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Abstract

Evidence that physical activity (PA) modulates the association between the fat mass and obesity-associated gene (FTO) and

BMI is emerging; however, information about dietary factors modulating this association is scarce. We investigated whether

fat and carbohydrate intakemodified the association of FTO gene variationwith BMI in two populations, including participants

in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study (n = 1069) and in the Boston Puerto Rican Health

(BPRHS) study (n = 1094). We assessed energy, nutrient intake, and PA using validated questionnaires. Genetic variability at

the FTO locus was characterized by polymorphisms rs9939609 (in the GOLDN) and rs1121980 (in the GOLDN and BPRHS).

We found significant interactions between PA and FTO on BMI in the GOLDN but not in the BPRHS. We found a significant

interaction between SFA intake and FTO on BMI, which was stronger than that of total fat and was present in both

populations (P-interaction = 0.007 in the GOLDN andP-interaction = 0.014 in BPRHS for categorical; andP-interaction = 0.028

in the GOLDN and P-interaction = 0.041 in BPRHS for continuous SFA). Thus, homozygous participants for the FTO-risk allele

had a higher mean BMI than the other genotypes only when they had a high-SFA intake (above the population mean: 29.76

0.7 vs. 28.16 0.5 kg/m2; P= 0.037 in the GOLDN and 33.6.6 0.8 vs. 31.26 0.4 kg/m2; P = 0.006 in BPRHS). No associations

with BMI were found at lower SFA intakes. We found no significant interactions with carbohydrate intake. In conclusion, SFA

intake modulates the association between FTO and BMI in American populations. J. Nutr. 141: 2219–2225, 2011.

Introduction

Minor alleles at the FTO locus (namely, SNP15 rs9939609 and
rs1121980, both in high linkage disequilibrium) have been
associated with higher BMI and obesity risk in multiple

populations (1–8). Hence, the FTO gene has now been consid-
ered as one of the most important in common forms of obesity
(9,10). However, despite the overall consistency reported, there
are a number of studies in which the FTO gene has not been
associated with BMI or obesity (11–15).

These inconsistencies may be the result of gene-environment
interactions between the FTO gene and lifestyle variables as
suggested by some reports. This indicates that the effects of FTO
variants on BMI are not unavoidable but, rather, can be
considerably modulated by environmental factors. Identifying
those environmental interactions will be needed for establishing
targeted preventive approaches in individuals with greater
genetic susceptibility to obesity. PA has been the environmental
factor that is most commonly reported as showing a significant
interaction with the effects of variations (both of the SNP
rs9939609 and the rs1121980) in the FTO (16–21). Accord-
ingly, a lower level of PA would boost the effect of the variants
associated with high BMI (called risk-alleles), whereas a higher
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level of PAwould neutralize the genetic effects of the risk-alleles
on BMI. However, not all studies reported support this interac-
tion of the FTO polymorphism with PA (22–24). Recently,
another relevant interaction of an FTO genetic variant (rs9939609)
with total fat and carbohydrate intake in determining BMI has been
described in middle-aged individuals in Sweden (20). In this
population (20), the greater BMI in individuals with the FTO risk-
allele was restricted to those who reported a high-fat diet, whereas
the FTO risk-allele was not associated with a higher BMI among
participants with lower fat intakes. An inverse interaction was
observed with carbohydrate intake. Despite its relevance, the
consolidation of this gene-diet interaction has not been pursued
in other populations, thus the need to undertake replication studies
on this interaction. Moreover, because only total dietary fat was
investigated in that study, it is necessary to go deeper into which
types of fatty acids aremost implicated in that interaction. Based on
the results of our previous work in which we found that SFA
consistently interact with polymorphisms associated with obesity
(25), our hypothesis was that SFA may play an important role in
modulating the effects of the FTO polymorphisms. Some human
studies (mainly carried out in children) have found that participants
carrying the FTO risk-allele consume more total energy and fat
than noncarriers (26,27). Our objectives, therefore, were to: 1)
study the association between FTO variants, anthropometric
variables, and energy and macronutrient intake in two indepen-
dent, adult, U.S. populations that differed in demographic and
lifestyle characteristics; 2) determine whether the previously
reported interaction between total fat and carbohydrate intake
as well as the interaction of PA with the FTO variants on BMI
could be replicated; and 3) investigate whether SFA intake has a
stronger interaction than total fat intake in these populations.

