000 iterations was obtained. We performed a sensitivity analysis to check whether the prior
assumptions had an undue effect on the results. We experimented with a range of different
hyperprior specifications (Section 2), all of them providing similar results. The results
presented here correspond to the case of a Gamma(2,0.5) prior for the precision parameters.
Because of the huge amount of information, we present a selection of the most
representative results in this section.

For a range of different window lengths, Table II displays the sensitivity, specificity, and
MTD of the proposed surveillance technique in scenarios 1 and 3 when we use the BYM
model to describe the behavior of disease. Note that we obtain one measure value for each
simulation scenario and data set. The results presented here are averaged over the 500
realizations simulated for each scenario. For the MTD we do not present the mean value but
favor the median here. If the mean is considered, a MTD equal to infinite is obtained if there
is just one data set whose corresponding MTD equals infinite. To assess the variability of
the results, we present the 95% credible intervals (CI) together with posterior average
estimates. It should be pointed out that, although the specificity remains the same, the
sensitivity of the surveillance technique improves as the window length increases. This is
due to the fact that unusual counts of disease can be better detected as we increase the
amount of historical observations under non-outbreak periods. However, the use of historical
data beyond 6 time periods back does not have a significant impact on the performance of
the surveillance technique. Although we do not show it here, we obtain similar results for
scenarios 2 and 4 and for the ST model. Hence, we recommend the use of a sliding window,
which prevents refitting the whole data set and reduces computational requirements. This is
specially important for Bayesian hierarchical model-based surveillance methods because
sequential estimation of the model using MCMC simulation techniques can be time
consuming. In addition, once an increased disease incidence has been detected, we want the
surveillance mechanism to adjust to the new risk pattern so that it can look for further
anomalies. Otherwise, the use of the whole history will lead to multiple sequential alarms
for the detected outbreak, and so it may hinder identification of additional changes in the
disease incidence. In this study, we can recommend a length of 6 time units as an
appropriate choice. However, the optimal cutoff value will be application specific and
different lengths should be considered depending on the amount of data available and the
relative risk pattern.

Table III shows the sensitivity, specificity, and MTD of the proposed surveillance technique
by simulation scenario when both the BYM and the ST models are fitted to the data within a
sliding window of length 6 time periods. Because we can only compute specificity for those
situations where changes in risk do not affect all the areas under surveillance, we present
only the sensitivity and MTD for scenario 4. An important result of our simulation study is
that the SCPO based on the BYM model provides more satisfactory results. This is due to
the fact that the constant area-specific relative risks in the BYM model are estimated so that
they can accommodate all the observed counts within the sliding window. Changes in risk
will then be detected taking into account all the previously observed data. On the contrary,
when the ST model is used to describe the relative risk surface, detection of changes in risk
will depend mainly on the observed data for the last time period. Observations bigger than
the ones observed in previous time points will lead to higher estimates of the corresponding
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relative risks, which may hinder the outbreak detection capability of the procedure.
Similarly, counts of disease smaller than the ones previously observed may result in false
alarms. These results support the idea that simple models describing the overall behavior of
disease in space and time are advisable in surveillance contexts. In what follows, we will use
the BYM model to describe the relative risk pattern.

Figure 2 shows the spatial distribution of the sSCPO at time 18 when the BYM model is
used to describe the behavior of disease. It can be seen that counties with low sSCPO values
correspond to those where changes in risk were generated (compare Figure 2 with Figure 1).
Counties with no simulated increase in risk have much larger sSCPO, all of them greater
than 0.5. It should be emphasized here that, rather than adding more counts directly, we
simulated jumps in the relative risks and then we generated the counts of disease using the
Poisson model and the simulated risks. As a consequence, generated counts corresponding
to those areas with a jump in risk may not present an increased disease incidence from the
beginning of the outbreak.

