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All that we can do, is to keep steadily in mind that 

each organic being is striving to increase in a 

geometrical ratio; that each at some period of its life, 

during some season of the year, during each generation 

or at intervals, has to struggle for life and to suffer great 

destruction. When we reflect on this struggle, we may 

console ourselves with the full belief, that the war of 

nature is not incessant, that no fear is felt, that death is 

generally prompt, and that the vigorous, the healthy, 

and the happy survive and multiply. 

(Darwin 1859) 

 



x 

 



xi 
 

Contents 

Resumen 1 

1. Introduction 11 

2. Morphological similarity and ecological overlap in 

two rotifer species  45 

3. Life-history traits, abiotic environment and 

coexistence: the case of two cryptic rotifer species 93 

4. Allocation patterns in modes of reproduction in two 

facultatively sexual cryptic rotifer species 141 

5. Long-Term competitive dynamics of two cryptic 

rotifer species: diapause and fluctuating conditions 181 

6. Life-history variation, environmental fluctuations and 

competition in ecologically similar species: modeling 

the case of rotifers 213 

7. Final remarks and conclusions 255 

Appendix 6.A 273 

Appendix 6.B 275 



 

xii 
 



 

- 1 - 

 

 

Resumen 

 

 

 

La interacción entre especies competidoras y los procesos que 

intervienen y determinan el resultado de las dinámicas competitivas 

(i.e., coexistencia o exclusión) son temas fundamentales de estudio en 

ecología. La teoría establece que para que dos especies puedan 

persistir en el mismo hábitat y evitar la exclusión competitiva éstas 

deben tener diferentes requerimientos ecológicos (i.e., diferenciación 

de nicho). Sin embargo, la existencia de especies ecológicamente 

similares en simpatría pone en cuestión esta necesidad y ha abierto un 

debate en la comunidad científica. Este debate se ha visto 

intensificado por el descubrimiento en las últimas décadas de un gran 

número de especies crípticas (i.e., especies filogenéticamente 

próximas y con un alto grado de similitud morfológica) presentes en 

los mismos hábitats. En un principio se espera que las especies 

crípticas presenten un gran solapamiento de nicho ecológico, tanto 

por su similitud morfológica como por el hecho de que al ser 
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filogenéticamente próximas sus nichos hayan retenido aspectos 

ancestrales a lo largo del tiempo (i.e., retención de nicho). Como 

consecuencia, el estudio de los procesos que permiten la persistencia 

de especies simpátricas ecológicamente similares es un tema de gran 

relevancia. 

La búsqueda de mecanismos –basados en particiones sutiles de 

nicho o no dependientes de una partición de nicho– que permitan la 

coexistencia estable de especies ecológicamente similares ha puesto de 

relieve la función de las fluctuaciones. Un ambiente fluctuante puede 

ocasionar que la exclusión competitiva se vea repetidamente 

desplazada, si la variación continua de las condiciones favorece a cada 

competidor en momentos distintos. Esto ha llevado a la formulación 

de mecanismos de coexistencia basados en fluctuaciones tales como el 

‘efecto de almacenamiento’ (‘storage effect’) que permiten explicar la 

persistencia de especies sin una marcada diferenciación de nicho. Más 

recientemente, se han propuesto mecanismos basados en 

compromisos (‘trade-offs’) entre rasgos de la historia vital relacionados 

con la reproducción sexual y que permiten, al menos en teoría, la 

coexistencia de especies sin ningún tipo de diferenciación ecológica.  

El complejo de especies crípticas Brachionus plicatilis constituye 

un buen modelo para explorar las implicaciones ecológicas y 

evolutivas de la persistencia en la misma localidad de especies 

ecológicamente similares. B. plicatilis y B. manjavacas, dos de las 

especies pertenecientes a este complejo, son virtualmente idénticas 

tanto en tamaño como en forma y, pese a que se espera que presenten 

un alto grado de solapamiento ecológico, estas especies cohabitan 
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frecuentemente en lagos y lagunas de la península ibérica. Estos 

cuerpos de agua son salobres y están sujetos a importantes 

fluctuaciones ambientales de temperatura y salinidad, dos de los 

factores ecológicos abióticos más relevantes para estos rotíferos. Se 

sabe que estas dos especies presentan diferencias en sus preferencias 

de salinidad; B. plicatilis tiende a encontrarse en lagunas de salinidad 

baja, mientras que B. manjavacas suele estar presente en lagunas de 

salinidad alta. Se ha sugerido que la persistencia en simpatría de estas 

especies de rotíferos puede estar mediada por estas diferencias. Sin 

embargo, los rangos de salinidad en los que pueden crecer ambas 

especies solapan, lo que indica que en su persistencia deben de estar 

involucrados también otros factores. Otra característica de los 

hábitats de estas especies es que son ambientes con baja 

heterogeneidad espacial pero marcada heterogeneidad temporal. Las 

lagunas tienden a sufrir un fuerte estiaje que puede llevar a su 

desecación o a que alcancen valores de salinidad muy altos. Por tanto, 

las poblaciones de B. plicatilis y B. manjavacas dependen de la 

producción de huevos diapáusicos (i.e., formas de resistencia) para su 

supervivencia durante los periodos adversos. Estos rotíferos son 

partenogenéticos cíclicos que combinan en su ciclo vital la 

reproducción asexual con episodios de reproducción sexual, cuyo 

resultado son los huevos diapáusicos.  

La presente tesis aborda la cuestión de cómo especies 

evolutivamente cercanas, y que por tanto cabe esperar tengan 

requerimientos ecológicos muy similares, son capaces de persistir en 

el mismo hábitat. El propósito principal es inferir mecanismos que 
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puedan determinar el resultado de la dinámica competitiva, ya sea éste 

la coexistencia o la exclusión. Para ello, los objetivos en que se centra 

la tesis son: (1) caracterizar la diferenciación de nicho tanto biótico 

como abiótico de B. plicatilis y B. manjavacas; (2) explorar si estas 

especies difieren en rasgos relevantes de la historia vital relacionados 

con la reproducción sexual y la producción de huevos de diapausa; y 

(3) analizar las implicaciones de tales diferencias en el resultado de las 

dinámicas competitivas, así como en la persistencia de ambas especies 

en su hábitat natural. 

La coexistencia de especies crípticas que pertenecen a un 

mismo complejo ha sido explicada en muchas ocasiones por una 

diferenciación de nicho biótico. En los rotíferos las diferencias en el 

tamaño corporal se han relacionado con diferencias en el uso de los 

recursos y en la vulnerabilidad a la depredación que podrían permitir 

la coexistencia de estas especies. Sin embargo, este tipo de diferencias 

son improbables entre B. plicatilis y B. manjavacas debido a su gran 

similitud morfológica. El Capítulo 2 de esta tesis trata de esclarecer, 

mediante experimentos en el laboratorio, si la sutil diferencia en el 

tamaño corporal de estas dos especies se traduce en una 

diferenciación ecológica en aspectos bióticos. El estudio se centra en 

tres características ecológicas clave relacionadas con el tamaño 

corporal: (1) la respuesta funcional, que se determinó mediante las 

tasas de aclaramiento de ambas especies de rotíferos en dos dietas de 

microalgas que difieren en forma, tamaño y movilidad; (2) la 

tolerancia de neonatos a diferentes periodos de ayuno, que se analizó 

mediante la comparación de las tasas de crecimiento y de 
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reproducción mediante análisis de tablas de vida; y, por último, (3) la 

vulnerabilidad a la depredación por copépodos, que se estimó en 

experimentos de depredación utilizando neonatos de las dos especies 

de rotífero como presa. No se encontraron diferencias importantes 

entre B. plicatilis y B. manjavacas en estas características. Estos 

resultados demuestran un gran solapamiento en las dimensiones del 

nicho biótico de estas dos especies. De acuerdo con la ‘hipótesis del 

límite de la similitud filogenética’ (‘phylogenetic limiting similarity 

hypothesis’), los rasgos ecológicos que influyen en la competencia se 

conservan a lo largo del linaje filogenético por lo que las especies 

cercanas tienden a ocupar nichos similares. La ausencia de diferencias 

en características del nicho biótico de B. plicatilis y B. manjavacas 

concuerda con esta hipótesis y sugiere que estos factores bióticos 

difícilmente explican la coexistencia de ambas especies en una misma 

laguna.  

Puesto que B. plicatilis y B. manjavacas muestran diferentes 

preferencias para los factores abióticos, el Capítulo 3 tiene como 

objetivo determinar si existe una diferenciación de nicho entre las dos 

especies en relación con la temperatura y salinidad. Para ello se 

llevaron a cabo experimentos de laboratorio donde se determinaron 

las tasas de crecimiento poblacional, los niveles de reproducción 

sexual, y los patrones de eclosión y viabilidad de los huevos 

diapáusicos de ambas especies bajo diferentes condiciones de 

salinidad y temperatura. Las especies presentaron diferencias en sus 

tasas de crecimiento poblacional y en su inversión en reproducción 

sexual en respuesta a la salinidad. El incremento de la salinidad tuvo 
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un efecto negativo en ambos parámetros, y afectó en mayor medida a 

B. plicatilis. Sin embargo, a bajas salinidades, la eficacia de B. plicatilis 

fue mayor que la de B. manjavacas. Además, se encontró que los 

patrones de eclosión y viabilidad de los huevos de diapausa difieren 

entre las dos especies: B. plicatilis produce huevos diapáusicos que 

permanecen viables durante más tiempo y siguen un patrón de 

eclosión extendido en el tiempo, mientras que los huevos de B. 

manjavacas se empiezan a degradar antes y eclosionan más 

tempranamente y de forma sincrónica. Los resultados muestran que 

estas especies presentan diferentes compromisos entre rasgos de su 

historia vital, que permiten una diferenciación ecológica en relación 

con factores abióticos y que esta divergencia ecológica entre especies 

no está acoplada a una diferenciación morfológica. 

Con el propósito de estudiar con mayor profundidad la 

divergencia entre B. plicatilis y B. manjavacas en rasgos relacionados con 

la reproducción sexual, en el Capítulo 4 se realiza un estudio más 

detallado de los patrones de asignación reproductiva. En este capítulo 

se analizan los dos componentes del patrón de reproducción sexual 

(momento de inducción y cantidad de reproducción sexual). Para ello 

se realizaron bioensayos donde se estimó el umbral de densidad 

poblacional al que se induce la reproducción sexual, que es 

dependiente de la densidad en estos rotíferos. También se estimó la 

variación genética asociada a este rasgo. Además, se realizó un estudio 

comparativo mediante experimentos de tabla de vida de los rasgos de 

la historia vital de los tres tipos reproductivos de hembras que existen 

en el ciclo vital de estos rotíferos (hembras asexuales, hembras 
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sexuales productoras de machos y hembras sexuales productoras de 

huevos de diapausa). Los resultados muestran diferencias 

dependientes de especie en los patrones de reproducción sexual. B. 

plicatilis tiene una asignación más temprana y mayor a la reproducción 

sexual que B. manjavacas. Además, la variabilidad genética en la 

propensión para reproducirse sexualmente fue mayor en B. plicatilis. 

Se observaron también diferencias entre las dos especies en los rasgos 

reproductivos de los tres tipos de hembras: las hembras sexuales 

productoras de machos de B. manjavacas producen sus descendientes 

antes y a una tasa diaria mayor que las correspondientes hembras de 

B. plicatilis; y las hembras productoras de huevos de diapausa de B. 

manjavacas invierten más recursos por huevo diapáusico que las 

hembras de B. plicatilis. Esta divergencia de estrategias entre especies 

que ocupan el mismo hábitat podría estar relacionada con su diferente 

tolerancia a la salinidad, que convierte el hábitat en más impredecible 

para B. plicatilis que para B. manjavacas.  

En su conjunto, el estudio comparativo realizado en los 

capítulos 3 y 4 muestra por primera vez la existencia de divergencias 

relevantes en rasgos de historia vital relacionados con la reproducción 

sexual y la diapausa en dos especies de rotíferos tan similares. Estas 

diferencias podrían estar mediando la persistencia de ambos 

competidores en ambientes con salinidad variable en el tiempo. Los 

resultados sugieren que B. plicatilis presenta características típicas de 

una especie oportunista. Así, esta especie podría aprovechar los 

periodos efímeros de baja salinidad para crecer e invertir de forma 

temprana en la estación de crecimiento en reproducción sexual y 



 

- 8 - 

 

producir huevos de diapausa que se acumularían en el sedimento. 

