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Abstract

We previously reported that a bi-phasic innate immune MAPK response, constituting activation of the mitogen-activated
protein kinase (MAPK) phosphatase MKP1 and c-Fos transcription factor, discriminates between the yeast and hyphal forms
of Candida albicans in oral epithelial cells (ECs). Since the vast majority of mucosal Candida infections are vaginal, we sought
to determine whether a similar bi-phasic MAPK-based immune response was activated by C. albicans in vaginal ECs. Here,
we demonstrate that vaginal ECs orchestrate an innate response to C. albicans via NF-kB and MAPK signaling pathways.
However, unlike in oral ECs, the first MAPK response, defined by c-Jun transcription factor activation, is delayed until 2 h in
vaginal ECs but is still independent of hypha formation. The ‘second’ or ‘late’ MAPK response, constituting MKP1 and c-Fos
transcription factor activation, is identical to oral ECs and is dependent upon both hypha formation and fungal burdens. NF-
kB activation is immediate but independent of morphology. Furthermore, the proinflammatory response in vaginal ECs is
different to oral ECs, with an absence of G-CSF and CCL20 and low level IL-6 production. Therefore, differences exist in how
C. albicans activates signaling mechanisms in oral and vaginal ECs; however, the activation of MAPK-based pathways that
discriminate between yeast and hyphal forms is retained between these mucosal sites. We conclude that this MAPK-based
signaling pathway is a common mechanism enabling different human epithelial tissues to orchestrate innate immune
responses specifically against C. albicans hyphae.

Citation: Moyes DL, Murciano C, Runglall M, Islam A, Thavaraj S, et al. (2011) Candida albicans Yeast and Hyphae are Discriminated by MAPK Signaling in Vaginal
Epithelial Cells. PLoS ONE 6(1 ): e26580. doi:10.1371/journal.pone.0026580

Editor: Alexandra Carolyn Brand, University of Aberdeen, United Kingdom

Received July 1, 2011; Accepted September 29, 2011; Published November 8, 2011

Copyright: � 2011 Moyes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Institutes of Dental and Craniofacial Research (DE017514). The authors also acknowledge financial support
from the Department of Health via the National Institute for Health Research comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ National
Health Service Foundation Trust in partnership with King’s College London. DM is supported by a Wellcome Trust Value In People award, CM by a Federation of
European Microbiological Societies Advanced Fellowship and AI by a King’s College London Overseas Research Studentship. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: julian.naglik@kcl.ac.uk

Introduction

The mucosal epithelium is of immense importance in host

defense and immune surveillance, as it is the initial tissue

encountered by the majority of infecting microorganisms. Vaginal

epithelium provides a physical barrier, which recognizes com-

mensal and pathogenic microbes, as well as regulating the influx of

immune cells to prevent inflammatory tissue destruction. This

specialized interaction between microbes, epithelial cells (ECs) and

local immune cells results in either a degree of mutualism between

microbe and host, as in the case of commensal microbes, or a

breach of the mucosal barrier and subsequent cell injury, as in the

case of pathogenic microbes. Indeed, the integrity of the host

immune system plays an important role in defining whether a

microbe acts as a commensal colonizer or as an opportunistic

pathogen. Of particular interest are ‘opportunistic’ microbes,

which although normally commensal are capable of becoming

pathogenic. The polymorphic fungus Candida albicans is one such

opportunistic microbe, being a constituent of the normal vaginal

microbiota but commonly causing mucosal disease in healthy

women of fertile age [1].

Recently, we identified a host mechanism in oral ECs that

discriminates between the commensal and pathogenic states of C.

albicans, which is based on hypha recognition and fungal burdens

[2]. We demonstrated that epithelial innate immunity against C.

albicans is initiated via NF-kB and a bi-phasic mitogen-activated

protein kinase (MAPK) response. Activation of NF-kB and the first

MAPK phase, constituting activation of the c-Jun transcription

factor, is independent of morphology and is due to the recognition

of fungal cell wall polysaccharides (chitin, mannan, b-glucan).

Activation of the second MAPK phase, constituting phosphory-

lation of the MAPK phosphatase MKP1 and activation of the c-

Fos transcription factor, is specifically induced by C. albicans

hyphae and correlates with proinflammatory responses and cell

damage in a dose-dependent manner. This proinflammatory

response is thought to recruit neutrophils and protects against oral

fungal infection via a novel mechanism involving epithelial toll-like

receptor (TLR) 4 [3]. However, neutrophil recruitment at the

vaginal mucosa is thought to be detrimental to the host [4] and

does not necessarily result in clearance of the fungal infection,

demonstrating fundamental immunological differences in respons-

es to C. albicans at these two mucosal sites.