In Table IV, we compare the detection power of both the univariate and clustered SCPO
(Equations (6) and (8), respectively) by simulation scenario. For comparative purposes, we
also present the results obtained with two alternative surveillance procedures: the Bayesian
p-value surface [7, 20] and the widely used log-linear regression model developed by
Farrington et al. [30], which is implemented in the R software package surveillance [45]. We
set the corresponding critical levels for these techniques equal to 0.10 for the scaled SCPO,
0.0025 for the scaled CSCPO, 0.01 for the Bayesian p-value, and 0.04 for the Farrington
algorithm. Thresholds for detecting areas of unusual risk have been proposed in a
nonsurveillance context [46, 47]. The thresholds here were chosen so that a specificity
around 0.93 was assured in all the scenarios, that is, 93% of the small areas without a jump
in risk during the outbreak period were properly identified as so by the surveillance
techniques. For all the techniques and simulation scenarios, the 95%CI for the specificity
was within the interval [0.87, 0.97]. Let us comment the results. The analysis of the
Bayesian p-value surface, as our surveillance approach, requires the use of a spatiotemporal
model describing the behavior of disease over space and time under ‘normal’ conditions.
Although a spatiotemporal model as in Equation (2) was originally proposed [7], it can be
seen that the use of the BYM model provides more satisfactory results. For each small area
and time period, the Bayesian p-value is given by the probability that replicated data from
the posterior predictive distribution could be more extreme than the new observation, that is,
the Bayesian p-value looks at the area under the posterior predictive distribution from the
observed value. So, the Bayesian p-value and the SCPO, which corresponds to the value of
the posterior predictive density at the new observation, are based on the same predictive
distribution and, consequently, similar results are expected with both techniques although at
different critical levels. For those observations above the mean, the smaller the value of the
posterior predictive density, the smaller the area of the upper tail. The main advantage of the
SCPO is that it can be easily extended to incorporate information from the spatial
neighborhood. The use of the CSCPO improves considerably the outbreak detection
capability when changes in risk affect neighboring areas simultaneously. This is an
important result that should be kept in mind because surveillance procedures usually focus
on either individual tests for each of the small areas in the map or a scalar statistic which is a
function of all the individual tests. Finally, as we have mentioned before, a common
approach for the surveillance of multivariate time series of disease counts is to apply a
univariate method to each time series independently and report all the alarms. The
Farrington algorithm is routinely applied in public health applications to detect aberrations
in laboratory-based surveillance data. Recently, this method has been applied in the analysis
of multivariate surveillance data arising in veterinary public health [32]. However, because
correlation between the series is ignored, more satisfactory results can be obtained by using
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a multivariate surveillance technique. It is important to note here that we are just comparing
the detection capability of the surveillance techniques during the outbreak period for a given
value of the specificity. In practice, when the time series are monitored separately by
univariate techniques, higher thresholds would be set as the number of small areas under
surveillance increases so as to keep in-control alarm rates comparable with those in
univariate surveillance contexts. For instance, one would set the critical level of the
Farrington algorithm at α = 0.01/m to control the PrFA at 0.01. In this case, the sensitivity
of the surveillance procedure will decrease considerably. As shown next, the procedure
proposed in this paper to control the probability of false alarm provides an alternative
satisfactory solution to the problem of multiple comparisons.

Let us assume that an alarm for the ith small area is sounded at time t if the observed count
of disease is higher than expected and the corresponding sSCPO is below the critical level α
= 0.10. Table V displays, for each scenario, the probability of observing at least the same
number of small areas signaling an alarm at each time point during the outbreak period.
Note that this probability depends on the number of small areas undergoing an outbreak. In
addition, the number of small areas signaling an alarm decreases as time progresses. This is
due to the fact that higher estimates of the area-specific relative risks are obtained as data
from outbreak time periods are included in the sliding window. Let us assume that an alarm
for an out-of-control system is generated at a particular time point if this probability is below
the critical level β = 0.01, which allows us to control the probability of a false alarm for the
whole study region when no change in risk takes place at 0.01. As the results in Table V
demonstrate, an alarm for the whole study region will be generated as soon as a jump in risk
takes place with probability 1 for all the scenarios. By setting the critical level α = 0.10,
93% of the areas with a jump in risk are then reported as areas of increased disease
incidence in scenario 1. For scenarios 2–4, the percentage of correctly detected areas are
respectively 0.90, 0.77, and 0.53 (Table III). The probability of false alarm (PrFA) can be
estimated using the 500 data sets simulated for each scenario under normal conditions. Let
Nt = 22000 be the total number of non-outbreaks time periods (4 scenarios × 500 data sets ×
11 time periods) and Nfa the total number of points time associated with a false alarm. The
estimated PrFA = Nfa/Nt is equal to 0.006, smaller than 0.01 as expected.