Esta mayor inversión en diapausa de B. plicatilis podría provocar su 

exclusión competitiva a corto plazo de la columna de agua, pero 

podría permitir su persistencia a largo plazo con B. manjavacas 

mediante los huevos de diapausa producidos.  

Los resultados reseñados hasta aquí permiten elaborar 

predicciones sobre la dinámica conjunta de las dos especies cuando se 

les da la oportunidad de interaccionar. En el Capítulo 5 se estudian las 

dinámicas de competencia a largo plazo de ambas especies en 

sistemas experimentales. El efecto de las fluctuaciones en la salinidad 

se estudia comparando el resultado de las dinámicas competitivas en 

regímenes de salinidad constante y salinidad variable. Además, en el 

diseño experimental se simulan periodos desfavorables (p. ej., sequía), 

que se alternan con periodos favorables. Es decir, hay una alternancia 

de periodos de crecimiento poblacional activo en la columna de agua 

(estaciones de crecimiento) y periodos de diapausa. De esta forma se 

puede explorar la función de la inversión en diapausa en el resultado 

de la dinámica competitiva entre B. plicatilis y B. manjavacas. Los 

resultados indican que en regímenes de salinidad constante una u otra 

especie se extingue, dependiendo de si la salinidad es alta o baja. A 

salinidad constante alta B. plicatilis siempre es la especie excluida, 

mientras que a salinidad constante baja la excluida es B. manjavacas. 

Bajo regímenes de salinidad fluctuante, aunque también se da 

exclusión de una de las dos especies, la especie que resulta excluida 

varía para un mismo régimen. A pesar de que la persistencia conjunta 

de ambas especies no se consiguió en un régimen de salinidad 
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fluctuante, los resultados muestran que –en comparación con un 

régimen de salinidad constante– el periodo de persistencia de ambas 

especies se ve prolongado por la fluctuación en salinidad. También se 

observa un efecto positivo, aunque leve, de la presencia de un banco 

de huevos diapáusicos en la persistencia conjunta de las dos especies. 

La exclusión competitiva en los sistemas experimentales contrasta con 

las observaciones de presencia conjunta de B. plicatilis y B. manjavacas 

en la naturaleza. Esto podría explicarse, en parte, por un efecto de la 

estocasticidad demográfica en nuestros microcosmos, aunque también 

podría deberse a que otros factores no relacionados con la salinidad u 

otros regímenes de salinidad diferentes a los ensayados puedan estar 

operando en la coexistencia de estas dos especies en la naturaleza.  

El tipo de experimentos de competencia realizados en esta tesis, 

experimentos en los que se incluye el ciclo completo de las especies, 

es poco frecuente debido a las dificultades logísticas que entraña. 

Como alternativa, la modelización teórica es una herramienta valiosa 

para el análisis de las dinámicas de competencia a largo plazo. El 

estudio teórico de la dinámica competitiva de B. plicatilis y B. 

manjavacas que se presenta en el Capítulo 6 es un ejemplo de ello. En 

este capítulo se desarrolla un modelo teórico para el estudio del efecto 

de los rasgos de la historia vital y de la fluctuación en la salinidad en el 

resultado de la competencia entre B. plicatilis y B. manjavacas. Mediante 

el modelo se simulan escenarios ecológicos donde se combinan 

diferentes (1) longitudes de las estaciones de crecimiento, (2) niveles 

de inducción cruzada del sexo entre las especies (el sexo en estas 

especies es inducido por una señal química que puede no ser 
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completamente específica de especie), y (3) regímenes de salinidad 

(constante y variable). Los resultados de las simulaciones apoyan las 

concludiones a las que apuntan los resultados empíricos, obtenidos en 

capítulos anteriores. Así, se observó un efecto positivo de la 

fluctuación de la salinidad en la persistencia de ambos competidores. 

Además, estos resultados muestran que los efectos de la duración de 

la estación de crecimiento y de la inducción cruzada del sexo difieren 

entre especies y afectan el resultado de la dinámica competitiva. El 

estudio realizado en este capítulo muestra que la construcción de 

modelos teóricos es valiosa en casos de estudio como el nuestro –la 

persistencia de especies con ciclos complejos en un ambiente 

complejo–, una vez que se han determinado empíricamente los 

valores de los parámetros relevantes. 

Finalmente, en el Capítulo 7 se discuten de forma integrada las 

implicaciones de la similitud ecológica, la diferenciación de nicho, y de 

los rasgos del ciclo vital en la comprensión de la persistencia de 

especies competidoras similares y, por lo tanto, en el mantenimiento 

de la diversidad biológica. De manera global esta tesis revela la 

importancia ecológica y evolutiva de la inversión en reproducción 

sexual y diapausa, ya que ésta no sólo permite la supervivencia en 

condiciones ambientales adversas, sino que tiene implicaciones en la 

mediación de la persistencia de especies similares. Además, la 

aproximación empleada destaca que el estudio de la dinámica 

competitiva de especies con ciclos biológicos complejos requiere la 

consideración de todos los estadíos del ciclo, ya que la exclusión a 

corto plazo puede ser compatible con una coexistencia a largo plazo.
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General Introduction 

 

 

 

 

 

 

 

 

Species persistence, sympatry and niche shifts 

Explaining the maintenance of the wide species diversity in nature 

remains one of the main problems at the intersection of ecology and 

evolution (e.g., Chase and Myers 2011; Gravel et al. 2011; Violle et al. 

2012), and it becomes specially challenging when dealing with 

ecologically similar species. Maintenance of diversity is commonly 

understood as the persistence of species in the same spatial region 
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(Chesson 2000). Species diversity increases through speciation events, 

but which factors allow a newly emerged species to persist in its 

habitat? According to the phylogenetic limiting similarity hypothesis 

(Webb 2000; Violle et al. 2011), phylogenetically closely related 

species retain the niche features, and are expected to have similar 

ecological requirements. Thus, sister species are especially likely to 

overlap their potential niches resulting in competition, with a risk of 

competitive exclusion (Gause 1934; Hardin 1960; MacArthur and 

Levins 1967). If speciation takes place by geographical barriers 

(allopatric speciation), the resulting species are isolated one from the 

other; this way, species do not interact between them. Since Mayr 

(Mayr 1942) stated this geographic view on speciation, allopatry has 

been considered the most common speciation mode (Coyne and Orr 

2004). However, sympatric speciation might also occur. In these 

cases, the newly formed species can persist with the established 

species only if they develop ecological differences that prevent 

competitive elimination (Begon et al. 1996). Either from the early 

momemt when the new species appears (sympatric speciation) or 

when a secondary contact of the sister species occurs (allopatric 

speciation), persistence of phylogenetically-close species in a region or 

locality requires ecological divergence –i.e., the species must respond 

differently to their abiotic and biotic environments to survive 

(Leibold 1995; Chase and Leibold 2003). In this way, interspecific 

competition could decrease below intraspecific competition 

(MacArthur and Levins 1967; Chesson 2000; Adler et al. 2007), or 

alternatively each species could have a region of the niche where it is 
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superior to its competitors, so that the realized niches are largely non-

overlapping. A great number of possible factors promote niche 

partitioning of competing species as resource use, predation 

vulnerability, frequency-dependent predation, habitat heterogeneity 

and environmental fluctuations (Tilman 1982; Gendron 1987; Begon 

et al. 1996; Grover 1997; Amarasekare 2000; Chesson 2000; Tokeshi 

2009). 

Niche differentiation –regardless of whether it is the potential 

or the realized niche– involves trade-offs in the abilities of the species 

to interact with the environment (Chesson 2000; Siepielski and 

McPeek 2010; McPeek 2014). A trade-off occurs if an advantage 

when performing one function is linked to a disadvantage in 

performing another function (Stearns 1992). Many trade-offs occur in 

life-history traits, but the concept is applicable to any trait. Adaptation 

to a particular ecological condition occurs at the cost of being mal-

adapted to other conditions. This prevents the evolution of 

‘Darwinian demons’ –i.e. organisms that develop fast, do not age and 

reproduce continuously in any environment in which they are (Stearns 

1992; Roff 1993). If trade-offs exist, neither species have higher 

values of all relevant fitness components, which makes the co-

persistence possible. Relevant trade-offs for niche differentiation are 

the incapability to exploit several resources with high efficiency 

(Tilman 1982), the link between consumption efficiency and 

vulnerability to predation (Holt et al. 1994; Leibold 1996), or the 

constraints limiting the tolerance ranges to physical factors (Chesson 

and Huntly 1997). All these trade-offs work as evolutionary constrains 
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for ecological specialization, so that several specialization trajectories 

can evolve for several-closely related species. The same applies to life-

history traits, where trade-offs offer opportunities for divergence in 

the way of life of closely related species, especially in those organisms 

with complex life cycles. The r/K theory is the best-known case of the 

processes allowing that divergence (MacArthur and Wilson 1967; 

Pianka 1970), although other cases could occur if competitive 

performance in a life-history stage would trade off competitive-

performance at a different stage.  

Co-occurring competitors: stable coexistence vs. 

transient co-occurrence 

Competitor co-occurrence is when species are found together 

regardless of if their persistence is permanent. It is a phenomenon not 

implying a specific dynamics or mechanism. When co-occurring 

competing species are protected from exclusion at a relevant 

ecological time scale, their persistence is permanent and stable, so 

those species ‘coexist’ in the same habitat, even if their population 

densities fluctuate and are not at equilibrium (Chesson 2000; Adler et 

al. 2007). Alternatively, competitor co-occurrence might be transient, 

i.e. some species are more or less slowly driven to exclusion by 

competitive interactions with other species (Leibold and McPeek 

2006). Accordingly, the competing species regime can be stable or 

unstable, and different perspectives account for each option in this 

alternative. 
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By focusing on transient co-occurrence, the ‘neutral theory’ 

proposes that species similarities are key to explaining the high 

diversity of many natural communities. Neutral theory assumes that 

species in a guild are ecologically equivalent (i.e., they have similar 

fitness) regarding their probability of reproduction and death (Bell 

2001; Hubbell 2001; Chave 2004). The species differences are not 

related to traits that affect their fitness or demography, and thus their 

interactions with the abiotic environment and other species. The only 

driver of species’ relative abundances is random variation in births, 

deaths and dispersal. If there is not speciation, this ‘random walk’ 

(Hubbell 2001) would lead all but one species of the guild to the 

extinction (i.e., there is no mechanisms protecting from exclusion), 

but it might last so much that diversity would be maintained because 

new species arise. Alternatively, and focusing on (stable) coexistence, 

the competitor assemblage in natural communities can be explained 

considering that the differences between species drive the key 

processes in promoting their persistence. This approach invokes 

concepts as niche partition, habitat heterogeneity and environmental 

fluctuation (Begon et al. 1996; Chesson 2000; Tokeshi 2009). For that, 

it is required that each competing species in the system has the 

capability to recover from low densities in the presence of the other 

species (Chesson 2000). When focused in a rather isolated locality, 

two kind of stability may be differentiated: (1) stable coexistence at an 

equilibrium point and (2) fluctuation-dependent coexistence (Chesson 

1994). Stable coexistence at equilibrium point –the only one 

considered in the tradional theory– involves that species densities 
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tend to remain constant over the time. After any displacement, the 

system will return to the same equilibrium situation (Chesson and 

Case 1986). Resource partitioning, frequency-dependent predation 

and spatial heterogeneity are examples of coexistence at equilibrium 

point (Tilman 1982; Grover 1997). These mechanisms can act in 

presence of environmental fluctuation but it is not required. These 

mechanisms are known as ‘fluctuation-independent mechanisms’. In 

contrast, the ‘fluctuation-dependent coexistence’ can only operate in 

the coexistence of competing species in environments in which 

conditions vary temporally (Chesson 2000). A non-equilibrium 

population density state is assumed in which the fluctuation prevents 

competitive exclusion. The first idea about the role of a varying 

environment in the co-persistence of competitors was exposed by 

Hutchinson (1961) when he hypothesized that phytoplankton 

diversity, which would be lost at competitive equilibrium, may be 

maintained by intermediated-frequency temporal fluctuation in the 

physical environment acting on a guild of species with differential 

specialization in relation to the fluctuating factor. In the last decades 

this idea has been developed and refined (Chesson and Huntly 1997; 

Chesson 2000; Chase and Leibold 2003). Now it is considered that 

just a fluctuating environment is not a sufficient condition for stable 

coexistence. 