Participants and Methods

We studied 2163 participants from two independent U.S. populations
(the GOLDN and BPRHS) that had been extensively characterized by

our group in previous studies (28,29). The IRB of the institutions

involved approved the study protocols and all participants provided

written informed consent.

The GOLDN Study. About 1200 adult individuals of European ancestry
were recruited from two National Heart, Lung and Blood Institute

Family Heart Study field centers (Minneapolis, MN and Salt Lake City,
UT) as previously reported (28). We included 1069 participants (507

men and 562 women) for whom genetic (rs1121980 and rs9939609

FTO polymorphisms), anthropometric, dietary, PA, and other control
variables were available. The protocol was approved by the IRB at the

Universities of Alabama, Minnesota, Utah, and Tufts.

The BPRHS. The study comprised approximately 1200 Puerto Rican
(Hispanics of Caribbean origin) participants aged 45–75 y in the greater

Boston area (29) and was derived from the NIH-funded Centers on

Population Health and Health Disparities. We included 1094 (315 men

and 779 women) participants for whom genetic (rs1121980), anthro-
pometric, dietary, PA, and other control variables were available. The

protocol was approved by the IRB at Tufts University.

Anthropometric and PA determinations. Anthropometric variables,

including height, weight, and waist circumference, were measured (28,29).

BMI was calculated as weight (kg)/height (m2). Participants with a BMI

$30 kg/m2 were considered obese. PA in the GOLDN was assessed by an
interviewer-administered questionnaire containing questions on the num-

ber of h/d dedicated to different levels (heavy, slight, and sedentary) of

activity as well as the average number of h/d without activity (29,30).

Afterwards, a single score representing PA was calculated (25,29). In the
BPRHS, a PA single score based on the Paffenbarger questionnaire of the

Harvard Alumni Activity Survey (31) was also estimated. In both

populations, a higher score indicates a greater amount of PA.

Dietary intake and other lifestyle variables. Diet was measured by
validated questionnaires in each specific population (32–34). In the

GOLDN, we estimated dietary intake with the Diet History Question-

naire (32,33). In the BPRHS, a specifically validated questionnaire for
this population was used (34). All the included participants had valid

dietary intake data from the FFQ (total daily energy within the range of

800–5500 kcal in men or 600–4500 kcal in women). The percentage of

individuals outside the inclusion range was very low (3.6% in GOLDN
and 4.2% in BPRHS).

Data on smoking and drinking were obtained as previously described

(29,30).

Genetic analyses. DNA was isolated from blood (Qiagen). We

performed FTO genotyping (rs1121980 and rs9939609 in the GOLDN

and rs1121980 in the BPRHS) using Taqman assays with allele-specific

probes on the ABIPrism 7900HT Sequence Detection System (Applied
Biosystems). All genetic analyses were undertaken in the same labora-

tory. Quality control measures were applied. Genotype frequencies were

consistent with Hardy-Weinberg equilibrium in both populations.

Statistical analyses. Chi square tests were used to test differences in

percentages. Normality of continuous variables was examined. Intakes

of total fat (g/d), carbohydrates (g/d), protein (g/d), and fatty acids (g/d)
and PA scores were log-transformed for statistical testing. Spearman

correlation coefficients (rs) between nutrient intakes were estimated. We

first analyzed the association between the FTO and anthropometric

variables (weight, BMI, and waist circumference) by ANOVA, including
a test for linear trend. Sample size calculations were carried out assuming

an allele frequency for the minor FTO allele of 0.44 and the parameters

from the meta-analysis by Frayling et al. (1), in which each additional

copy of the FTO risk-allele was associated with a BMI increase of a
mean of ;0.4 kg/m2 (range, 0.3–0.5 kg/m2). Enrollment of ;1040

participants would be necessary for our association study to have 80%

power (a-level = 0.05) in each population. Therefore, post hoc power

calculations showed that our study incorporating 1069 participants in
the GOLDN and 1069 participants in the BPRHS had 81% power in

each population to show significant associations with BMI at a = 0.05.

We also tested the statistical homogeneity by gender by checking the
significance of the interaction term between the FTO SNP and gender,

and men and women were analyzed together. Control for potential

confounders was carried out by general mixed regression models.

Models were adjusted for gender, age, tobacco smoking, and alcohol
consumption. In the GOLDN, because this is a population in which

some participants are related, additional adjustments for family

relationships were undertaken as previously described (28). In the

BPRHS, further adjustment for admixture using the first component
variable derived from the analysis of 100 ancestry informative markers

was undertaken (35).