6. Case study
In this section we study the number of reported salmonellosis cases in South Carolina during
1995–2003, which has also been studied in [8]. The salmonellosis data set contains
information on the date of diagnosis for each case and the patient's county of residence at the
time of diagnosis. Even though these data have a fixed past time, in this section we show the
results obtained in the prospective analysis of the data using our surveillance procedure.

Salmonellosis is an infection with Salmonella bacteria, which is usually transmitted to
humans by eating foods contaminated with animal feces. Most people infected with
Salmonella develop diarrhea, fever, vomiting, and abdominal cramps. In most cases, the
illness lasts 5 to 7 days, and most people recover without treatment. In severe cases, the
Salmonella infection may spread from the intestines to the blood stream and then to other
body sites causing death unless the person is treated promptly with antibiotics.

Figure 3 depicts the monthly counts of salmonellosis cases in South Carolina during this 9-
year period, with a clear seasonal cycle of length 12. A total of 6958 cases were diagnosed
from January 1, 1995 to December 31, 2003. As shown, the number of salmonellosis cases
diagnosed in October 1996 is extremely large, approximately three times of those numbers
in October of other years, which indicates that something unusual happened at that time
period. Although not as remarkable, unexpected high counts can also be observed at
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different time points during the surveillance window, for instance, in September 1996, June
2000, February–March 2001, or the period from August to November 2002.

To apply the proposed surveillance procedure to the Salmonella data, we first need to define
the expected counts in each county and time period. Because of the lack of a standard
population with age-specific rates for the disease, expected counts are calculated by internal
standardization [48]. That is, the total number of cases diagnosed at a particular time period
is used to estimate a disease rate, and expected counts in each county are then calculated by
assuming they are proportional to the counties’ population during that time period. This
approach was also used in [8]. The focus of their study was to analyze the salmonellosis data
for October only during the period from 1995–2003. Here, however, we are interested in
analyzing the whole data set. Because more cases are diagnosed in summer, we need to deal
with seasonality. This can be done by either incorporating the seasonal effects in the
expected counts or in the relative risks. In the first case, we use each monthly count to
estimate the disease rate for that month and assume a constant relative risk during the
surveillance exercise. In the second approach, we calculate the rates of disease using the 12-
month cumulative counts, where months looking highly unusual are excluded when using
the internal standardization method. We can then incorporate seasonal effects into the model
through the relative risk decomposition as follows

(11)

where ui and vi represent the spatial variation,  are the seasonal effects, and Is(t) is the
indicator function which takes the value 1 if time t corresponds to month s, and 0 otherwise.
It is important to note that we define different risks to account for the seasonality of the data,
but the risks so defined are constant over time. Alternatively, sine and cosine terms can be
used instead of dummy variables to model the seasonal variation in the data. Yet, the model
given by Equation (11) fits easily, and it can be seen as a generalization of the BYM model
allowing for inclusion of covariates which, in general, do not necessarily have to correspond
to seasonal effects.