Cryptic species and their co-occurrence 

Cryptic or sibling species are those species that have a great 

morphological similarity so that classical, morphologically-based 
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taxonomy considered them a single species (Bickford et al. 2007; 

Pfenninger and Schwenk 2007). The number of cryptic species that 

have been identified within a morphological defined taxon has 

increased noticeably due to the use of molecular approaches (Gómez 

2005; Kong and Li 2009). The cryptic species often differ in minor 

morphological features, but these differences only were observed 

once species were recognized by other methods (Knowlton 1993).  

Cryptic species are distributed among all the animal taxa and its 

discovery has involved important implications for biodiversity, 

conservation and fundamental evolutionary questions (Knowlton 

1993; Schonrogge et al. 2002). The occurrence of these species may 

be promoted if mate-recognition is not visual, as occurring in some 

species of insects, fogs, bats and birds as well as in many aquatic 

invertebrates (Narins 1983; Henry 1994; Cicero 1996; Gómez et al. 

2002; Jones and Barlow 2003). This is so because morphological 

differences are not required for pre-mating reproductive isolation (i.e., 

the least costly isolation mechanism). Moreover, species should be 

under selection promoting morphological stasis (Knowlton 1993; 

Schonrogge et al. 2002).  

Co-occurrence of cryptic species is not uncommon (Ortells et 

al. 2003; Leibold and McPeek 2006; Nicholls and Racey 2006; 

Wellborn and Cothran 2007). Given their remarkable morphological 

similitude and phylogenetic closeness, cryptic species are expected to 

have similar environmental requirements –i.e., to retain their niches 

and related ecological traits (Futuyma and Mitter 1996; Webb 2000; 

Violle et al. 2011). Consequently, cryptic species are expected to 
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experience strong competitive interactions favoring the competitive 

exclusion (Hardin 1960). However, sympatric cryptic species may 

differ in morphologically-uncoupled traits (e.g., enzymatic machinery) 

that can differentially affect their response to environmental factors 

(e.g., water depth, salinity, temperature, substrata) to have evolved 

different optima for life-history trade-offs. However, it is unclear if 

these differences allow or promote their sympatric long-term 

persistence. Therefore, coexistence of cryptic species is an intriguing 

phenomenon that deserved scientific attention (Leibold and McPeek 

2006).  

Competitive dynamics, environmental fluctuation and 

life cycles  

Species co-occurrence has been commonly explored by short-term 

studies. Then, the short-term evidence is often used to infer the long-

term dynamics of competitors (Brown et al. 2001; Hastings 2004). 

However, in those cases in which the organisms face a fluctuating 

environment and have complex life cycles, the conclusion based on 

short-term observations may be misleading. For instance, in a 

fluctuating environment, active life-cycle stages of a competitor might 

disappear because the current environment favors their competitors. 

However, the species excluded from active competition might recover 

from resting life-cycle stages when the environment changes. In the 

long-term exclusion might not occur or even the species disfavored 

during a period might be the winner (Chesson and Huntly 1988; 

Chesson and Huntly 1989).  
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The role of some specific life-cycle stages in preventing 

competitive exclusion and allowing stable coexistence at no density 

equilibrium is stressed by the so-called ‘storage effect’ theory 

(Chesson and Huntly, 1989, 1988; Chesson, 2000). The crucial point 

is that some life-history stages work as a ‘storage’ because they are 

free of competition and are able to buffer population decline under 

adverse environment or competitive conditions (e.g., adults of many 

species, dormant seeds, cysts or other resting stages). In this way, 

competing species can persist together under stable regime a long-

time scale if (i) a life cycle stage immune to competition exists, (ii) 

environment is advantageous to each species at different times 

allowing the recruitment of that stages, and (iii) the positive effect of 

the ambient is linked to an increase of the competition (i.e. covariance 

between environment and competition). 

Sex and diapause: costs and effects on competitive 

outcome 

Trade-offs involving reproduction are critical in shaping life histories, 

as conceptualized by ‘the cost of reproduction’. This is a term used to 

define the compromise between (1) current reproduction and (2) 

survival and expected future reproduction (Reznick 1985; Stearns 

1992). A general reason for the cost of reproduction is the allocation 

principle. Internal resources are limited, and they must be allocated 

between the conflicting demands of reproduction, and somatic 

growth and maintenance (Stearns 1992; Roff 1993).  
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In cyclical parthenogenetic organisms, which reproduce 

asexually and eventually sexually, there are some costs associated to 

the switch from clonal, asexual proliferation to sexual reproduction. 

First, sex incurs the standard ‘twofold cost of sex’ due to half of the 

reproductive effort is allocated to males which make no contribution 

to population growth (Maynard Smith 1971; Aparici et al. 1998; Innes 

and Singleton 2000; Aparici et al. 2002; Simon et al. 2002; Serra and 

Snell 2009; Carmona et al. 2009). Second, in two out of the three 

major cyclically parthenogenetic taxa (monogonont rotifers and 

cladocerans), the result of sexual reproduction involves production of 

diapausing eggs. These eggs are expensive because they have special 

features regarding energy stores and protection, so they require more 

resources than subitaneous eggs (Gilbert and Schröder 2004; Wang et 

al. 2005; Alekseev et al. 2007; Pauwels et al. 2007; Wu et al. 2008; 

Clark et al. 2012). Moreover, diapausing eggs have an obligate 

dormant period (Schwartz and Hebert 1987; Hagiwara and Hino 

1989). This involves an additional cost because it increases the 

generation time. However, diapausing eggs allow population to 

survive unsuitable conditions (Pourriot and Snell 1983; Slusarczyk 

1995; Alekseev and Lampert 2001), and are thought to be the main 

dispersal stage (Hairston and Kearns 2002; Louette and De Meester 

2005). Therefore, the costs associated to sex and diapause cause a 

trade-off between investment into (1) current population growth by 

asexual (clonal) proliferation and (2) long-term population persistence 

throughout the sexually-produced diapausing eggs (Snell 1987; Serra 

and King 1999). This trade-off may affect the patterns of sexual 
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reproduction and have an effect on the outcome of the competitive 

dynamics (Ciros-Pérez et al. 2002; Aranguiz-Acuña and Ramos-

Jiliberto 2014). However, the role of the reproductive strategy on the 

persistence of competitive species has been poorly studied and has 

been limited to a few works (Zhang et al. 2004; Montero-Pau and 

Serra 2011; Aranguiz-Acuña and Ramos-Jiliberto 2014).  

The cryptic species complex Brachionus plicatilis 

General characteristics 

Rotifers constitute a diverse phylum composed by more than 2000 

species generally aquatic and free-living (Ricci and Balsamo 2000; 

Wallace et al. 2006; Wallace and Smith 2009; Wallace et al. 2015). 

Most of the rotifers are planktonic and constitute one of the major 

groups of zooplankton in continental waters (Makarewicz and Likens 

1979; Pace and Orcutt Jr 1981). Among planktonic rotifers, in the 

subclass Monogononta, the best-known taxon is the Brachionus plicatilis 

species complex. This complex is composed for at least 14 species 

(Gómez 2005; Suatoni et al. 2006; Fontaneto et al. 2009; Malekzadeh-

Viayeh et al. 2014). This species complex is widespread in brackish 

habitats and is one of the most common taxa in the world (Fontaneto 

et al. 2006). Species of the B. plicatilis complex are commonly used as 

models in ecological and physiological studies (e.g. (Carmona et al. 

1989; Aparici et al. 1998; Lowe et al. 2005; Snell 2014), in aquaculture 

(Lubzens et al. 1989; Lubzens et al. 2001) and in ecotoxicology 

assessments (Snell and Carmona 1995; Del Valls et al. 1997; Snell and 

Joaquim-Justo 2007).  
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Brachionus species are passive filterers. Both the size of the body 

and the morphology of the ‘corona’ (i.e. a ciliated field at the anterior 

end of rotifers used in locomotion and food gathering) have been 

related to food-size preferences and feeding strategies (Edmondson 

1965; Gilbert and Bogdan 1984; Rothhaupt 1990a; Ciros-Pérez et al. 

2001a) raising the opportunity of niche differentiation regarding 

resource use. In fact, body size of some Brachionus species has been 

related to both the optimal particle size ingested and the width of the 

retention spectrum (Rothhaupt 1990b).  

In natural habitats, rotifers are a common prey of vertebrate 

and invertebrate predators (e.g., Hurlbert et al. 1972; Starling and 

Rocha 1990; Schmid-Araya and Schmid 1995; Conde-Porcuna and 

Declerck 1998). On the one hand, planktonic rotifers are detected 

visually by aquatic vertebrate predators such as fish. Consequently the 

reactive distance of the predator is positively related to the prey size 

(Ware 1972; Ware 1973; Werner and Hall 1974; O’Brien et al. 1976). 

On the other hand, invertebrate predators as copepods detect rotifers 

by mechanoreception (Moore et al. 1999; Bundy and Vanderploeg 

2002). The prey body size affects the mechanical disturbance created, 

and hence it affects the risk of being detected and predated (Kerfoot 

1977). Species of the B. plicatilis complex lack any special structure of 

protection except a hard outer covering of chitin called ‘lorica’ 

(Stemberger and Gilbert 1987). Therefore, body size is also a crucial 

factor in determining their susceptibility to predation by invertebrate 

predators (Lapesa et al. 2002; Ciros-Pérez et al. 2004; Lapesa et al. 

2004).  
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Life cycle 

The species of genus Brachionus belong to monogonont rotifers, which 

are cyclically parthenogens. In the monogonont life cycle (Fig. 1.1), 

ameiotic parthenogenesis producing clonal females (asexual phase) is 

combined with occasional bouts of male production and sexual 

recombination resulting in diapausing eggs (sexual phase) (e.g., 

Gilbert 1974; Wallace and Smith 2009; Wallace et al. 2015). At 

temperate latitudes, rotifer populations are typically temporary, they 

are not continuously active in the water column; rather, annually re-

colonize the water column (planktonic growing season). In a growing 

season, the active population is initiated by hatching of diapausing 

eggs from the sediment of the ponds and lakes where rotifers inhabit 

(Gilbert 1974; Pourriot and Snell 1983). The hatchlings are diploid 

asexual (amictic) females that produce genetically identical daughters 

by ameiotic parthenogenesis (e.g., Gilbert 1974; Pourriot and Snell 

1983; Schröder 2005; Wallace et al. 2006). Typically, there is a period 

of exclusively asexual reproduction, followed by a period in which 

both sexual and asexual reproductions co-occur. In the genus 

Brachionus sexual reproduction is induced by a density-dependent 

chemical signal produced by the rotifers. The signal accumulates in 

the water column (Gilbert 1963; Carmona et al. 1993; Carmona et al. 

1995; Stelzer and Snell 2003; Snell et al. 2006). This infochemical, 

which may be not completely species-specific (García-Roger et al. 

2009) triggers asexual females to parthenogenetically produce sexual 

daughters as some fraction of their offspring (Fussmann et al. 2007). 

These sexual (mictic) females produce haploid eggs that develop into 
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Figure 1.1. The typical life cycle of monogonot rotifers. Females 

reproduce indefinitely asexually; environmental cues trigger the 

production of sexual females. If a young sexual female is inseminated, 

she produces diapausing eggs, if unfertilized, she produces males. 

  

either haploid males or, if inseminated while young, into encysted 

diploid embryos in an arrested stage of development called diapausing 

or resting eggs. Males are dwarf, do not feed and have shorter lifespan 

than females (King and Miracle 1980; Wallace et al. 2006). Diapausing 

eggs, which settle in the sediment, are able to resist desiccation and 

other adverse conditions, remaining viable for decades (Marcus et al. 

1994; Kotani et al. 2001; García-Roger et al. 2006). After a variable 

period of dormancy (Hagiwara et al. 1989; Schröder 2005; Martínez-

Ruiz and García-Roger 2014), and when suitable conditions resume in 

the water column, a fraction of diapausing eggs hatches and re-

colonize the water column and a new growing season begins. 
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Different species of the B. plicatilis complex inhabit saline ponds 

in the Iberian Peninsula (Gómez et al. 2002; Gómez et al. 2007) (Fig. 

1.2). Rotifers are exposed to wide and unpredictable environmental 

fluctuations due to the Mediterranean climate (Comín et al. 1992). 

Thus, their populations are only active in the water column during a 

period of the year (the so-called growing season) regardless the pond 

is permanent or temporary. Thus, diapausing eggs are the only way to 

cope adverse conditions until the next suitable growing season.  