To study gene-PA and gene-diet (macronutrient intake) interactions
in determining BMI, we used multivariate linear regression models,

including main effects and interaction terms. We included the same

variables for each population. PA was considered both as categorical

and continuous (log of the PA score). Dietary variables were also
considered as categorical and as continuous. We adjusted analyses for

gender, age, tobacco smoking, alcohol consumption, PA, and total

energy intake. Considering the different options and controversies to

categorize the variables of diet and the diverse ways to express nutrient
intake (in g/d or percent of energy), we used two different approaches

for the analyses. We used a model that uses dietary variables expressed

in g/d and includes the adjustment for total energy intake (25). This
model is known as the standard multivariate energy-adjusted model

(36). In our analyses, macronutrient intakes were analyzed as

categorical (based on the population means) as well as continuous.

However, given that the previous study by Sonestedt et al. (20) found a
significant interaction between the FTO SNP and total fat and

carbohydrate intakes in determining BMI and obesity risk using dietary

variables expressed in energy percentages (nutrient density model), we
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also fitted additional models expressing total fat and carbohydrate

intakes as percent of energy and adjusting for energy intake (multi-

variate nutrient density) to determine if the results of Sonestedt et al.
(20) could be replicated. For this second approach, we categorized

macronutrient intakes in gender-specific tertiles to closely reproduce

the same statistical model of the previous work (20).

When the FTO-diet interaction was analyzed with dietary variables
in continuous form, it was depicted by computing the predicted values

for each individual from the adjusted regression model and plotting these

values against fat intake by the FTO genotype. Stratified analyses by fat

intake levels were also carried out. Logistic regression models, including
main effects and interaction terms, were fitted to test the FTO asso-

ciations and the gene-PA or gene-diet interactions for determining the

OR of obesity. Multivariate adjustments were done as indicated.
Statistical analyses were conducted with SAS software (v.9.1; SAS

Institute) and SPSS software (v.17.0). Standard regression diagnostic

procedures were used to ensure the appropriateness of the fitted models.

All reported probability tests were 2-sided. Differences were considered
significant at P , 0.05. Because our study was conducted in two inde-

pendent populations to discard random associations by chance, we did

not proceed to adjust for multiple comparisons.

Results

Association of FTO variants with obesity measures and
food intake. The two populations studied differed in demo-
graphic and lifestyle variables (Table 1). In the GOLDN study,
we did not observe significant associations between the FTO
polymorphisms (rs1121980) (Table 1) or rs9939609 (Supple-
mental Table 1) and anthropometric (weight, BMI, and waist
circumference) or dietary variables (energy and macronutrient
intakes). Both FTO polymorphisms were in high linkage dis-

equilibrium (0.997; P , 0.001) and we obtained the same
associations for both. After additional adjustment for gender,
age, tobacco smoking, alcohol drinking, and family relation-
ships, we did not find differences in the significance of the results.
Like the GOLDN study, the minor allele at the rs1121980 SNP in
the BPRHS (Table 1) was not associated with greater BMI or
greater energy or fat intake in the codominant model. After
adjustment for gender, age, tobacco smoking, alcohol drinking,
and population admixture, the results did not change in signif-
icance. When the recessive model was tested, we did not find
significant associations. The lack of associations with BMI in
these populations was not due to a lack of statistical power but to
the small magnitude of the effects associated with the risk-allele
carriers (T allele for rs1121980 and the A allele for rs9939609).

Interactions between FTO variants and PA. In the GOLDN,
we found a significant interaction between the rs1121980 and
PA when three categories (based on the GOLDN population
tertiles) were considered (Supplemental Fig. 1A) or when PAwas
analyzed as a continuous variable (Supplemental Fig. 2A). We
also observed significant interaction (P-interaction = 0.002)
between the rs1121980 and PA tertiles on obesity (results not
shown). In contrast, in the BPRHS, there were no significant
interactions between PA and the rs1121980 SNP on BMI
when three categories of PA (based on the BPRHS population
tertiles) were considered (Supplemental Fig. 1B) (P = 0.10) or
when PAwas analyzed as a continuous variable (Supplemental
Fig. 2B) (P = 0.07). Likewise, there were no significant
interactions between PA and the FTO genotype on obesity
(not shown).