The spatiotemporal model in Equation (11) is sequentially estimated as new data arrive
every month, and the SCPO values associated with the new data are analyzed to detect
changes in the relative risk pattern. Because of the abnormally high values in September and
October 1996 and the lack of long-term historical data, we initially fit the model using the
data for 1995 and start the surveillance exercise in January 1996. As new data become
available, the length of the sliding window is progressively increased from 12 to 36, which
allows the seasonal effects to be estimated using the data from 3-month sets. An alarm for
the ith county is sounded at time t if the observed count of disease is higher than expected
and the corresponding sSCPO is below 0.08. The total number of alarms for the first 7
months is used to estimate the distribution of the number of counties signaling an alarm at
each time period when no change in risk takes place, which is given by the binomial
distribution Bi(46, 0.02). From August 1996, in an effort to control the probability of false
alarm at 0.01, a general alarm for an out-of-control system is sounded at time t if there are at
least five counties showing an increased disease incidence. Nevertheless, our surveillance
procedure allows us to keep track of those areas of unusual incidence at each time point
regardless of whether we generate an alarm for an out-of-control system. Table VI shows the
number of counties signaling an alarm at each month from January 1996 to December 2003.
As it can be seen, possible outbreaks of salmonellosis took place in October 1996, July
1997, June 2000, February 2001, and the time period from August to November 2002. These
results are consistent with our expectations (Figure 3).
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Values of the sSCPO equal to 0 at different times during the surveillance exercise strongly
suggest that something unusual happened, even though the total number of counties
signaling an alarm is not significant enough to sound a general alarm for an out-of-control
system. This is the case of the Greenville and Spartanburg counties in September 1996. A
total of 92 and 13 cases were diagnosed, respectively, in these counties during September
1996, the counts of disease observed up to that time point being always lower than 6. An
alarm for an out-of-control system is sounded in October 1996, when the outbreak of
salmonellosis spread to other counties. Similarly, the Richland county presents a sSCPO
equal to 0 in March 2001, which indicates that the outbreak detected in February 2001 is still
‘alive’. The 69 cases of salmonellosis reported during March 2001 in this county are the
cause of the peak we observe in the time plot of the series. The surveillance procedure alerts
us to this high count, which is about 23 times the number of cases diagnosed in March of
previous years. However, because only this county presents an extremely increased disease
incidence, the surveillance procedure does not sound a general alarm for the whole system.
Figure 4 displays the spatial distribution of the sSCPO for the salmonellosis data in October
1996, February 2001, and October–November 2002. For illustrative purposes, we also
include maps for September 1996 and March 2001 which, as we have mentioned before,
include areas of increased disease incidence.

These results are consistent with what Zhou and Lawson [8] observed in their analysis of the
salmonellosis data for October during the period from 1995–2003. In that paper, the authors
detect an outbreak of salmonellosis in Greenville, Pickens, and Spartanburg during October
1996. In October 2002, the authors also detected an increased incidence in the Charleston
county.

When the CSCPO is used to detect emerging clusters of disease, the surveillance procedure
generates the first alarm for an out-of-control system in September 1996, the following
counties in the northwest region of South Carolina prompting further investigation:
Abbeville, Greenville, Greenwood, Lexington, Newberry, Pickens, and Spartanburg. Note
that only three of these counties undergo a significant increase in risk at that time period to
be detected by the univariate SCPO (Figure 4). In October 1996, alarms based on the
CSCPO were sounded for Abbeville, Anderson, Pickens, Greenville, and Spartan-burg.
Hence, when a set of neighboring areas show an increased disease incidence, the CSCPO
facilitates detection of those regions undergoing an incipient outbreak of disease at the very
moment of their onset.

In this case study, we are dealing with sparse data. Except for some of the most populated
counties, counts of disease observed at each time period are generally equal to zero. It is
worth pointing out that, in this case, the use of the sSCPO to detect areas of increased
disease incidence provides more satisfactory results than the analysis of the Bayesian p-
value surface. This is due to the fact that Bayesian p-values tend to signal an alarm for those
counties which at a particular time present one or two cases of disease after a period of time
with no reported cases. Note that the estimated relative risk for a particular county will be
practically zero if no cases have been reported up to that time point. Consequently, most of
the replicated data from the corresponding conditional predictive distribution will be zero,
and the Bayesian p-value associated with a new count equal to one will be close to zero.