B. plicatilis and B. manjavacas as model organisms  

B. plicatilis and B. manjavacas (Fig. 1.3) belong to the B. plicatilis cryptic 

species complex. The species in this complex of herbivorous filterers 

are commonly found in sympatry (Gómez et al. 2002; Gómez et al. 

2007), so that they constitute a good ecological model to study 

evolutionary and ecological questions about the co-occurrence of 

closely related species. It has been suggested that these species 

diverged several million years ago (Gómez et al. 2002). The large 

genetic distance between them, the experimentally confirmed pre-

mating reproductive isolation and the lack of evidence for 

hybridization in the field ensure their species status (Gómez and Snell 

1996; Ortells et al. 2000; Suatoni et al. 2006).  

These species have a remarkable morphological similitude. 

Despite B. plicatilis is on average 6% longer than B. manjavacas 

(Campillo et al. 2005), the only reliable taxonomic feature for species 

identification is the difference in the shape of satellites –i.e., small 

accessory pieces of the internal masticatory apparatus (Fontaneto et  
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al. 2007). Nevertheless, the identification of specimens based on 

morphological features is not practicable. Consequently, molecular 

analyses are the most reliable way to discriminate both species 

(Campillo et al. 2005). 

 

 

Figure 1.2. Some examples of natural habitats inhabited by species 

belonging to the B. plicatilis cryptic species complex in the Iberian 

Peninsula. (A) Balsa de Santed (Zaragoza, dry pond), (B) Pétrola 

(Albacete) and (C) Salobrejo (Albacete). 
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Figure 1.3. Microphotography of B. plicatilis (left) and B. manjavacas 

(right) females. 
 

B. plicatilis and B. manjavacas have been found co-occurring in 

the saline ponds of the Iberian Peninsula (Ortells et al. 2000; Gómez 

et al. 2002). They are likely present in the region since Pleistocene  

glaciations (Gómez et al. 2000; Gómez et al. 2007) and 

paleolimnological data suggest that they can co-occur in the same  

pond at least for decades (Montero-Pau et al. 2011). In agreement 

with these evidences, their co-occurrence is unlikely to be transient. 

However, the mechanisms promoting their coexistence remain 

unknown.  

The ponds inhabited by B. plicatilis and B. manjavacas in the 

Iberian Peninsula are shallow, with low spatial heterogeneity but high 

temporal –e.g., seasonal– changes (Comín et al. 1992; Rodriguez-

Puebla et al. 1998). These temporal changes make possible some 

seasonal specialization in relation to abiotic factors such as 

temperature and salinity, as well as to changes in their food and 

response-to-predation spectra. In fact, a differential adaptation has 

been evidenced for three species included in the B. plicatilis species 
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complex: B. plicatilis, B. ibericus and B. rotundiformis. These species differ 

in their body size; being B. plicatilis 35% and 50% larger than B. ibericus 

and B. rotundiformis respectively, and B. ibericus being 23% larger than 

B. rotundiformis (Ciros-Pérez et al. 2001b). The three species co-occur 

in some ponds where they are involved in a seasonal succession in 

relation to temperature and salinity (Gómez et al. 1995; Gómez et al. 

1997; Ortells et al. 2003). Additionally, differential use of resources 

might make possible their coexistence at an equilibrium point (Ciros-

Pérez et al. 2001a). However, for the case of B. plicatilis and B. 

manjavacas, it is still unknown if their subtle differences in body size 

and morphology (see above) are enough for ecological differentiation. 

Laboratory experiments have shown that these two species have a 

wide overlap in their tolerance range to salinity, but differ in the 

response of the intrinsic growth rate to salinity (Montero-Pau et al. 

2011). Consistently, despite they co-occur in some ponds, on average 

B. plicatilis tends to inhabit body waters with lower salinity than B. 

manjavacas (Gómez et al. 2007). Not surprisingly, coexistence of both 

species mediated by salinity fluctuation has been proposed (Montero-

Pau et al. 2011).  

Objectives and structure of this thesis 

The present thesis aims to gain insight in how evolutionarily closely 

related species, which are expected to share similar ecological 

requirements, are able to persist in the same habitat. The main goal is 

to infer the mechanisms that can determine the two alternative 

outcomes of their competitive dynamics: either coexistence or 
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exclusion. With this purpose, the rotifers B. plicatilis and B. manjavacas 

were used as model organisms. As described above, these rotifer 

species meet the conditions that make them excellent candidates to 

conduct this research. Belonging to the same cryptic species complex, 

they are phylogenetically closely related, and represent an extreme 

case of similar species. These two species are morphologically 

indistinguishable, have a complex life cycle which involves diapause, 

and commonly co-occur in spatially homogeneous but temporarily 

fluctuating habitats. Accordingly, this thesis focusses on the following 

objectives: (1) to empirically characterize the ecological similitudes 

and differences between B. plicatilis and B. manjavacas in relation to the 

most relevant abiotic factors (salinity and temperature) and biotic 

factors (resource use and predator vulnerability); (2) to empirically 

assess differences in their life-history traits regarding sexual 

reproduction and diapause; (3) to empirically explore the role of the 

salinity regime and the diapause on their long-term competitive 

outcome; and (4) to theoretically assess the effect of salinity regime, 

length of the growing season, and level of between-species crossed 

induction of sex on their competitive dynamics. 

  Taking into account these main objectives the thesis is 

organized in the following way: 

Chapter 2 studies key ecological characteristics where body size 

could be relevant –functional response, tolerance to starvation and 

vulnerability to depredation– in order to assess if the subtle 

differences between B. plicatilis and B. manjavacas in body size and 

morphology translate into ecological differentiation (objective 1). 
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Niche overlap between B. plicatilis and B. manjavacas is estimated based 

on the studied features to quantify their ecological similitude in 

relation to biotic factors.  

Chapter 3 characterizes the responses of B. plicatilis and B. 

manjavacas to abiotic factors (i.e., salinity and temperature) in terms of 

population growth, and patterns of sexual reproduction and diapause 

(objective 2). The investment in sexual reproduction and diapause, the 

viability and hatchability of diapausing eggs and the effect of salinity 

and temperature on several of these fitness components are analyzed 

in both species. Moreover, the contribution of these features to niche 

differentiation is estimated.  

Chapter 4 analyses reproductive allocation patterns to gather 

more evidence on divergence of traits between these species 

(objective 2). Density thresholds for sex initiation –as a measure of 

investment in sex and diapause– are estimated and life histories of 

asexual females, unfertilized sexual females and fertilized sexual 

females in both species are compared. Differences in allocation 

among reproductive modes and differences in life-history traits 

between female reproductive types and species are tested.  

Chapter 5 explores the long-term competitive dynamics –i.e., 

several growing seasons– of B. plicatilis and B. manjavacas (objective 3). 

The effect of regimes of constant and fluctuating salinity on the 

competitive dynamic is analyzed in experimental microcosms. Periods 

of habitat unsuitability are simulated in the laboratory. In this way, 

our experimental approach takes into account the whole rotifer life 
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cycle and it includes the role of investment in diapause in the long-

term competitive dynamics.  

Chapter 6 theoretically explores the effect of the salinity 

fluctuation, the duration of the growing season, and the crossed 

induction of sex in the long-term competitive outcome of the two 

rotifer species by developing a simulation model (objective 4). Long-

term competitive outcome is inferred on the basis of life-history traits 

of both species, which are estimated experimentally in the previous 

chapters. This approach facilitates the interpretation of some 

empirical results. 

Finally, Chapter 7 discusses in general terms the main results of 

this thesis presented in the previous chapters, proposes prospective 

future research and sets out the most important conclusions.  
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Abstract 

Co-occurrence of cryptic species raises theoretically relevant 

questions regarding their coexistence and ecological similarity. Given 

their great morphological similitude and close phylogenetic 

relationship (i.e., niche retention), these species will have similar 

ecological requirements and are expected to have strong competitive 

interactions. This raises the problem of finding the mechanisms that 

may explain the coexistence of cryptic species and challenges the 

conventional view of coexistence based on niche differentiation. The 

cryptic species complex of the rotifer Brachionus plicatilis is an excellent 

model to study these questions and to test hypotheses regarding 

ecological differentiation. Rotifer species within this complex are 

filtering zooplankters commonly found inhabiting the same ponds 

across the Iberian Peninsula and exhibit an extremely similar 

morphology ̶ some of them being even virtually identical. Here, we 

explore whether subtle differences in body size and morphology 

translate into ecological differentiation by comparing two extremely 

morphologically similar species belonging to this complex: B. plicatilis 

and B. manjavacas. We focus on three key ecological features related to 

body size: (1) functional response, expressed by clearance rates; (2) 

tolerance to starvation, measured by growth and reproduction; and (3) 

vulnerability to copepod predation, measured by the number of 

preyed upon neonates. No major differences between B. plicatilis and 

B. manjavacas were found in the response to these features. Our results 

demonstrate the existence of a substantial niche overlap, suggesting 

that the subtle size differences between these two cryptic species are 
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not sufficient to explain their coexistence. This lack of evidence for 

ecological differentiation in the studied biotic niche features is in 

agreement with the phylogenetic limiting similarity hypothesis but 

requires a mechanistic explanation of the coexistence of these species 

not based on differentiation related to biotic niche axes. 
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Introduction 

In the last decade, molecular approaches have revealed great 

biological diversity in the form of cryptic species (Gómez 2005; 

Pfenninger and Schwenk 2007; Kong and Li 2009). Co-occurrence of 

these species is common (Bickford et al. 2007) and raises important 

questions, especially in terms of their coexistence and ecological 

similarity. Given their great morphological similitude and close 

phylogenetic relationship, these species are expected to have similar 

environmental requirements (i.e., niche retention) (Futuyma and 

Mitter 1996; Webb 2000; Violle et al. 2011) and thus strong 

competitive interactions. Consequently, cryptic species are expected 

to be prone to competitive exclusion (i.e., the limiting similarity 

principle) (MacArthur and Levins 1967). The apparent lack of 

phenotypic and/or ecological differences between cryptic species 

raises the problem of finding the processes that may explain their co-

occurrence and challenges the conventional view of coexistence 

(McPeek and Gomulkiewicz 2005; Leibold and McPeek 2006) 

because species coexistence has traditionally been explained by niche 

differentiation mechanisms (e.g., partitioning of resources, differential 

risk to enemies, temporal and spatial patchiness, and environmental 

fluctuations). However, there are alternative processes not based on 

biotic niche axis differentiation that could explain the co-occurrence 

of ecologically similar species, such as density-dependent life-history 

adjustments (Zhang and Hanski 1998; Montero-Pau and Serra 2011) 

or those invoked by neutral models (Hubbell 2001). In cryptic 

species, this differentiation either does not exist or is subtle. Although 
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the degree of ecological differentiation needed for stable coexistence 

depends on the degree of fitness differences (i.e., the more similar 

their fitness, the less difference is required) (Chesson 2000), it is still 

unclear how subtle these ecological differences that promote 

coexistence can be. Thus, the study of co-occurring cryptic species 

can illuminate the existing mechanisms, aid in the discovery of new 

ones, and offer the opportunity to experimentally quantify concepts 

such as limiting similarity. 

Body size affects life history, the ecological niche of an 

organism, and its interactions with other organisms. The impact of 

body size in determining the ecological niche is especially significant 

in aquatic systems (Werner and Gilliam 1984), as body size has 

implications for predation susceptibility and competitive ability. Many 

aquatic invertebrate predators detect their prey by mechanoreception 

(Moore et al. 1999; Bundy and Vanderploeg 2002); thus, the greater 

the size of the prey, the greater the mechanical disturbance created, 

and the greater the risk of being detected (Kerfoot 1977). 

Additionally, aquatic vertebrate predators such as fishes use visual 

orientation to capture prey so that the reactive distance of the 

predator is positively related to the prey size (Ware 1972; Ware 1973; 

Werner and Hall 1974; O’Brien et al. 1976). Body size also shapes the 

consumer niche because large prey is more difficult to catch and has 

longer handling times (Kerfoot 1977; Pastorok 1981; Roche 1987; 

Lapesa et al. 2002) or, in the case of filter-feeding zooplankton, 

because the size limit of the comestible particles is determined by the 

mesh width of the filtering apparatus (Gliwicz 1980). Thus, a higher 
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similarity in predation vulnerability and consumer niche is expected 

among competing species with similar body size and morphology.  