TABLE 1 Anthropometric, dietary, and lifestyle characteristics depending on the FTO polymorphism (rs1121980) in the
GOLDN and BPRHS participants1

GOLDN participants (rs1121980) BPRHS participants (rs1121980)

CC CT TT P 2 P-trend3 CC CT TT P 2 P-trend3

n 291 541 236 394 523 177

Age, y 48.4 6 15.9 49.2 6 16.1 48.6 6 16.6 0.76 0.90 57.6 6 7.7 57.8 6 7.5 56.3 6 7.4 0.06 0.06

Weight, kg 83.1 6 18.1 82.9 6 18.3 82.5 6 18.7 0.92 0.70 80.2 6 17.4 79.5 6 17.1 82.9 6 18.1 0.07 0.08

BMI, kg/m2 28.5 6 5.6 28.3 6 5.8 28.0 6 5.4 0.64 0.34 32.2 6 6.9 31.5 6 6.5 32.6 6 6.9 0.11 0.49

Waist, cm 96.1 6 15.4 96.2 6 17.4 96.3 6 16.6 0.99 0.92 101.5 6 14.9 101.1 6 15.1 103.7 6 15.6 0.14 0.11

Daily intakes

Energy, MJ 8.67 6 3.49 8.71 6 3.72 8.16 6 3.27 0.13 0.10 8.77 6 3.52 8.68 6 3.62 8.58 6 3.64 0.83 0.56

Total fat, g 82.8 6 38.8 83.2 6 41.7 79.1 6 37.2 0.41 0.29 73.2 6 34.6 72.5 6 34.1 72.3 6 35.4 0.94 0.77

SFA, g 27.5 6 13.2 28.2 6 15.5 26.4 6 13.2 0.28 0.42 22.8 6 11.8 22.6 6 11.6 22.8 6 12.3 0.95 0.98

MUFA, g 31.2 6 15.2 31.2 6 15.9 29.9 6 14.5 0.56 0.35 26.5 6 12.9 26.2 6 12.6 26.0 6 13.2 0.88 0.65

PUFA, g 17.9 6 8.9 16.5 6 8.7 16.8 6 8.4 0.29 0.12 17.6 6 8.4 17.6 6 8.8 17.3 6 8.8 0.87 0.62

Proteins, g 80.6 6 35.5 81.7 6 37.2 78.5 6 34.4 0.52 0.51 89.6 6 40.4 89.7 6 40.1 90.4 6 42.3 0.98 0.84

Carbohydrates, g 249 6 100 253 6 111 235 6 96 0.07 0.13 271 6 105 267 6 115 260 6 108 0.54 0.27

Total fat, % energy 35.4 6 7.0 35.4 6 6.7 36.0 6 6.2 0.52 0.33 30.9 6 5.2 31.1 6 5.4 31.3 6 4.5 0.59 0.36

SFA, % energy 11.7 6 2.6 11.9 6 2.8 11.9 6 2.6 0.55 0.29 9.5 6 2.2 9.6 6 2.3 9.8 6 2.1 0.49 0.24

Proteins, % energy 15.6 6 2.9 15.8 6 2.8 16.1 6 2.6 0.15 0.06 17.0 6 3.2 17.5 6 3.7 17.6 6 3.2 0.11 0.08

Carbohydrates, % energy 48.7 6 8.8 49.2 6 8.5 48.6 6 7.7 0.56 0.90 52.4 6 7.8 51.7 6 7.7 51.2 6 6.6 0.16 0.08

PA score4 33.9 6 5.9 34.3 6 6.1 34.4 6 6.9 0.52 0.32 31.8 6 4.8 31.3 6 4.5 31.8 6 4.7 0.18 0.92