Given our findings in oral ECs, in this study we sought to

determine how C. albicans activates vaginal ECs and whether a

similar MAPK/MKP1/c-Fos discriminatory system also exists,

with the aim of potentially identifying a common mechanism
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enabling different epithelial tissues to identify when this normally

commensal fungus switches to hyphal growth associated with

invasion and pathology.

Materials and Methods

Cell lines, reagents and Candida albicans strains
Experiments were carried out using the A431 human vulval

epidermoid carcinoma cell line and the TR146 buccal epithelial

carcinoma cell line (SkinEthic Laboratories, Nice, France).

Monolayer epithelial cultures were grown in Dulbecco’s Modified

Eagle’s Medium (DMEM) (PAA, UK) supplemented with 10%

fetal bovine serum (FBS) (PAA, UK) and experiments carried out

in serum-free DMEM. Reconstituted human vaginal epithelium

(vaginal RHE: 5-day) were purchased from SkinEthic Laboratories

(Nice, France) and used as previously described [2,5]. This model

is created from the same cell line (A431) and constitutes several

layers of stratified squamous epithelium permitting the direct

analysis of pathogen-epithelial interactions that are not compli-

cated by non-epithelial factors. Antibodies to phospho-p38,

phospho-ERK1/2, phospho-JNK, phospho-MKP1, phospho-

IkBa, IkBa and c-Fos were purchased from Cell Signalling

Technologies (New England Biolabs, UK). Mouse monoclonal

antibody to human a-actin was purchased from Chemicon

(Millipore) and goat anti-mouse and anti-rabbit horseradish

peroxidase (HRP)-conjugated antibodies were purchased from

Jackson Immunologicals Ltd (Stratech Scientific, UK). Fungal

strains included C. albicans wild-type SC5314 [6], CAI4 (+CIp10)

(NGY152) [7], Dnrg1 (MMC4) [8] and Defg1/cph1 (Can36) [9]. All

strains were grown in YPD medium (1% Yeast Extract, 2%

Peptone, 2% Dextrose) overnight at 30uC to stationary phase prior

to experimentation.

Fungal infection of epithelium
C. albicans strains were inoculated at 26106 cells after being

washed twice in sterile PBS onto vaginal RHE, or between104–7

cells/ml for signaling assays and cytokine assays on monolayer

epithelial cultures. The multiplicity of infection (MOI) ranged

from 0.01–10 (fungal cells per EC) depending on the experiment.

Vaginal RHE and monolayers were incubated at 37uC in 5% CO2

for 5, 15, 30, 60 min, 2, 3 or 24 h as previously described [2,5,10]

depending on the experiment. Non-infected controls contained

PBS alone.

Western blotting
ECs were lysed using a modified RIPA lysis buffer (50 mM Tris-

HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton x-100,

1% Sodium deoxycholate, 0.1% SDS) containing protease (Sigma-

Aldrich) and phosphatase inhibitors (Perbio), left on ice for

30 min, and then centrifuged for 10 min in a refrigerated

microfuge. Supernatants were assayed for total protein using the

BCA protein quantitation kit (Perbio). 20 mg of protein was

separated on 12% SDS-PAGE gels before transfer to PVDF

membranes (GE Healthcare, UK). After probing with primary and

secondary antibodies (dilutions vary from 1:1000 to 1:10,000),

membranes were developed using Immobilon chemiluminescent

substrate (Millipore, UK) and exposed to ECL film (GE

Healthcare, UK). a-actin was used as a loading control.

Transcription factor DNA binding assay
c-Fos DNA binding activity was assessed using the TransAM

transcription factor ELISA system (Active Motif, Belgium). Briefly,

nuclear proteins were isolated from ECs after 3 h infection with C.

albicans using a nuclear protein extraction kit as per manufacturer’s

instructions (Active Motif, Belgium). Protein concentration was

determined as above and 5 mg of nuclear extract was assayed in

the TransAM system according to the manufacturer’s protocol.