The objective of this study is to explore whether subtle 

differences in body size and morphology translate into ecological 

differentiation. To this end, we used two cryptic rotifers species 

belonging to the Brachionus plicatilis species complex (Gómez 2005), B. 

plicatilis and B. manjavacas, as a model. Both species are commonly 

found living in sympatry in the plankton of many bodies of salt water 

in the Iberian Peninsula (Gómez et al. 2002; Gómez et al. 2007). The 

rotifer communities of these habitats are poorly diversified, and 

populations are expected to be regulated by food availability and 

predation (Pitta et al. 1997). The ponds inhabited by B. plicatilis and B. 

manjavacas are shallow, with low spatial heterogeneity but a highly 

variable salinity regime (Rodriguez-Puebla et al. 1998), and it has been 

suggested that a differential response to salinity could mediate the 

stable coexistence of the rotifers (Montero-Pau et al. 2011). Both 

species are virtually morphologically identical. The only reliable 

feature for morphological identification is the shape of small 

accessory pieces of the internal masticatory apparatus (i.e., satellites) 

(Fontaneto et al. 2007). In addition, B. plicatilis is on average 6% 

longer than B. manjavacas (Campillo et al. 2005). In this study, we 

focus on three key ecological features (vulnerability to predation, food 

particle size preference, and starvation tolerance) where body size has 

been proven to be determinant in the Brachionus genus.  

Species of the B. plicatilis complex lack any conspicuous escape 

response from predators or structures of protection such as spines, 
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apart from the lorica, a hard outer covering of chitin (Stemberger and 

Gilbert 1987); thus, body size is a crucial factor in their susceptibility 

to predation by copepods (Lapesa et al. 2002; Ciros-Pérez et al. 2004; 

Lapesa et al. 2004). Rotifers are primarily passive filterers, and their 

diets are affected by the structure and size of their feeding structures. 

For example, when comparing the maximum size of particles ingested 

by a B. plicatilis species, Hino and Hirano (1980) concluded that the 

largest particle size that a rotifer is able to capture is dependent on its 

body size. This is most likely because the food groove, which is 

responsible for transporting the collected particles to the mouth using 

cilia, increases with body size, as has been demonstrated for 

gastropod larvae (Hansen 1991). Interestingly, the body size of some 

species of B. plicatilis is clearly related to both the optimal particle size 

and the width of the retention spectrum (Rothhaupt 1990a). In 

addition, for some rotifer species, feeding efficiencies increased with 

increasing dietary particle size (Rothhaupt 1990b; Rothhaupt 1990d), 

although that efficiency cannot be predicted solely by body size 

(Bogdan and Gilbert 1984; Ciros-Pérez et al. 2001), and other factors 

related to predator prey encounter rate need to be considered (Turner 

and Borkman 2005; Zhou et al. 2009). The ability to survive during 

periods of extreme resource limitation affects the competitive 

capability of a species. In some zooplankton groups, starvation 

resistance has been related to organism body size (Threlkeld 1976; 

DeMott 1989). Lapesa (2004) showed that the smallest of three 

studied Brachionus species was the least able to endure starvation.  
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The effect of slight morphological differentiation on the biotic 

dimensions of the niche of competing cryptic species has strong 

implications for fundamental problems in ecology such as limiting the 

similarity or the degree of ecological differentiation needed to 

promote coexistence. Previous studies have examined the differential 

susceptibility to predation and exploitative competition, including 

feeding strategies, of some species of the complex B. plicatilis (Lapesa 

et al. 2002; Ciros-Pérez et al. 2004; Lapesa et al. 2004). However, no 

study has addressed this question by comparing two extremely 

morphologically similar species belonging to this complex: B. plicatilis 

and B. manjavacas. The assumption seems to have been that subtle 

morphological differences do not allow such ecological 

differentiation; however, this assumption needs to be evaluated, 

especially in the framework of coexisting cryptic species. In this study, 

we address the differential ecological response between B. plicatilis and 

B. manjavacas. We study the following ecological features known to be 

affected by body size: (1) vulnerability to copepod predation, as 

measured by the number of preyed upon neonates; (2) functional 

response, as measured by the clearance rates of both species using 

two different algae species as food resources; and (3) tolerance to 

starvation, as measured by growth and reproduction. As the 

differences are expected to be subtle, methodological attention was 

given to the statistical power of the data analysis. 
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Material and Methods 

Rotifer species  

We used two species of cyclical parthenogenetic rotifers belonging to 

the B. plicatilis cryptic species complex: B. plicatilis and B. manjavacas. 

The reproductive cycle of rotifers of the genus Brachionus begins with 

the hatching of asexual females from diapausing eggs. Females 

reproduce by ameiotic parthenogenesis for several generations, 

producing clones. Sexual reproduction is density-dependent and 

induced by a chemical cue (Stelzer and Snell 2003; Snell et al. 2006). 

Then, asexual females begin producing sexual females that produce 

haploid oocytes that then develop into males if unfertilized or into 

diapausing eggs if fertilized.  

Media and culture conditions 

The rotifers were fed two species of microalgae, which differ in size 

and mobility: Tetraselmis suecica (Prasinophyceae, motile, ellipsoidal, 

equivalent spherical diameter, ESD= 9 µm; provided by the 

Collection of Marine Microalgae of the Instituto de Ciencias Marinas 

de Andalucía, Cádiz, Spain) and Nannochloris atomus (Chlorophyceae, 

non-motile, spherical, ESD= 2.5 µm; strain CCAP 251/7; provided 

by the Collection of Algae and Protozoa of the Scottish Association 

of Marine Sciences, Oban, Scotland). The microalgae species were 

individually cultured at 20.0±0.1ºC in an f/2 enriched saline water 

medium (Guillard and Ryther 1962) at 10 g L-1 salinity under constant 

aeration and illumination (35 µmol quanta m-2 s-1). This salinity was 
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selected because it is in the range of optimal values for the studied 

rotifer species in Salobrejo Lake (Montero-Pau et al. 2011). Saline 

water was created with commercial sea salt (Instant Ocean®; 

Aquarium Systems). The microalgae were maintained in exponentially 

growing, semi-continuous cultures (dilution rate: 0.5 day-1) to provide 

food of constant quality during the experiments. Microalgae density 

was estimated by 750-nm wavelength light extinction using an 

absorption vs. density calibration curve. The equivalence to carbon 

content per microalgae cell was estimated using an elemental analyzer 

with thermal conductivity, EA 1108 CHNS-O (Fisons Instruments), 

using the flash combustion technique. Unless otherwise indicated, the 

rotifers were cultured under the same standard conditions of 

temperature, salinity and illumination as the microalgae. 

Rotifer isolation and species identification  

The rotifer clones used in the experiments were established from 

diapausing egg hatchlings. Sediment containing these eggs was 

collected in June 2010 with a Van Veen grab (Eijelkamp Agrisearch 

Equipment) from the upper sediment layer of Salobrejo Lake 

(Eastern Spain, 38º 54.765' N, 1º 28.275' O). The sediment samples 

were stored in the dark at 4°C for 30 days to ensure the completion 

of the obligate period of dormancy of the diapausing Brachionus eggs 

(Hagiwara and Hino 1989). Diapausing eggs of B. plicatilis and B. 

manjavacas were isolated from the sediment samples using a modified 

sucrose flotation technique (Gómez and Carvalho 2000). The eggs 

were then individually transferred to 96-well plates (NuncTM) 
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containing 150 µL of 10-g L-1 saline water and induced to hatch under 

the following conditions: 25.0±0.1°C and constant illumination (150-

170 µmol quanta m-2 s-1). The eggs were checked every 24 h, and 

neonate females hatching from the eggs were isolated, fed with T. 

suecica (250,000 cells mL-1,  33 mg C L-1), and allowed to found 

clones by parthenogenetic proliferation.  

Species identification of the clones was performed by 

polymerase chain reaction (PCR) and restriction fragment length 

polymorphism (RFLP) analysis of a fragment of the mitochondrial 

gene cytochrome c oxidase subunit I (COI) (Campillo et al. 2005). 

DNA was extracted from 5-7 females per clone using the HotSHOT 

method (Montero-Pau et al. 2008), and the mitochondrial COI 

fragment was amplified using PCR using the invertebrate universal 

primers LCO1490 and HCO2198 (Folmer et al. 1994) as described in 

Gómez et al. (2000). The RFLP analysis was performed with Kpn I 

and Pvu II endonucleases following Campillo et al. (2005). 

Stock cultures of 25 clones from each rotifer species were 

maintained separately under standard conditions. Prior to the 

experiments, multiclonal pre-experimental populations of B. plicatilis 

and B. manjavacas were established under different experimental 

conditions (see below) by mixing approximately 25 females of each of 

the 25 clones (approximately 1 female mL-1 of each clone). These 

populations were cultured for three generations to reduce maternal 

effects (e.g., Stelzer and Snell 2006) and to acclimate the rotifers to 

the experimental conditions. 
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Clearance rates  

The feeding behavior of B. plicatilis and B. manjavacas was studied by 

measuring their clearance rates in short-term feeding experiments in 

monoalgal cultures of T. suecica and N. atomus following Ciros-Pérez et 

al. (2001). Four rotifer multiclonal pre-experimental populations were 

established (2 rotifer species × 2 microalgae species). The rotifers 

were transferred from the pre-experimental cultures to the 

experimental food concentration 1 h before the experiments. For that 

purpose, these cultures were filtered through a 30 µm Nitex mesh, 

and the retained rotifers washed with saline water at 10 g L-1 to 

eliminate any remnants of algae. Afterwards, the rotifers were 

transferred to Petri dishes containing a culture medium with the 

experimental concentration of algae. The experiments were 

performed by pipetting 20 rotifers for T. suecica and 40 rotifers for N. 

atomus into Eppendorf® tubes with 1 mL algae culture at a 

concentration of 0.6 mg C L-1. The tubes were kept for 1 hour in a 

centrifuge at a constant speed (6 rpm), at 20ºC, and in darkness to 

avoid algal growth during the experiment. After 1 hour, the tubes 

were fixed with 20 µL of Lugol's solution. Ten replicates were 

performed for each rotifer-algae combination. Additionally, three 

tubes with T. suecica and three tubes with N. atomus without rotifers 

were used as controls and fixed immediately after inoculation with the 

algae. The experimental concentration of each algae species was 0.6 

mg C L-1, which corresponds to 3,140 cell mL-1 of T. suecica and 

375,000 cell mL-1 of N. atomus. According to Ciros-Pérez et al. (2001), 

this concentration of food is below the incipient limiting level (ILL) 



Morphological similarity and ecological overlap 

 

- 57 - 

 

for both T. suecica and N. atomus. The clearance rate remains constant 

below the ILL (Rigler 1961), a critical food concentration from which 

the clearance rate exponentially decreases (Rothhaupt 1990c). Below 

this level, filtration rates decrease linearly with decreasing food 

concentrations. However, to confirm that our experimental food 

concentration was below the ILL, three additional tubes for each 

rotifer-algae combination were prepared following the same 

procedure, except that the incubation was for 2 hours prior to 

fixation.  

The algae were counted using an inverted Olympus® SZK10 

microscope. A minimum of 800 cells were counted per sample to 

obtain a confidence interval of 7% (Lund et al. 1958). The clearance 

rates were calculated following Peters (1984):  

tN

CC
CR t






lnln 0 , 

where Co and Ct are the initial and final algae concentrations, N is the 

rotifer density, and t is the time in hours. For each microalgae species, 

the Co value was the average concentration of the three control tubes.  

The data were independently analyzed for each algal species. To 

confirm whether the experimental algae concentration was under the 

ILL, a linear regression analysis (algae concentration vs. incubation 

time, i.e., 0, 1 or 2 h) was performed using R version 2.12.1 (R 

Foundation for Statistical Computing 2010). Student’s t test was used 

to test for differences between B. plicatilis and B. manjavacas in CR for 

each alga. The highest and lowest values for each species were 
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excluded from the analysis. Additionally, to test the power of our 

analysis, the minimum detectable statistically significant difference 

given the observed experimental variance was computed; the CR 

value of one species remained fixed while the mean CR value of the 

other species was gradually increased, without modifying the variance, 

until the difference between the two groups was statistically 

significant. These analyses were performed using SPSS version 9.0 

(SPSS Inc., Chicago, Illinois). 