Current smokers, % 7.2 7.6 7.7 0.98 0.85 26.2 24.6 22.7 0.42 0.41

Current drinkers, % 52.6 49.6 49.6 0.69 0.47 58.4 55.5 53.7 0.63 0.35

Diabetes, % 9.3 7.9 6.1 0.37 0.16 38.4 40.4 38.3 0.80 0.88

Obesity, % 33.3 32.8 35.6 0.75 0.61 56.1 55.7 61.1 0.36 0.36

1 Values are means 6 SD or proportions. BPRHS, Boston Puerto Rican Health Study; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; PA, physical activity.
2 P in the ANOVA test for continuous variables or chi square test for categorical variables.
3 The polynomial contrast and chi square test were used to determine P-linear trend for continuous and categorical variables, respectively.
4 PA score was estimated as described in ‘‘Methods.’’
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Interactions between FTO variants and dietary intake. A
higher total fat intake was associated with higher BMI in
homozygous participants for the minor allele of the FTO in both
populations; these interactions reached a higher significance
level in the GOLDN participants than in the BPRHS partici-
pants. Thus, in the GOLDN (Table 2; Supplemental Table 2), we
found significant interactions between the FTO polymorphism
and total fat intake on BMI whether total fat was expressed
either as gender-specific tertiles of percent of energy (P = 0.017)
or as two categories based on the mean intake in g/d (P = 0.027).
In BPRHS participants (Table 2; Supplemental Table 2), we only
found a significant interaction when total fat intake was ex-
pressed in g/d (P = 0.021). We did not observe a significant
interaction with carbohydrate intake (Table 2; Supplemental
Table 3).

Further, we investigated the specific effects of SFA intake on
this interaction. In both the GOLDN and BPRHS, we obtained
significant interactions both as categorical (Fig. 1) and contin-
uous (Fig. 2) variables. In both populations, an SFA intake
higher than the mean was associated with a higher mean of BMI
in homozygous participants for the minor allele compared with
the other genotypes (29.76 0.7 vs. 28.16 0.5 kg/m2; P = 0.037
in GOLDN and 33.6. 6 0.8 vs. 31.2 6 0.4 kg/m2; P = 0.006 in
PBRHS). Accordingly, in the GOLDN, homozygous individuals
for the minor allele did not have a higher risk of obesity than
other genotypes when the SFA intake was low [below the
population mean; OR = 0.79 (95% CI = 0.51–1.25)] (P = 0.32),
whereas in the high-SFA intake stratum, the risk was higher and
significant [OR = 2.10 (95% CI = 1.22–3.62)] (P = 0.008). In the
BPRHS, these estimates were OR = 1.16 (95% CI = 0.74–1.82)

(P = 0.51) for the low and OR = 1.75 (95% CI = 0.99–3.06) (P =
0.05) for the high-SFA intake stratum.

Finally, we examined the interaction effect of MUFA and
PUFA intakes with the FTO polymorphism on BMI (Supple-
mental Table 4) and found consistent results in the GOLDN and
BPRHS. PUFA intake did not interact with the FTO polymor-
phisms in determining BMI (P-interaction = 0.18 in GOLDN
and P-interaction = 0.53 in BPRHS). However, we obtained
significant interactions with MUFA in both the GOLDN and
BPRHS participants (P-interaction = 0.012 and P-interaction =
0.021, respectively, for the categorical variables based on the
population means). These results, mimicking that observed for

FIGURE 1 BMI in participants in the GOLDN study (A) and the

BPRHS (B) depending on the SFA intake (2 levels, based on the

population mean: 27.6 g/d in GOLDN and 22.7 g/d in BPRHS) and

the FTO polymorphisms (recessive model; rs9939609 in GOLDN and

rs1121980 in BPRHS). Values are adjusted means 6 SEM. Models

were adjusted for gender, age, tobacco smoking, alcohol drinking, PA,

and total energy intake. P values for mean comparison in each

saturated fat strata were also adjusted for covariates. *Different from

CC+TT, P , 0.05. BPRHS, Boston Puerto Rican Health Study;

GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; PA,

physical activity.

FIGURE 2 Predicted values of BMI by the FTO polymorphisms

(recessive model) in the GOLDN study (A) and the BPRHS (B) plotted

against the SFA intake (n = 881 TT+TA and n = 188 AA in GOLDN and

n = 917 CC+CT and n = 177 TT in BPRHS). Predicted values were

calculated from the regression models containing the SFA intake (as

continuous), the FTO polymorphism, their interaction term, and the

potential confounders (gender, age, smoking, drinking, PA, and total

energy intake). The P value for the interaction term between SFA

intake and the corresponding FTO polymorphism (rs9939609 in

GOLDN and rs1121980 in BPRHS participants) was obtained in the

hierarchical multivariate adjusted interaction model in which SFA

intake was logarithmically transformed. BPRHS, Boston Puerto Rican

Health Study; GOLDN, Genetics of Lipid Lowering Drugs and Diet

Network; PA, physical activity.
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SFA intake, may reflect the high correlation between the MUFA
and SFA intake (rs = 0.94; P, 0.001 for GOLDN and rs = 0.95;
P , 0.001 for BPRHS) in these populations.