Cytokine determination
Cytokine levels (IL-1a, IL-6, IL-8, G-CSF, GM-CSF, TNFa,

MCP-1 (CCL2) and MIP-1a (CCL3)) in cell culture supernatants

were determined at 24 h using the Fluorokine MAP cytokine

multiplex kits (R&D Systems), coupled with the Luminex 100TM

machine according to the manufacturer’s protocol. The trimmed

median value was used to derive the standard curve and calculate

sample concentrations. Standard curve ranges were as follows: IL-

1a 1,850 pg/ml – 2.5 pg/ml; IL-6 4,950 pg/ml – 6.8 pg/ml; IL-8

2,950 pg/ml – 4 pg/ml; G-CSF 4,500 pg/ml – 6.2 pg/ml; GM-

CSF 2,850 – 3.9 pg/ml. CCL20 (MIP-3a) was analyzed using the

Duoset ELISA kit (R&D Systems) and standard curve range was

1,000 pg/ml – 15.6 pg/ml. Values for both assays were only

regarded as valid if they fell within the standard curve range.

Epithelial cell damage assay
EC damage was determined at 24 h by measuring lactate

dehydrogenase (LDH) activity in the culture supernatant as

described previously [2,5,10]. This was performed using the

Cytox 96 Non-Radioactive Cytotoxicity Assay kit (Promega)

according to the manufacturer’s protocol and using a recombinant

porcine LDH (Sigma-Aldrich) to generate a standard curve.

Sample values were then extrapolated from this curve.

Immunohistochemistry of vaginal RHE
C. albicans infected vaginal RHE was fixed in 10% (v/v) formal-

saline before being embedded and processed in paraffin wax using

standard protocol. 5 mm sections were prepared using a Leica

RM2055 microtome and silane coated slides. After dewaxing in

xylene, protein expression was determined using rabbit anti-

human polyclonal antibodies for MKP1 (Santa Cruz Biotechnol-

ogy) and c-Fos (Source Bioscience) (1:10 and 1:100, respectively)

and counterstained with peroxidase-conjugated goat anti-rabbit

secondary IgG antibody, followed by diaminobenzidine (DAB)

chromogen detection as per manufacturer’s protocol. To visualize

C. albicans, sections were stained using Periodic Acid Schiff (PAS),

counterstained with haematoxylin and examined by light micros-

copy.

Statistics
Data were analyzed in the GraphPad software package using

either the unpaired two tailed t-test or in the case of hyphae vs.

yeast cytokine comparisons, ANOVA with Bonferroni post-hoc

analysis. In all cases, p,0.05 was taken to be significant.

Results

Activation of the NF-kB and MAPK signaling pathways
A431 vaginal ECs were infected with C. albicans SC5314 and

IkB-a phosphorylation, which is a key event in NF-kB pathway

activation, and ERK1/2, JNK and p38 phosphorylation (MAPK

activation) was determined after 5, 15, 30, 60 and 120 min (5 min

not performed for IkB-a). Immunoblot analysis confirmed that

IkB-a phosphorylation occurs immediately, being detectable

15 min post-infection, and persists over a 2 h period (Fig. 1A).

Interestingly, there was a lack of JNK and p38 phosphorylation

and only a slight increase in the phosphorylation of ERK1/2 at

early time points (5–60 min) but strong activation of all three

MAPK proteins at 2 h post-infection (Fig. 1B). We next explored

downstream MAPK-induced events by investigating MKP1

Vaginal Epithelial Signaling against Candida
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(DUSP1) stabilization. MKP1 is a key phosphatase involved in a

negative feedback loop regulating the MAPK pathway [11] and is

phosphorylated by ERK1/2 to prevent its degradation. This event

is independent of gene transcription and is mediated by ERK1/2

[12]. Phosphorylation of MKP1 only appeared at 2 h post-

infection (Fig. 1B), coinciding with phosphorylation of the three

MAPK proteins. In summary, in vaginal ECs the early MAPK

response against C. albicans appears to be absent but the late

MAPK response is activated culminating in stabilization of MKP1.

Activation of MAPK transcription factors
MAPK signaling is associated with activation of the AP-1

transcription factor complex, which is a heterodimer of a Jun

family member (JunB, JunD, c-Jun) and a Fos family member

(Fra1, Fra2, c-Fos, and FosB) [13,14]. Given the temporal

differences we observed in MAPK activation between vaginal

ECs (Fig. 1B) and oral ECs [2], we determined changes in DNA

binding activity (and thus activation) of all AP-1 family members

30 min and 3 h post-infection with C. albicans, which were

previously determined as optimal time points in oral ECs to

measure DNA binding activity [2]. In resting vaginal ECs, DNA

binding activity is present for all members of the Jun and Fos

families (Fig. 2A). Interestingly, whilst no changes in AP-1

transcription factor binding was observed at 30 min post-infection

(early response), by 3 h both c-Jun and c-Fos binding was

significantly increased compared with the PBS control (p,0.05)