Predation susceptibility 

The relative susceptibility of B. plicatilis and B. manjavacas to predation 

by Arctodiaptomus salinus (Copepoda, Calanoida) was tested through 

differential predation experiments on the rotifer species. This 

copepod was selected as the predator because the adult stage feeds on 

small zooplankters including species of the B. plicatilis complex 

(Lapesa et al. 2004) and because A. salinus co-occurs with B. plicatilis 

and B. manjavacas (e.g., in Salobrejo Lake; (Lapesa et al. 2004); 

Montero-Pau, personal communication); thus, this copepod is a 

potential predator of both species and might play an important role in 

the coexistence of these two cryptic species if the predation were 

differential. 

Diapausing eggs of A. salinus were isolated using the same 

sucrose flotation technique from the same sediment samples from 

which both rotifer species were obtained. The copepod eggs were 

incubated under standard conditions until they hatched. The nauplii 

were individually isolated in 24-well plates (NuncTM) and maintained 
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on a mixed diet of T. suecica and N. atomus. The medium was renewed 

every 5-7 days, and the copepods reached the adult stage in 

approximately 3-4 weeks.  

For the predation experiments, we selected rotifer neonates as 

prey from pre-experimental multiclonal populations (see above). A. 

salinus prefers small prey (Lapesa et al. 2004). Thus, by using neonates, 

predation is expected to be more efficient. We performed two 

predation experiments. In the first, we used only adult copepod 

females as predators, whereas we examined both sexes separately in 

the second to test for differential predation by adult females and 

males. The procedure in both experiments was the same. Adult 

copepods were individually placed in the wells of 24-well plates 

(NuncTM), with each well containing 1 mL of 10-g L-1 saline water 

without food. After 15-16 hours, 25 rotifer neonates were added per 

well. Both rotifer species were tested separately. Ten replicates plus 

three controls without copepods, to control for mortality due to other 

factors (i.e., the intrinsic mortality of rotifers), were completed for 

each rotifer species. The copepods and rotifers were incubated 

together for 24 hours. After that time, the copepods were removed, 

and the rotifers, including those in the controls, were fixed with 

Lugol's solution. The rotifers were counted under a Leica SZX2 

stereomicroscope. The number of rotifers suffering predation was 

calculated as the difference between the initial and final counts in 

each well. 

After checking for equal variances, the differences in the 

predation rate between the prey species in the first experiment were 
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analyzed using Student’s t test. The variances in the second 

experiment were not homogenous. Thus, a robust two-way ANOVA 

was applied to test for the effects of prey species and predator gender 

on predation. The power of our analysis and the minimum detectable 

statistically significant difference were computed. For each rotifer 

species, we randomly chose a surviving rotifer from one of the 

replicates and considered it as instead suffering predation, and then 

we statistically reanalyzed the simulated data. This process was 

repeated, accumulating randomly chosen individuals as suffering 

predation, until the difference between both species was significant. 

SPSS version 9.0 (SPSS Inc., Chicago, Illinois) was used to perform 

Student’s t test, and R version 2.12.1 (R Foundation for Statistical 

Computing 2010) was used to perform the robust two-way ANOVA.  

Tolerance to starvation 

The response of B. plicatilis and B. manjavacas to different periods of 

starvation before the age of maturity was measured using a dynamic 

life table experiment. To establish the cohorts, aliquots of 

approximately 8 mL of pre-experimental multiclonal cultures were 

transferred into assay tubes and gently shaken to detach the eggs from 

the females (Tortajada et al. 2010). The detached eggs harboring 

female embryos (the gender of an embryo can easily be distinguished 

by egg size) were removed and isolated on plates in 10-g L-1 saline 

water. These eggs usually hatch in less than 4-5 hours. The neonate 

females hatched within 2 h were individually transferred into 1 mL of 

saline water in the wells of 24-well plates (NuncTM). For each rotifer 
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species, the neonates were divided into five cohorts containing 25 

females each and assigned to one of five fasting times of 0, 6, 12, 18 

or 24 hours (2 rotifer species × 5 treatment of starvation= 10 

cohorts). The species and starvation treatments were randomly 

distributed across the 24-well plates. After the corresponding hours of 

starvation, the females were fed T. suecica at a concentration of 

100,000 cell mL-1 ( 13 mg C L-1). The females were followed and 

monitored every 24 hours until all died. Daily, the survival and 

number of offspring produced were recorded, and the female was 

transferred to a new well of a 24-well plate (NuncTM) containing 1 

mL of fresh medium with 100,000 cell mL-1 of T. suecica.  

The lifespan (𝑒0), mean generation time (𝐺𝑐), net reproduction 

rate (𝑅0), survival function (𝑙𝑥, with 𝑥 being age), and age-specific 

fecundity (𝑚𝑥) of both rotifer species under each starvation treatment 

were calculated. Comparisons among the survival curves were 

performed using two non-parametric tests: a Log-rank test and a 

Breslow test (Cox and Oakes 1984). The former assumes equal 

importance of all observations, whereas the latter gives more weight 

to the initial part of the survival curve. These tests were performed 

using SPSS version 9.0 (SPSS Inc., Chicago, Illinois). In addition, 

potential intrinsic growth rates (i.e., the rate of increase that a 

population would have if no investment in sex occurred, 𝑟𝑝𝑜𝑡) 

(Montero-Pau et al. unpublished manuscript) were obtained using the 

Euler-Lotka equation (e.g., Stearns 1992). The 𝑟𝑝𝑜𝑡 for a life-table 

experiment is obtained by exclusively considering the asexual fraction 

of the population. As births do not necessary occur at the moment of 
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the observation, the estimated 𝑟𝑝𝑜𝑡 was improved by considering each 

time of observation (𝑥) as the midpoint between this time and the 

next (Caswell 2006). ANCOVA was performed to analyze the effects 

of species and starvation on 𝑟𝑝𝑜𝑡, 𝑒0, 𝐺𝑐 and 𝑅0. The ANCOVA 

results of 𝑟𝑝𝑜𝑡 should be interpreted considering the intrinsic biases of 

the estimates of 𝑟𝑝𝑜𝑡 (McGraw and Caswell 1996; Caswell 2006). 

However, these ANCOVA results were supported by the 𝑟𝑝𝑜𝑡 

confidence intervals. These analyses were performed using R version 

2.12.1 (R Foundation for Statistical Computing 2010). The 95% 

confidence intervals of 𝑟𝑝𝑜𝑡 were obtained using bootstrap resampling 

(Caswell 2006) and corrected following the bias-corrected percentile 

method (Efron 1981; Efron and Tibshirani 1986). The bootstrapping 

and its correction were implemented in R version 2.12.1 (R 

Foundation for Statistical Computing 2010), and 10,000 

randomizations were performed for each treatment and species. 

Niche overlap 

Interspecific biotic niche overlap was estimated based on the studied 

features using the analytical approach of Geange et al. (2011). This 

method can account for multiple niche axes, each characterized by 

different data types, and computes a unified analysis of niche overlap. 

We used the clearance rates, susceptibility to predation, and starvation 

tolerance data sets to calculate the biotic niche overlap between B. 

plicatilis and B. manjavacas along the following eight axes: (1) Clearance 

rate for T. suecica (continuous data); (2) Clearance rate for N. atomus 
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(continuous data); (3) Susceptibility to predation by copepod females 

(binary data); (4) Susceptibility to predation by copepod males (binary 

data); (5) Potential intrinsic growth rate after 6 h of starvation 

(continuous data); (6) Potential intrinsic growth rate after 12 h of 

starvation (continuous data); (7) Potential intrinsic growth rate after 

18 h of starvation (continuous data); and (8) Potential intrinsic growth 

rate after 24 h of starvation (continuous data). Before analysis, the 

clearance rates were log-transformed, and the 𝑟𝑝𝑜𝑡 values were 

corrected by subtraction from the 𝑟𝑝𝑜𝑡 values obtained in the 0 h 

starvation treatment (see above) to remove the constant (starvation 

independent) interspecific effect. Niche overlap indexes (NO) were 

calculated for each dimension following Geange et al. (2011). Then, a 

single unified niche overlap index (Geange et al. 2011) was obtained 

by averaging the niche overlap over each different axis t as follows:  





T

t

tNO
T

NO
1

1
 

where T is the number of dimensions, and NO ranges from 0 

(disjoint niches) to 1 (total niche overlap). 

To assess the statistical niche differences between species, null 

model permutation tests were performed to test whether both the 

niche overlap along each axis and the mean niche overlap were 

significantly lower than expected by chance (Gotelli and Graves 1996; 

Geange et al. 2011). Statistical null distributions (the distribution of 

the test statistic under the null hypothesis of no niche differentiation) 

were generated by calculating pseudo-values through randomly 
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permuting species labels in the corresponding data set over 10,000 

runs. The distribution of the average niche overlap for the null model 

was then computed. To correct for multiple comparisons, we 

performed a sequential Bonferroni adjustment (Quinn and Keough 

2005). 

 The niche overlap calculations and associated null model tests 

were performed using R version 2.12.1 (R Foundation for Statistical 

Computing 2010) using the source code provided as supporting 

information in Geange et al. (2011). 

Results 

Functional response 

The log concentration of both T. suecica and N. atomus decreased 

linearly (R2> 0.68) with increasing incubation feeding time for both 

rotifer species (Fig. 2.1), indicating that the experimental food 

concentrations were below the incipient limiting level (ILL) (Rigler 

1961), the threshold food concentration up to which clearance rates 

remain constant. The averaged clearance rates for both rotifer species 

are shown in Table 2.1. When the rotifers were fed T. suecica, B. 

plicatilis presented a clearance rate that was on average 3.9% higher 

than that of B. manjavacas. In contrast, when they were fed N. atomus, 

B. manjavacas filtered 4.2% more than B. plicatilis. However, these 

differences were not statistically significant (Student’s t test P= 0.72 

for T. suecica and P= 0.24 for N. atomus). The power analysis 

demonstrated that, given our data variance, the difference between 

the average clearance rates of the two rotifer species would be need to  
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be 30% to detect a statistically significant difference at the 5% 

significance level for rotifers fed T. suecica, whereas a 15% difference 

would be required when using N. atomus as food. Both B. plicatilis and 

B. manjavacas were three times more efficient when feeding on T. 

suecica than on N. atomus. 

 

Figure 2.1. Concentration (cell mL-1) of T. suecica and N. atomus for 

different incubation times with B. plicatilis and B. manjavacas. 
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Table 2.1. Clearance rates (µL ind-1 h-1) of B. plicatilis and B. manjavacas 

feeding on the microalgae T. suecica and N. atomus. Values are the means 

± SE (sample size in brackets). Estimations based on 1 h observations. 

Rotifer species T. suecica N. atomus 

B. plicatilis 15.5 ±1.1 (11) 4.7±0.2 (8) 

B. manjavacas 14.9±1.3 (11) 4.9±0.3 (10) 

 
 

Predation by copepods 

No rotifers died in the control replicates, so mortality was due to 

copepod predation. A. salinus females preyed 12% more on B. plicatilis 

than on B. manjavacas in the first experiment. In contrast, B. manjavacas 

was preyed upon on average 32% (female predators) and 41% (male 

predators) more than B. plicatilis in the second experiment. However, 

no statistically significant difference was found in either assay (Fig. 

2.2; P= 0.642 and 0.287, for the first and second experiments, 

respectively). The results of the second experiment revealed a 

significant effect of copepod sex in the efficiency of predation (P= 

0.003). The A. salinus females had four times higher predation 

efficiency than copepod males on both B. plicatilis and B. manjavacas. 

According to the power analysis, the difference between the predation 

efficacies of A. salinus on B. plicatilis and B. manjavacas must be at least 

39% to be statistically significant at the 5% significance level in the 

first experiment (P= 0.045). At least a 49% difference between the 

predation efficiencies of A. salinus females and a 48% difference 
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Figure 2.2. Average numbers of B. plicatilis and B. manjavacas consumed 

by A. salinus females and males in two predation experiments. Vertical 

bars are ± SE. 

 

between the efficiencies of A. salinus males were needed in the second 

experiment (P= 0.049).  

Tolerance to starvation 

Fig. 2.3 shows the 𝑙𝑥 and 𝑚𝑥 curves of B. plicatilis and B. manjavacas 

females under different starvation times. Both non-parametric tests 

(log-rank and Breslow) failed to find statistically significant 

differences between the survival functions when all of the survival 

functions of B. plicatilis and B. manjavacas were globally compared (P= 

0.065 and 0.1, respectively). Moreover, no differences were found in 

survival when the data for each starvation level were compared
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Figure 2.4. Mean generation times (Gc) of B. plicatilis and B. manjavacas 

under different starvation times. Regression lines are shown. 

 between species (all P> 0.12). The fecundity pattern of both rotifer 

species showed similar trends: maximum fecundity tended to decrease 

with starvation time, whereas the length of the reproductive period 

increased (Fig. 2.3). 𝐺𝑐 also tended to be positively related to 

increasing starvation period (Fig. 2.4) and was dependent on species, 

with B. plicatilis having slightly higher values than B. manjavacas (P= 

0.036).  