Discussion

We found that carriers of the minor allele (obesity risk allele) of
the FTO gene did not present a greater BMI than noncarriers,
either in the GOLDN study or in the BPRHS when the pop-
ulation was analyzed as a whole, despite the fact that many other
studies have described significant associations (1–8). It has been
reported that the effects of FTO variation on BMI diminish as
the age of participants increases (7,37). Because we were study-
ing two middle-aged populations, the FTO effects on BMI may
have been of a lesser magnitude than those on children or
adolescents. Age could also have another influence insofar as we
did not find any association between FTO gene variation and
dietary intake, because the most significant results have been
found in children (26,27,38) and recent literature does not
provide a strong support for the effect in adults (38–40).

Moreover, we analyzed gene-environment interactions repli-
cating previous findings and obtaining new interesting results.
We first analyzed the interaction with PA, because there are
numerous previous studies that reported that a greater level of
PA could reduce the effects of the FTO risk allele in determining
greater BMI (16–20,38,41). We found a significant interaction
between FTO gene variation and PA in determining BMI in the
participants of the GOLDN study but not in participants of the
BPRHS. Although the validity of the PA variable may be limited
because it was self-reported in both populations, our results in
the GOLDN study successfully replicated the earlier observation
that a high PA level attenuates the effect of the FTO risk alleles
on BMI. Several confounding factors related to the specific
characteristics of the BPRHS participants (different ethnic back-
ground, greater mean age, higher prevalence of obesity, etc.)
could contribute to the differences in results. However, other
studies have also not been able to find any interaction between
PA and the FTO polymorphisms in determining BMI in other
populations (22–24).

In contrast, we found more consistent results when we
analyzed gene–diet interactions. In agreement with Sonestedt
et al. (20), who described an interaction of FTO rs9939609 with
total fat and carbohydrate intake in determining BMI in Swedish
men, we found some significant gene–diet interactions with
dietary fat intake. Both in participants of the GOLDN study and
in those of the BPRHS, the effects of the FTO risk allele
increasing BMI increased with a high-fat diet. These effects were
examined by using different approaches to express nutrient
intake, because in gene–diet interaction studies there is a con-
troversy over which is the best way to express nutrient
contribution (whether in g/d or in percent of energy) as well as
over the choice of the cutoff points to create categories of intake,
given that the results may differ (36). Having analyzed the
different statistical models, the interaction with total fat intake
was more significant and consistent with the results reported by
Sonestedt et al. (20) in the GOLDN population than in par-
ticipants of the BPRHS. One reason for these results may be that
the GOLDN population is closer to the Swedish population in
European genetic ancestry and age and in the amount of total fat
intake than the BPRHS participants.

In addition, it is possible that some types of fatty acids had a
greater effect than others in this interaction and that they were
consumed more in the GOLDN population than in the BPRHS.
When we studied the effect of the different types of fatty acids

(SFA, MUFA, and PUFA) in greater depth, we observed stronger
and more significant results on considering SFA intake. Both in
participants of the GOLDN study and in those of the BPRHS,
FTO polymorphisms significantly interacted with SFA intake
(both as categorical and as continuous variables) in determining
BMI in each population. These results suggested that high-SFA
intake instead of total fat intake may be more relevant in
increasing the effects of the FTO risk allele on BMI. Considering
that Sonestedt et al. (20) did not examine the effect of SFA, this is
the first time to our knowledge that a significant interaction
between SFA intake and the FTO polymorphisms in determining
BMI has been reported. Moreover, taking into account that we
found this interaction in two independent populations, our
results have a high level of both internal and external consis-
tency. We obtained similar results for the interaction terms with
MUFA intake due to the strong correlation that exists between
MUFA and SFA consumption in North American populations.
Additional studies in Mediterranean populations, where there
are important differences in the sources of MUFA (mainly olive
oil) and SFA (meats, milk, etc.), are required to specifically test
the separate role of SFA and MUFA intake on this interaction.
Nevertheless, the biological mechanisms underlying this inter-
action in determining BMI remain unknown and require di-
rected molecular research.

Strengths of the present study include the analysis of in-
teractions in two well-characterized independent populations,
the use of well-validated dietary questionnaires, and the use of
consistent models for statistical analysis. The main limitation
derives form the cross-sectional study design.

In conclusion, our study confirms previous findings that total
fat intake interacts with the FTO gene variation in determining
BMI. On studying that interaction in greater depth, we found
that the effects of SFA intake on modulating the association
between the FTO risk-allele and higher BMI seem stronger than
that of total fat. We found this interaction in two American
populations, obtaining a greater level of consistency than for the
interaction with PA.
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