(Fig. 2B). This activity at the transcription factor level (c-Jun and c-

Fos) parallels activation of the MAPK response at the signal

pathway level (Fig. 1B). The binding activity of other Jun or Fos

proteins at 3 h was unaltered (data not shown). As well as the AP-1

family, we investigated the binding activity of other MAPK-

induced transcription factors, including c-Myc, ATF2, Elk-1, and

MEF2. Elk-1 DNA binding activity mirrored c-Jun DNA binding

activity in that there was no change at 30 min but was increased at

3 h (p,0.05) (Fig. 2B). In contrast, MEF2 DNA binding activity

also showed no change at 30 min but was decreased at 3 h

(p,0.05) (Fig. 2B). DNA binding activity of ATF2 and c-Myc was

unchanged at both time points (data not shown). The data

demonstrate that vaginal ECs direct a specific and organized

response to C. albicans, whereby changes in transcription factor

binding activity occurred at 3 h post-infection, with distinct

profiles of activity that either mirror (c-Fos increased and MEF2

decreased) or differ (c-Jun increased at 3 h, Elk-1 increased at 3 h,

not decreased at 2 h) from those seen in oral ECs.

Vaginal and oral cytokine profiles differ
MKP1 and c-Fos activation correlates with cytokine production

in response to C. albicans infection in oral ECs [2]. Therefore, we

hypothesized that C. albicans infection would also induce cytokine

production in vaginal ECs. A431 monolayers were infected with C.

albicans at an MOI of 0.01 (this having previously been determined

as the optimal ratio of fungal cells for a 24 h infection study [2].

Analysis of culture supernatants of A431 epithelial monolayers

24 h post-infection with C. albicans SC5314 demonstrated that of

the nine cytokines and chemokines assessed (IL-1a, IL-6, IL-8, G-

CSF, GM-CSF, TNFa, MCP-1 (CCL2), MIP-1a (CCL3) and

MIP-3a (CCL20)), only three were significantly induced by C.

albicans: IL-1a, IL-8 and GM-CSF, with IL-6 induced in very low

amounts, although still showing a 4-fold increase over resting cells

(Fig. 3A). As with oral ECs, C. albicans induces significant damage

to vaginal ECs after 24 h as measured by LDH release (Fig. 3B)

with a concurrent release of the damage-associated cytokine IL-1a
(Fig. 3A). Since C. albicans infection of oral ECs induces additional

cytokines including G-CSF and CCL20 [2,15]), we re-assessed the

oral TR146 ECs cytokine response and compared this with the

A431 vaginal ECs cytokine response. Fig. 3C confirms the absence

of CCL20, very low level of G-CSF, and low level IL-6 secretion

by A431 vaginal ECs as compared with TR146 oral ECs.

c-Fos activation and cytokine production is dependent
on C. albicans morphology

C. albicans infection of vaginal ECs results in yeast-to-hyphal

transition by 1 h. Therefore, we hypothesized that epithelial

activation might be due to a specific response to hypha formation,

just like in oral ECs [2]. To test this, we infected A431 cells with C.

albicans SC5314 and two mutants strains,Defg1/cph1 (unable to

form hyphae) and Dnrg1 (hyperfilamentous), for 30 min and 2 h

and tested for induction of the two transcription factors associated

with the bi-phasic MAPK-based response in oral ECs: c-Fos

(specific response to hyphae) and c-Jun (general response to C.

albicans). Furthermore, because in vaginal ECs c-Jun phosphory-

lation was part of the late (2 h) MAPK-mediated response (Fig. 1B)

(when hypha formation is evident), we wanted to determine

whether c-Jun phosphorylation was hypha-dependent or just a

Figure 1. C. albicans infection of A431 epithelial cells activates
NF-kB and MAPK signaling. C. albicans SC5314 was added to A431
vaginal ECs under standard culture conditions for 5, 15, 30, 60 min and
2 h. Total protein was isolated and phosphorylation of (A) IkBa or (B)
p38, JNK, ERK1/2 and MKP1 were assessed by Western blotting. Bands
are shown with an a-actin loading control. A C. albicans:EC MOI of 10:1
was used. Data are representative of three independent experiments.
doi:10.1371/journal.pone.0026580.g001
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delayed response to the presence of C. albicans (and thus hypha-

independent). The respective morphological phenotypes of these

mutants were maintained throughout all experiments.