However, the increasing effect of starvation on 𝐺𝑐 was similar 

in both species, with no significant differences between the slopes of 

the regression lines relating 𝐺𝑐 to starvation time (P= 0.369). The 

rotifer species did not show significantly different responses of 

𝑒0 (P= 0.07) or  𝑅0 (P= 0.41) to starvation. Additionally, no 

significant differences were found in these parameters when both 

species were compared (P= 0.169 and 0.079, for 𝑒0 and 𝑅0, 

respectively). 
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 The potential intrinsic growth rates for starved B. plicatilis and 

B. manjavacas females under the different starvation treatments are 

shown in Fig. 2.5 ANCOVA revealed that, regardless of the species, 

increasing starvation period led to decreasing 𝑟𝑝𝑜𝑡 (P< 0.001). In 

addition, statistical analysis indicated an effect of species on 𝑟𝑝𝑜𝑡 

values (P< 0.039); B. manjavacas had slightly higher values of 𝑟𝑝𝑜𝑡 than 

B. plicatilis for all treatments. However, both species responded 

similarly to starvation time (i.e., equal slopes, P for species-treatment 

interaction= 0.275). 

Niche overlap 

The niches of B. plicatilis and B. manjavacas were found to be very 

similar (mean niche overlap= 0.78, P= 0.162) as the overlap values for  

 

Figure 2.5. Response of the potential intrinsic growth rates (rpot) of B. 

plicatilis and B. manjavacas to starvation time following birth. Vertical bars 

are the lower and upper 95% confidence intervals. 
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Table 2.2. Niche overlap indexes (NO) between B. plicatilis and B. 

manjavacas for the analyzed niche axes. CRTs and CRNa, clearance rates for 

T. suecica and N. atomus; Df and Dm, predation by female and male 

copepods; rpot6, rpot12, rpot18 and rpot24, potential intrinsic growth rate after 6, 

12, 18 and 24 hours of starvation, respectively.  

Niche Axis  NO P * 

CRTs 0.798 0.450 

CRNa 0.852 0.906 

Df 0.954 0.166 

Dm 0.958 0.118 

rpot6 0.755 0.345 

rpot12 0.707 0.282 

rpot18 0.673 0.210 

rpot24 0.546 0.033 

* Axis with statistically different niches, significant at P < 0.05 as 

identified by a null model test, are indicated in bold. No value remained 

significant after sequential Bonferroni correction. 

 

 

 

seven of the eight axes were high, and the analysis showed no 

significant differences between the two species (Table 2.2). Tolerance 

to 24 h fasting appeared to be a distinguishing factor between the 

species as it was the only axis indicating significantly different niches, 

but it did not remain significant after sequential Bonferroni 

correction. The most similar niches were associated with the axes 

related to predation by female and male copepods. 
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Discussion  

Difference in body size is an important mean by which species avoid 

direct overlap in resource use and can have important effects on 

vulnerability to predation (Schoener 1974; Wilson 1975). Size 

influences interspecific ecological interactions and has been proven to 

be an important feature related to the biotic dimensions of the niches 

of cryptic species, for example, as in the case of bats or amphipods 

(Barlow et al. 1997; Wellborn and Cothran 2007). The primary 

objective of this paper was to examine the extent to which a subtle 

body size differentiation could cause differences in the biotic 

dimensions of the niche. In some species of the B. plicatilis complex, 

body size differences ranging from 23 to 50% have been shown to be 

associated with ecological differentiation (Rothhaupt 1990c; Stelzer 

2001; Ciros-Pérez et al. 2004; Lapesa et al. 2004). However, in this 

study, no major differences in vulnerability to predation, food particle 

size preference, or starvation tolerance have been found between B. 

plicatilis and B. manjavacas, which are virtually identical in morphology 

but differ by 6% in body size. 

Functional response 

Body size is considered to be an important factor in determining 

trophic niche for filter-feeding organisms because the widths of their 

mouths limit the size of particles that they can ingest (Hino and 

Hirano 1984; Hansen 1991). In this study, we used two microalgae, T. 

suecica and N. atomus, which include a significant portion of the 

particle size preference range of Brachionus species (Rothhaupt 1990b; 
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Vadstein et al. 1993). Our results demonstrated that the clearance 

rates for both rotifer species are equal despite their difference in body 

size. The values reported here are within the range described by other 

authors (Rothhaupt 1990a; Rothhaupt 1990c; Ciros-Pérez et al. 2001) 

for Brachionus species. T. suecica was filtered three times faster than N. 

atomus, which is smaller and immobile. These data are in agreement 

with the optimal prey size reported for Brachionus species (Rothhaupt 

1990c; Hansen et al. 1997). The clearance efficiencies of B. plicatilis for 

T. suecica were lower than recorded in previous studies (Ciros-Pérez et 

al. 2001). This discrepancy might be because we used rotifer neonate 

females in our experiments, whereas female age was not controlled in 

Ciros-Pérez et al. 2001). Neonates are smaller than adults, and 

because the size of the particles that they can ingest is limited by body 

size, their algae filtration rates are expected to be lower.  

The body size difference between B. plicatilis and B. manjavacas 

does not appear to be sufficient to affect their clearance rates. 

Moreover, assuming Tilman’s model (Tilman 1982) and assuming that 

a stable equilibrium point exists in the use of the remarkably different 

resources tested here, our estimation of the clearance rates implies 

that the resource supply should be in a sector representing less than 

1.5% of the resource space. Thus, niche partitioning by differential 

use of these microalgae seems highly unlikely, contrary to what has 

been observed in other species of the rotifer complex whose 

differences in body size are greater (B. plicatilis, B. ibericus and B. 

rotundiformis sizes ranging from 23 to 50%) (Ciros-Pérez et al. 2001), 

so that their coexistence of could be explained by differential 
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clearance rates. Our conclusion of lack of differential resource use 

between B. manjavacas and B. plicatilis was supported by results from 

niche overlap analysis. 

There are factors in addition to body size that affect prey 

selection in filter-feeding organisms and could also shape the trophic 

niche. Selectivity has been linked to algal characteristics such as cell 

surface (Dumont 1977; Pourriot 1977), physiological conditions 

(Chotiyaputta and Hirayama 1978) and motility (Gilbert and Bogdan 

1984). Actively moving prey ̶ microalgae in this case ̶ may increase 

their encounter rates with predators (Turner and Borkman 2005). The 

presence of cilia provides mobility to T. suecica, which, in addition to 

its larger size, may account for the higher grazing rates on these 

microalgae observed in our experiments for B. plicatilis and B. 

manjavacas.  

Tolerance to starvation 

In aquatic systems, resource quantity and quality can vary drastically 

over short periods of time, and episodes of severe resource scarcity 

are expected. The time scale of these phenomena may vary from 

hours, due to daily vertical migration (Hutchinson 1967), to days or 

weeks during seasonal change (Stewart and Wetzel 1986; Sommer 

1989). Accordingly, the ability to withstand starvation is considered an 

important element in species persistence (Kirk 1997), and this ability 

may affect the competitive outcome between zooplankton species 

(Threlkeld 1976; Stemberger and Gilbert 1985; DeMott 1989; 

Rothhaupt 1990c; Schulze 1995; Kirk 1997). We found that the effect 
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of food limitation on survival was similar in B. plicatilis and B. 

manjavacas. In accordance with previous studies on the response of B. 

plicatilis to starvation (Yoshinaga et al. 2003), B. plicatilis and B. 

manjavacas both altered their fecundity schedule under food-limited 

conditions. Starvation seems to cause a general delay in age-related 

reproductive traits in both species in our study: longer generation 

times, older age at maturity, and longer reproductive periods were 

recorded in our experiments. In contrast, the life expectancies and net 

reproduction rates of the two studied species were not affected by 

food limitation. The generation time and the potential growth rate are 

correlated. Thus, consistent with the effect of starvation on the 

generation time, the potential growth rate decreased linearly with 

increasing starvation time. B. manjavacas had slightly but consistently 

higher 𝑟𝑝𝑜𝑡 than B. plicatilis in all of the starvation treatments, 

although the differences were not statistically significant. Interestingly, 

both species are able to maintain positive growth rates after starving 

for one day, which is approximately 9% of their life expectancy. 

Starved newborn female rotifers are able to survive several days using 

egg reserves as their only source of energy (Yoshinaga et al. 2003; 

Gilbert 2004; Garcia-Roger 2005; Ricci and Perletti 2006). However, 

tolerance to this longer starvation time was the only axis suggesting 

niche segregation between the two species. 

Predation by copepods 

Most of the rotifers species co-occurring with predatory copepods 

have been described as prey of copepods (Williamson 1987; Conde-



Chapter 2 

 
 - 76 - 

 

Porcuna and Declerck 1998). In addition to prey size, vulnerability to 

predation also depends on morphological and behavioral features that 

could protect individuals from being successfully attacked (Gilbert 

and Williamson 1978; Stemberger 1982; Williamson 1987). In contrast 

with other rotifers, the Brachionus species studied here do not exhibit 

conspicuous features to avoid predation by copepods, except for a 

hard, chitinous lorica and a ‘dead-man’ behavioral response to attacks 

(Lapesa et al. 2002). Because Brachionus species are morphologically 

very similar, their size becomes relevant, with the highest 

susceptibility to predation being associated with the smallest sized 

species of the complex (Lapesa et al. 2002; Ciros-Pérez et al. 2004; 

Lapesa et al. 2004). Therefore, the morphological and size similarity 

between B. plicatilis and B. manjavacas provides an explanation for their 

very similar vulnerability to predation by both male and female 

copepods, the tested axes that seemed to contribute most to their 

high interspecific niche overlap. We recorded predation rates by A. 

salinus in the range of those obtained by Lapesa et al. (2004) when 

they studied predation of A. salinus on B. plicatilis. Our finding of sex-

dependent predation efficiency in A. salinus is also consistent with the 

experimental data obtained by Ciros-Pérez et al. (2004) using the 

copepod Diacyclops bicuspidatus odessanus as predator. The higher 

efficiency of female copepods may be due to their larger size. Prey 

handling time is expected to be negatively related to predator-prey 

size ratio, and a higher handling time involves a lower predation 

efficiency (Roche 1990). Interestingly, although the difference was not 
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statistically significant, the females and males of A. salinus preyed 

slightly more on the smaller species, B. manjavacas. 

Ecological similarity  

This study did not detect evidence that the cryptic species B. plicatilis 

and B. manjavacas differentiate their biotic niches by having different 

clearance rates, susceptibility to predation, or starvation tolerance. 

Three concerns could arise from this conclusion. (1) Generally, no 

test can rigorously demonstrate a lack of difference between data sets 

because that implies the acceptance of the null hypothesis. Thus, 

knowing the statistical power of the tests is critical to assessing the 

plausibility of the absence of differences. In our study, low statistical 

power might affect the predation experiment results, although we 

were able to detect significant differences for one factor (predator 

sex); this was likely because, although the sample size was small, our 

design controlled for prey age in the experiments, thus reducing the 

variability in intraspecific prey size (error variance). Overall, this 

suggests that even if statistical significance could be achieved by 

increasing the sample size, the differences would be minor and of low 

ecological significance. (2) Another consideration is whether 

phenotypic plasticity causing morphological divergence could 

contribute to the evolutionary differentiation of the biotic niche of 

these species, because of a differential response of their morphology 

to an environmental factor. However, evidence suggests that the 

morphology of Brachionus species either respond similarly or do not 

respond to changes in environmental factors, at least for temperature 
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and salinity (Serra and Miracle 1987). Moreover, these species inhabit 

a spatially homogenous environment, so that individuals should 

experience similar developmental environments. In addition, we did 

not notice indications of character displacement when the species 

were grown together. (3) A third concern is whether unanalyzed niche 

axes could promote niche differentiation. We intentionally limited our 

study to those biotic axes related to resource use and predation 

vulnerability. However, efficiency in resource use might be dependent 

on physical environmental factors. Our hypothesis is that this 

dependence does occur in relation to salinity and temperature, which 

are critical mediating their long-term coexistence (see below).  