Finally, we present the results obtained when the Farrington algorithm is applied to monitor
each one of the m = 46 time series independently, beginning from February 1996. In this
case, seasonality is handled by estimating the log-linear regression model using past
observations within a window of size 3 around the period of the observations. We assume
that an alarm is generated for county i at time t if the observation yit is above the upper limit
of its (1 – α) × 100% prediction interval. The two-third-power transformation is applied to
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normalize the distribution before computing the predictive interval. To control the
probability of false alarm at each time period at 0.01, we set α equal to 0.01/m. Figure 5
displays those time periods for which there is at least one county causing an alarm. For
comparative purposes, we also present the results corresponding to the critical level α =
0.01. Because it is common to observe counts of disease higher than expected for just one
county atDa particular time period, an excessive number of alarms are generated when the
problem of multiple comparisons is not dealt with. However, areas of unusual aggregation of
disease in need of further investigation are missed when the critical level α is reduced. For
instance, only the counties of Greenville and Spartanburg and the counties of Greenville and
Pickens are detected respectively in September and October 1996. During the period from
August to November 2002, just one county causes an alarm in November 2002. The reason
is twofold. First, only those extremely unusual observations are detected when the critical
level is reduced. Second, because the time series are analyzed separately, correlation
between the series is ignored.

7. Discussion
This paper has focused on the development of statistical methodology for prospective
spatiotemporal public health surveillance. In particular, we have shown how the CPO can be
adapted in a surveillance context to detect areas of unusual aggregation of disease. The
resulting technique, called the SCPO, has the potential to be applied in any surveillance
context where a statistical model is used to describe the count of disease occurrences. Here,
we have shown its application in the monitoring of noninfectious diseases within the
framework of Bayesian hierarchical Poisson models. A key finding from our simulation
study is that, in terms of outbreak detection, the SCPO based on the convolution model
provides more satisfactory results. On the basis of the goodness of fit, previous studies using
Poisson models in a surveillance context have used a spatiotemporal model including both
spatial and temporal effects as well as a space–time interaction term [7, 20]. Recently, it has
been pointed out the importance of maintaining a relatively simple model capable of
describing the overall behavior of disease over space and time without absorbing changes in
the model fit [8, 22]. However, no such comparative evaluation can be found in the
literature. For the monitoring of infectious disease data, the convolution model provides a
suitable framework for describing the behavior of disease during nonepidemic stages. The
SCPO can then be used to detect the onset of epidemics. Because evidence against the in-
control situation is not accumulated over time, the SCPO may fail to detect a gradual change
in risk. On those occasions, a weighted sum of previous SCPO or a multivariate extension
incorporating information from previous counts of disease may help to detect a continuing
change in disease incidence over time.

The SCPO and the previously proposed Bayesian p-value are both model-based surveillance
techniques, which use the posterior predictive distribution to detect unusual observations,
and so both techniques have a similar detection power. Yet, some features of the SCPO
make our procedure a more convenient one. First, unlike surveillance residuals, the SCPO is
not affected by censoring effects. Hence, the use of a lagged loss function or ‘sliding
window’ is a feasible solution to the estimation problem, which allows the computation time
to be reduced substantially. It is important to emphasize that, from a theoretical viewpoint,
the use of a lagged loss function is preferable to the surveillance mechanism proposed in [8],
where the spatial model is fitted to the data from a single time point. In our surveillance
procedure, we calculate accurate estimates of the spatial effects using the most recent
observations. Second, changes in risk can be detected without having to implement the
equivalent of a parametric bootstrap in the Bayesian setting, which can be cumbersome on
some occasions. In addition, when dealing with sparse data such as the salmonellosis data
analyzed in this paper, the use of the SCPO provides more satisfactory results than the
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analysis of the Bayesian p-value surface. Finally, the SCPO can be easily extended to the
multivariate case. In this paper, a CSCPO incorporating information from the first-order
spatial neighborhood has been proposed. As shown in the simulation and case studies, this
technique improves considerably outbreak detection capability when changes in risk affect
neighboring areas simultaneously. Very often in practice, it is of interest to simultaneously
monitor multiple diseases. On those occasions, a multivariate SCPO incorporating
information from the different diseases could be defined in a similar way.