c-Fos was not induced at either time point by the Defg1/cph1

non-filamentous mutant but was induced at 2 h by the Dnrg1

hyperfilamentous mutant, albeit less than the wild-type C. albicans

SC5314 (Fig. 4A), confirming that c-Fos induction in vaginal ECs

is also dependent on hypha formation. The difference between

Dnrg1 and SC5314 can be explained partly by the reduced level of

adherence of Dnrg1 as compared with SC5314 and partly by the

lack of fungal-EC contact i.e. the SC5314 cells settled rapidly onto

the epithelial surface prior to hypha formation whereas the Dnrg1

hyperfilamentous strain ‘floated’ for a prolonged period of time

before gradually settling, thus reducing the MOI and threshold

level of activation [2]. Notably, all three C. albicans strains

phosphorylated c-Jun at 2 h but not at 30 min (Fig. 4A),

demonstrating that c-Jun phosphorylation appears to be indepen-

dent of hypha formation i.e. is a delayed general response to C.

Figure 2. Activation of MAPK transcription factors by C. albicans in A431 vaginal epithelial cells. (A) Resting levels of DNA binding activity
(absorbance values) of AP-1 transcription factor members in nuclear extracts from A431 ECs, measured by TransAm ELISA. (B) Changes in DNA
binding activity of c-Jun, Elk1, c-Fos, and MEF2 in nuclear extracts of A431 ECs 30 and 180 min post-infection with C. albicans SC5314 by TransAm
ELISA. These MAPK-activated transcription factors have previously been identified as showing altered DNA binding activity in oral ECs. Data are
represented as fold change relative to resting levels at 0 h. A C. albicans:EC MOI of 10:1 was used. Data represent mean values 6 SEM and are
representative of a minimum of three independent experiments. Statistical analysis (B) of raw data for infected versus uninfected cells was performed
using the unpaired, two-tailed t-test * p,0.05.
doi:10.1371/journal.pone.0026580.g002

Vaginal Epithelial Signaling against Candida
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albicans. Given the correlation between c-Fos induction and

cytokine production we wanted to confirm that the hypha

deficient strain was unable to induce cytokines since it was unable

to induce c-Fos. Figure 4B confirms that the non-filamentous

strain (Defg1/cph1) failed to induce cytokine production, whereas

the hyperfilamentous strain (Dnrg1) was able to induce IL-1a, IL-6

Figure 3. Cytokine activation and cell damage induced by C. albicans in A431 vaginal epithelial cells and TR146 oral epithelial cells.
(A) C. albicans SC5314 was added to monolayers of A431 ECs for 24 h and the cell culture medium collected and assessed for cytokine proteins by
multiplex microbead assay (luminex) or ELISA (CCL20). (B) LDH (lactate dehydrogenase) release (measure of cell damage) from A431 ECs 24 h post-
infection with C. albicans SC5314. (C) Comparison of cytokine protein release by A431 ECs and TR146 ECs 24 h post-infection with C. albicans SC5314.
A C. albicans:EC MOI of 0.01 was used for all the experiments. Data are mean values 6 SEM of three independent experiments. Statistical analysis of
infected versus uninfected epithelial cells (A & B) or oral versus vaginal epithelial cells (C) was performed using the unpaired, two-tailed t-test.
* p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0026580.g003
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and GM-CSF albeit to a lesser extent than the wild type (SC5314),

probably for the reasons stated above. Since Defg1/cph1 was able to

induce c-Jun activation (Fig. 4A) but was unable to induce

cytokines (Fig. 4B), this suggests that c-Jun does not contribute to

cytokine production. Together, the data indicate that in vaginal

ECs c-Fos activation is hypha specific and is required for cytokine

production, whereas c-Jun activation is delayed, independent of

hypha formation and does not contribute to cytokine induction.

MAPK/MKP1/c-Fos response is dependent on fungal
burden

Activation of the MAPK/MKP1/c-Fos response in oral ECs is

dependent on fungal burden, which may represent a danger

response that is only activated if sufficient C. albicans hyphae are

present [2]. To determine whether a similar threshold level of

activation is required in vaginal ECs, we stimulated A431 cells

with different doses of C. albicans SC5314 (104–107 cells/ml). This

was equivalent to an MOI of 0.01–10 C. albicans cells per EC.

Interestingly, induction of MKP1 and c-Jun phosphorylation and

c-Fos were observed only at the highest MOI of 10 (Fig. 5), which

is a log greater than oral ECs [2].