An important feature of our surveillance procedure is that different alarms are sounded for
those areas of increased disease incidence. We have shown how the multiple comparisons
problem can be successfully addressed by assuming that there is a common prior probability
that a given area signals an alarm when no change in risk takes place. An alarm for an out-
of-control system is then generated if there is a significant number of small areas showing an
unusual aggregation of disease. This number will be set according to the desired probability
of a false alarm. Because we do not reduce the critical level of the individual comparisons,
this approach allows us to recover the true outbreak behavior and facilitates the carrying out
of further investigations and preventive actions.

Finally, we have shown how the BYM model can be extended to incorporate covariates in
the relative risk decomposition. In our example, these covariates represent seasonal effects.
It would be valuable to investigate the effect of incorporating covariates related to possible
disease risk factors, such as air pollution levels or poverty rates. This would allow us to
detect changes in risk by monitoring changes in the covariates, providing a better
understanding of emerging trends or outbreaks of disease. A very fruitful area for further
research is the incorporation of covariates associated with syndromes for diseases such as
job or school absenteeism, physician visits, or over-the-counter pharmacy sales. This would
allow for detection of adverse health effects at the earliest possible time, possibly even
before disease diagnoses can be confirmed.

Recently, integrated nested Laplace approximations have been used to approximate posterior
marginals in latent Gaussian models [49]. Schrödle et al. [50] applied these techniques to
obtain parameter estimates for different spatiotemporal models for retrospective analyses of
veterinary surveillance data. Although this approach may be useful for computing the
SCPO, computation of the CSCPO is not straightforward. Yet, its application in prospective
public health surveillance may be a fruitful area for further research.
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Figure 1.
Simulation study. Regions where changes in risk are considered. Left, isolated local jumps
(scenarios 1 and 2); right, clustered local jumps (scenario 3).
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Figure 2.
Simulation study. Spatial distribution of the scaled surveillance conditional predictive
ordinate from the Besag–York–Mollie model at time period 18 under different scenarios.
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Figure 3.
Monthly counts of reported salmonellosis cases in South Carolina during 1995–2003.

Corberán-Vallet and Lawson Page 26

Stat Med. Author manuscript; available in PMC 2012 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Spatial distribution of the scaled surveillance conditional predictive ordinate for the
salmonellosis data at those months undergoing a possible outbreak of disease.
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Figure 5.
Salmonellosis case study. Resulting alarms from the surveillance of the m = 46 time series
using the Farrington algorithm. Diamonds and solid points represent alarms corresponding
to the critical levels α = 0.01 and α = 0.01/46 respectively.
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Table I

Outcomes of the surveillance procedure during the outbreak period Tc.

Areas that signal an alarm at any time during
Tc

Areas that do not signal an alarm during Tc Total

Areas with a change in risk TA FNA m 0

Areas without a change in risk FA TNA m – m0

Total Na m – Na m

TA, true alarms; FA, false alarms; FNA, false no alarms; TNA, true no alarms.
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Table V

Simulation study. Probability of observing at least the same number of counties signaling an alarm at each
time point during the outbreak period. Decision rule: An alarm for a particular county is sounded at time t if
the observed count of disease is higher than expected and the corresponding scaled surveillance conditional
predictive ordinate is below 0.10.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pr(n ≥ n18) 0.005 [0,0.042] 0.007 [0,0.042] 0.001 [0,0.005] 0 [0,0]

Pr(n ≥ n19) 0.007 [0,0.073] 0.016 [0,0.101] 0.005 [0,0.042] 0 [0,0]

Pr(n ≥ n20) 0.019 [0,0.101] 0.037 [0,0.214] 0.022 [0,0.214] 0 [0,0]
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