MKP1 and c-Fos activation in an RHE model of vaginal
epithelium

Finally, to obtain more in vivo relevant data, we determined the

presence of MKP1 and c-Fos expression in RHE models of human

vaginal epithelium after 3, 6, 12 and 24 h post-infection with C.

albicans SC5314. c-Jun was not investigated as c-Jun activation was

not hypha-dependent or associated with epithelial activation (see

data above). Figure 6 shows a gradual intensification of MKP1 and

c-Fos expression (brown staining) as time proceeds from 3–24 h

post-infection. Expression can be observed in regions of hyphal

contact moving from the surface at early time points (3 h) to

deeper epithelial layers at later time points (24 h). A clear

delineation can be observed with cells in contact with hyphae

showing expression of both MKP1 and c-Fos, whilst cells in

adjacent uninfected areas show little increase in MKP1 and c-Fos

expression.

Discussion

Discrimination between the yeast and hyphal form of C. albicans

appears to be a crucial event for epithelial immune activation and

fungal pathogenicity [2,5,16,17]. Previously, we demonstrated that

oral ECs initiate innate immunity against C. albicans via a bi-phasic

MAPK response. MAPK activation is key to hypha discrimination

and constitutes phosphorylation of the MAPK phosphatase

MKP1, activation of the c-Fos transcription factor, and induction

Figure 4. Induction of c-Jun phosphorylation, c-Fos and
cytokine production in A431 vaginal epithelial cells is depen-
dent on C. albicans hypha formation. (A) C. albicans SC5314 (wild
type), CAI4 (parent control), Defg1/cph1 (non-filamentous) and Dnrg1
(hyperfilamentous) were added to A431 vaginal ECs under standard
culture conditions for 30 min and 2 h. Total protein was isolated and
induction of c-Jun phosphorylation and c-Fos assessed by Western
blotting. Bands are shown alongside an a-actin loading control. (B)
Cytokine protein production by A431 ECs 24 h post-infection with all
four strains as measured by multiplex microbead assay (luminex). A C.
albicans:EC MOI of 10:1 (A) and 0.01 (B) was used. Data are
representative (A) or mean 6 SEM (B) of three independent
experiments. Statistical analysis (B) of SC5314, CAI-4, Defg1/cph1 and
Dnrg1 infected versus PBS-treated controls was performed using the
ANOVA test with Bonferroni post-hoc analysis. *** = p,0.001.
doi:10.1371/journal.pone.0026580.g004

Vaginal Epithelial Signaling against Candida
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of a proinflammatory response [2]. Here, we report that

differences exist in how vaginal ECs initially respond to C. albicans

as compared with oral ECs, but that a near-identical MAPK-based

mechanism discriminates between the yeast and hyphal form of C.

albicans. We propose that this MAPK/MKP1/c-Fos-based signal-

ing system identifies a common mechanism playing a central role

in enabling different human epithelial tissues to recognize C.

albicans hyphae and initiate innate immune responses.

We found that NF-kB responses in vaginal ECs are the same as

for oral ECs, indicating that this would appear to be a generic EC

response to C. albicans. In contrast, the pattern of MAPK activation

in vaginal ECs differs from oral ECs. Although the hyphal

discrimination response (c-Fos and MEF2 DNA binding activity

and MKP1 phosphorylation) is identical in both cell types, there

are major differences in the generic Candida recognition response

(c-Jun activation/phosphorylation). Unlike oral ECs, vaginal ECs

show a delayed response (2 h instead of 30 min). As well as the

delay in activation, Elk-1 also shows an increase rather than the

decrease in activity seen in oral ECs. This data suggested one of

two possibilities. Either the early MAPK response to the yeast

form is ‘delayed’ but still occurs at later time points coinciding with

the hyphal-mediated activation of MKP1 and c-Fos, or vaginal

ECs are unresponsive to the yeast form via the MAPK pathways

and respond only to the hyphal form to activate both c-Jun and c-

Fos. However, the C. albicans hyphal deficient strain (Defg1/cph1)

was able to induce c-Jun phosphorylation but not c-Fos at 3 h

whilst the hyperfilamentous strain (Dnrg1) induced both c-Jun and

c-Fos. This indicates that c-Fos activation in vaginal ECs is hypha

specific, whereas c-Jun activation is a delayed response to C.

albicans yeast and independent of hypha formation. We then

assessed induction of the hypha-associated response by analysing

MKP1 and c-Fos expression in an RHE model of vaginal infection

and found a gradual intensification of MKP1 and c-Fos expression

as C. albicans infection progressed. This confirmed the association

of MKP1 and c-Fos induction with hypha formation. From these

data we conclude that (i) initial recognition of C. albicans yeasts in

vaginal ECs is mediated solely by the NF-kB pathway, whereas in

oral ECs it is mediated by both NF-kB and MAPK pathways, and

(ii) both c-Jun and c-Fos transcription factors are activated in

vaginal ECs in the late MAPK response to C. albicans whereas only

c-Fos is activated in oral ECs, but in both EC types only c-Fos

activation is hypha specific.

Of major importance is the finding that this MAPK/MKP1/c-

Fos response mechanism is dependent not only on hypha

formation but also on fungal burdens and suggests that a threshold

level of stimulation is required prior to full activation of the

epithelial innate response. This may provide a mechanism by

which epithelial tissues can remain quiescent in the presence of low

fungal burdens (even if hyphae are present) whilst responding

specifically and strongly to damage-inducing hyphae as burdens

increase. However, of particular interest was the finding that

induction of MKP1 and c-Jun phosphorylation and c-Fos was

observed only at the highest MOI of 10, one log greater than in

oral ECs [2]. This indicates that the responsiveness of vaginal ECs

to C. albicans is lower than that of oral ECs and that vaginal ECs

may be able to tolerate greater fungal (hyphal) burdens before

epithelial activation is initiated. The importance of this difference

in fungal burdens to immunity at these two surfaces can be seen

more clearly when responses in vivo to candidiasis is considered. In

oral mucosa, neutrophils play an important role in clearing or

combating infections by C. albicans. However, the situation in

vaginal mucosa may be different, where neutropenia does not have

a major impact on Candida burdens but does result in reduced

inflammation [18,19]. Importantly, vaginal ECs have a direct

fungistatic effect that does not require EC viability, thus

controlling the burden of C. albicans without recourse to

neutrophils or other immune cells [20–23]. With the discovery

that women with infrequent or recurrent vulvovaginal candidiasis

show symptomatic disease at correspondingly lower Candida

burdens [4] and that this increased sensitivity is due to EC

responsiveness, we can hypothesize that vaginal ECs play a key

role in managing Candida burdens at vaginal mucosal surfaces,

Figure 5. Effect of fungal burdens on MKP1, c-Fos and c-Jun
activation. A431 vaginal ECs were infected for 2 h with C. albicans
SC5314 at MOI’s ranging between 0.01 and 10. Total protein was
isolated and phosphorylation of MKP1 and c-Jun and c-Fos induction
was assessed by Western blotting. Bands are shown alongside an a-
actin loading control. Data are representative of four independent
experiments.
doi:10.1371/journal.pone.0026580.g005

Figure 6. Expression of MKP1 and c-Fos in vaginal RHE. Increase
in MKP1 and c-Fos expression in vaginal epithelium is associated with C.
albicans SC5314 hypha formation, with minimal activation at the
surface by 3 h and gradually increased activation co-localising in the
epithelial layers where hyphae penetrate and invade at 6, 12 and 24 h
(dark brown staining). Resting levels of MKP1 and c-Fos expression can
be seen in areas without C. albicans at each time point (sectional
control).
doi:10.1371/journal.pone.0026580.g006
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controlling fungal burden in a passive manner but driving

pathological inflammation when they become activated. This

inflammation is driven by the recruitment of neutrophils by ECs,

which may result in uncontrolled inflammation [24].

Although the initial recognition of C. albicans yeast cells appears

to be via NF-kB, this does not necessarily result in immunostim-

ulation as the hyphal deficient strain Defg1/cph1 was unable to

induce cytokines after 24 h despite activating NF-kB. This lack of

cytokine induction by C. albicans yeast cells is common to oral ECs

[2] but is in contrast to myeloid/lymphoid cells where strong

cytokine responses are induced by yeast cells [25–27]. Similar

effects have been reported in gut ECs, where both NF-kB and p38

signaling are required for full activation of inflammation in the gut

[28]. In contrast, wild-type C. albicans and the hyperfilamentous

strain Dnrg1 induced cytokine secretion (IL-1a, GM-CSF and IL-6)

in vaginal ECs, which correlated with induction of MAPK

pathways, MKP1 phosphorylation and c-Fos activation. Our

combined data indicate that ECs from different mucosal sites (oral

and vaginal) respond to C. albicans differently to that of myeloid/

lymphoid cells by specifically targeting the hyphal form of the

fungus, which leads to differential cytokine production. We note

that the shift in morphology from yeast to hyphae results in the

expression of many different potential virulence factors, such as

secreted aspartyl proteases (Saps) and adhesins and it may be that

the lack of vaginal EC responses to the hyphal deficient strain

Defg1/cph1 is partly due to the lack of production of such virulence

factors. The identities of the hyphal moieties or surface EC

receptors that induce/mediate vaginal epithelial activation are

currently unknown but will be the focus of future studies.

Cytokine induction was dependent upon hypha formation

correlating with c-Fos activation, MKP1 stabilization and cell

damage. Like in oral ECs, we propose that activation of this

MAPK-based response represents a ‘danger response’ mechanism

informing the host of invading hyphae. Interestingly, the cytokines

secreted by vaginal ECs in response to C. albicans differed to the

cytokines secreted by oral ECs, despite the same signaling pathways

being activated (NF-kB and MAPK). We and others have shown that

oral EC’s secrete IL-1a, IL-6, GM-CSF, G-CSF, IL-8 and CCL20

[2,3,29,30], whereas vaginal ECs only secreted IL-1a, IL-8 and GM-

CSF (this study: IL-6 is released but at very low levels compared with

oral ECs). This suggests that although a common signaling

recognition system is utilized by both EC lineages to detect C.

albicans, downstream induction of immune effector responses can

differ, demonstrating that a further level of immunoregulation

probably exists at latter stages of EC activation. Given the established

link between IL-1a and cell damage [31,32], the secretion of IL-1a by

both oral and vaginal ECs is probably the result of hypha-induced cell

damage. IL-8 and GM-CSF secretion by both EC types will function

to recruit and activate neutrophils to the site of mucosal infection,

which is a well established phenomenon [33].

The potential importance in vivo of why IL-6, G-CSF and

CCL20 are selectively induced by C. albicans in oral ECs but not

vaginal ECs is not known. IL-6 can act as both a pro-inflammatory

and anti-inflammatory cytokine and G-CSF stimulates the

proliferation, differentiation and function of neutrophils. Neutro-

phil recruitment to vaginal tissues during candidiasis occurs in

humans [4] and mice [24]. However, in humans, neutrophil

recruitment appears to have a detrimental effect, resulting in acute

inflammation and thus symptoms associated with vaginitis [4]. In

contrast, recruitment of neutrophils in human oral Candida

infection is regarded as beneficial [34,35] and has been shown

to protect against infection in an RHE model of oral candidiasis

[3]. In addition, neutropenic patients are susceptible to oropha-

ryngeal candidiasis [36]. It is possible that the lack of IL-6 and G-

CSF production by vaginal ECs may affect neutrophil function in

vivo (once recruited by IL-8 and GM-CSF) resulting in detrimental

rather than beneficial effects and an associated high fungal burden.

Alternatively, the paucity of G-CSF and low IL-8 levels (compared

with oral ECs), may suggest lower levels of neutrophil recruitment

because they are detrimental vaginally or that vaginal ECs may

not be as effective as oral ECs in regulating the neutrophil-

mediated inflammatory response once initiated.

Of specific interest is CCL20, which recruits and activates CCR6-

expressing dendritic cells, B cells and T cell subsets [37,38]. The lack of

CCL20 production by vaginal ECs is likely to reduce the rate of

myeloid/lymphoid cell infiltration into vaginal tissues during C. albicans

infection, resulting in poor activation of cellular immunity that is a

typical feature of vaginal candidiasis [33]. Indeed, in a series of studies

in a mouse model of vaginal candidiasis, although dendritic cells do

infiltrate the vaginal mucosa, there is little or no evidence for dendritic

cell activation or T cell infiltration which is central to activation of

cellular immunity [33,39–41]. More detailed investigations are

required but the combined lack of IL-6, G-CSF and CCL20 secretion

by vaginal ECs may contribute to the differential immune responses

that are observed between oral and vaginal sites during C. albicans

infection. In addition, the differences between oral and vaginal data sets

may also be explained in part by the fact that vaginal ECs are at a

reproductive site and may have evolved to be more tolerant to

microbial pathogens and environmental stresses, thus inducing a

weaker immune response or at least fewer cytokines. Irrespective, the

combined features of C. albicans hypha formation/detection and

differential cytokine profiles between oral and vaginal ECs may be the

key processes that contribute to ‘immune compartmentalization’ at

these mucosal sites and thereby host protection, unresponsiveness or

susceptibility to superficial C. albicans infections.
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