The evidence for ecological similitude between the two cryptic 

species studied here is in agreement with the phylogenetic limiting 

similarity hypothesis, which predicts that phylogenetically closely 

related species are likely to possess ecological similarities (Wiens and 

Graham 2005; Losos 2008; Wiens et al. 2010; Violle et al. 2011). This 

hypothesis also assumes that a higher ecological similitude is likely to 

result in more frequent competitive exclusion. However, B. plicatilis 

and B. manjavacas co-occur in many lakes along the Iberian Peninsula, 

and their occurrence in the region has been traced back to the 

Pleistocene (Gómez et al. 2002; Gómez et al. 2007); thus, their 

coexistence is unlikely to be transient. The discovery of cryptic 

species co-occurring in the same habitat, particularly if the habitat is 

spatially homogeneous, raises new questions in explaining the 

coexistence of these species. Moreover, it challenges the limit of 

ecological differentiation needed to promote coexistence and favors 
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the description of novel coexistence mechanisms not based on niche 

partitioning (Zhang et al. 2004; Montero-Pau and Serra 2011).  

 Differential adaptation to abiotic factors, such as water salinity 

and temperature, is known to affect the coexistence of the B. plicatilis 

species complex (Gómez et al. 1995; Gómez et al. 1997; Montero-Pau 

et al. 2011). For example, laboratory experiments show B. plicatilis 

grows better at lower salinities than B. manjavacas, although the salinity 

tolerance ranges of these two species largely overlap (Montero-Pau et 

al. 2011). Because of this evidence and the abundances recorded in 

the field, it has been proposed that their coexistence could be 

mediated by salinity fluctuations providing differential advantages to 

the two species in turn (Montero-Pau et al. 2011). However, 

mechanisms explaining stable coexistence that are not based on niche 

differentiation are also likely to be acting on the coexistence of B. 

plicatilis and B. manjavacas, as well as the other species belonging to the 

cryptic complex. As noted using modeling by Montero-Pau and Serra 

(2011), density-dependent investment in sex and diapause is able to 

mediate the stable coexistence of facultative sexuals with identical 

niches if the response to density is to some extent species-specific. In 

the genus Brachionus, sexual reproduction is density-dependent, and 

some level of differentiation in the chemical signal that induces sex 

seems to exist in sympatric populations of the B. plicatilis complex, 

including B. plicatilis and B. manjavacas (García-Roger et al. 2009). 

Different patterns of sexual investment have already been described 

in some populations of the B. plicatilis species complex (Carmona et al. 

1995; Campillo et al. 2009). Sexual patterns of B. plicatilis and B. 
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manjavacas should be studied under different environmental conditions 

to explore whether a possible differential investment could act as an 

explanatory mechanism of their coexistence. 

Despite only minor differences in morphology, closely related 

sympatric species can display different preferences for abiotic 

conditions, especially in relation to factors for which the adaptation to 

specific ranges is based on a physiological mechanism and only 

loosely related to morphology. If B. plicatilis and B. manjavacas 

differentially respond to abiotic factors so that those factors drive the 

outcome of competition, fluctuations in the abiotic environment 

could facilitate their coexistence. We propose as a hypothesis to be 

tested that the advantages that fluctuating salinity provides to each 

species are mediated not only through differential effects of salinity 

on population growth rate but also through differences in sex and 

diapause patterns. 
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Abstract 

Trade-offs are important in life-history evolution and coexistence of 

competitors. However, how alternative life-history optima might 

promote competitor coexistence has received little attention. The 

rotifers B. plicatilis and B. manjavacas are two cryptic species with a 

considerable ecological overlap in relation to biotic factors. These 

species often co-occur in temporal brackish ponds characterised by 

environmental fluctuations. In these rotifers, sexual reproduction 

results in diapausing stages, which are able to survive through adverse 

conditions but constrain current population growth. In the present 

work, the differential responses of both cryptic rotifer species to 

varying salinities and temperatures in terms of population growth, 

sexual reproduction and diapause patterns (i.e., investment, viability 

and hatchability of diapausing eggs) were investigated to assess their 

possible roles in species coexistence. Brachionus plicatilis and B. 

manjavacas showed differential responses to salinity and temperature 

and differed consistently in traits involved in diapause. The niche 

overlap between B. plicatilis and B. manjavacas decreased dramatically 

when the temperature and salinity response niche axes were added to 

a number of previously studied biotic niche axes. The results suggest 

that B. plicatilis exploits ephemeral and favourable conditions (low 

salinity) to invest in diapause, which would accelerate its exclusion 

from the water column but promote its long-term persistence. The 

findings show that cryptic species may evolve different compromises 

among life-history traits, allowing ecological divergence, and that 
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ecological divergence may be uncoupled from morphological 

divergence for some factors in the abiotic environment.  
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Introduction 

How competing species co-occur is a fundamental question in 

ecology. Co-occurrence of competitors in the same habitat may be 

transient, i.e., some species are slowly being driven to exclusion by the 

interactions with other species (Leibold and McPeek 2006). However, 

species also may co-occur in the same habitat because each species is 

protected from exclusion, so that they show stable coexistence, even 

if their population densities fluctuate and are not at equilibrium 

(Chesson 2000; Adler et al. 2007). Trade-offs among competitor 

capabilities are a necessary, but nor sufficient condition for their 

stable coexistence (Chesson 2000; Siepielski and McPeek 2010; 

McPeek 2014). A trade-off occurs whenever a trait that confers an 

advantage when performing one function is linked to a disadvantage 

in performing another function (Stearns 1992). Trade-offs can result 

in niche differentiation if neither species presents higher values of all 

relevant fitness components; the advantages that one species may 

present over others are offset by compensating disadvantages; for 

instance, being an efficient consumer of a kind of resources 

compromises being an efficient consumer of other resources. In 

absence of trade-offs, one of the species could achieve higher 

performance than their competitor in all features, and then becoming 

the superior competitor. Additionally, stable coexistence is favoured 

by fitness equivalence among competitors (Chesson 2000). If 

competitors have similar fitness, a small stabilizing niche difference 

allows stable coexistence (Adler et al. 2007). Therefore, the analysis of 

trade-offs and niche differentiation of competitors are needed steps in 
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the study of stable coexistence, and can provide cues on what other 

conditions need to be investigated in order to demonstrate that a 

stable coexistence mechanism is acting. There are several potential 

trade-offs that can promote coexistence between species, such as 

trade-offs between growth capacity and low-resource tolerance 

(Angert et al. 2009), between competitive ability and predator 

susceptibility (Wellborn 2002) or dispersal ability (Lei and Hanski 

1998), or between the efficiencies of using different resources (Tilman 

1982). 

Relevance of trade-off analysis in ecology and evolution is not 

limited to the study of competition, as this analysis is crucial in the 

evolutionary theory of life history. Trade-offs involving reproduction 

shape life histories, and are expected to evolve in response to a suit of 

environmental features. Traits such as age at maturity, clutch size and 

the period of parental care are thought to evolve as a result of trade-

offs between fecundity and survival or somatic growth (Stearns 1992). 

These adaptive changes in life history traits can have implications on 

niche differentiation. However, with the exception of classical 

conceptual framework of r- and K-selection, the connection between 

interspecific competition and those trades-offs on which life history 

theory focuses on is relatively poorly understood. 

The effects of life-history trade-offs on competition are 

particularly interesting in the case of cryptic species (i.e., closely 

related species with high morphological similarity), as life-history 

traits may evolve uncoupled from morphology, they may promote 

niche differentiation and even they open the possibility of coexistence 
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mechanisms not based on niche differentiation (Zhang et al. 2004; 

Montero-Pau and Serra 2011). Additionally, life-history analysis is 

useful to understand why a competitor becomes dominant and how 

the species respond to the competitive dynamics. Coexistence of 

cryptic species is a challenging and puzzling phenomenon (Leibold 

and McPeek 2006) as they are expected to present high ecological 

overlap (i.e., niche conservatism) (Violle et al. 2011) given their lack 

of morphological differences and phylogenetic relatedness.  

In the present work, the response of two cyclically 

parthenogenetic cryptic species to their physical environment was 

investigated. The model organisms are two rotifer species –B. plicatilis 

and B. manjavacas– belonging to the cryptic Brachionus plicatilis complex. 

This study differs from prior studies performed with other species of 

this complex in one important respect: B. manjavacas and B. plicatilis 

cannot be identified on a morphologically basis (Campillo et al. 2005; 

Fontaneto et al. 2007), whereas other species of the complex show 

differences in shape and size (Ciros-Pérez et al. 2001b). Interestingly, 

in this last case niche differentiation has been demonstrated in both 

biotic (Ciros-Pérez et al. 2001a; Ciros-Pérez et al. 2004) and abiotic 

factors (Gómez et al. 1997). 

 Rotifers are one of the major zooplanktonic groups found in 

continental waters and represent a key component of the trophic 

webs of these habitats. B. plicatilis and B. manjavacas show high 

ecological overlap for biotic niche axes (Gabaldón et al. 2013). The 

two species co-occur in brackish ponds across the Iberian Peninsula 

(Gómez et al. 2002; Gómez et al. 2007), likely showing stable 
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dynamics (Montero-Pau et al. 2011). In temperate latitudes, the ponds 

where they inhabit are unsuitable for periods of varying predictability 

(Ortells et al. 2000), either because the pond dries or because seasonal 

conditions results in their exclusion from the water column. In these 

rotifers, re-colonisation of the water column takes place via the 

hatching of diapausing eggs stored in the sediment (Gilbert 1974). 

Brachionus species, like cladocerans, aphids and others rotifers, are 

cyclical parthenogens (De Meester et al. 2004). Asexual diploid 

females hatch from diapausing eggs, and after an initial phase of 

clonal propagation, sexual reproduction is induced by a density-

dependent infochemical produced by the rotifers themselves 

(Carmona et al. 1993; Stelzer and Snell 2003; Kubanek and Snell 

2008), although asexual reproduction does not completely cease. In 

the sexual phase, sexual females produce haploid eggs that develop 

into males if unfertilised or into diploid diapausing female embryos, 

referred to as diapausing or resting eggs, if fertilised. Diapausing eggs 

are embryos in an arrested stage of development that are able to 

survive through adverse environmental conditions, such as drought 

and high or low temperature for several years or decades. 

Thus, diapause is a key feature for the survival of these 

organisms, and encompasses different life history trade-offs. First, 

diapausing egg production involves diversion of resources from 

current, asexual proliferation to resting stages and future growth (e.g., 

Serra and King 1999). Diapause is costly in these animals because it 

involves the two-fold cost of sex (Maynard Smith 1971), diapausing 

eggs require more resources than subitaneous, asexual eggs (Gilbert 
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and Schröder 2004; Alekseev et al. 2007; Clark et al. 2012), and 

because diapausing eggs imply an obvious generation time increase. 

Thus, if an organism starts producing diapausing stages too early, 

before the end of the suitable period for growing, it will miss 

opportunities for its descendants to proliferate, while if too late, it will 

incur in the risk of dying before producing any diapausing stages. 

Second, diapausing egg survival, diapause duration, and hatching 

success are dependent on the allocation of resources into the 

diapausing egg, hence compromising the number of diapausing eggs 

produced or the timing –with more or less resources in the 

environment– when these eggs are produced. Third, diapause 

cessation implies risks for the hatchlings due to unpredictable 

suitability of the water column, but opens opportunities for fast 

proliferation. Thus, how to pattern the diapausing egg hatching 

implies a trade-off. Interestingly, both diapausing egg production (e.g., 

sex initiation without cessation of asexual proliferation in rotifers 

(Fussmann et al. 2007) and diapause termination are expected to be 

spread over time as bet-hedging strategy in unpredictably fluctuating 

environments (Cohen and Levin 1987; Ellner 1997).  

Diapausing eggs and processes involved in diapause are relevant 

to intraspecific competition in different ways. On one hand, 

competition dynamics in temporarily active populations could be 

better assessed focusing on diapausing egg production, since 

exclusion during the period of activity does not necessarily mean 

long-term exclusion. On the other hand, diapausing eggs are 

protected against competition, and such as stage is needed if 
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competing species are differentially favoured during different periods 

in a fluctuating environment (Chesson 2000). Finally, investment in 

diapause decreases the current rate of population proliferation and 

may affect the population dynamics of competing species during their 

growing season (Montero-Pau and Serra 2011). Thus, a complex 

interplay occurs because diapause, being a response to abiotic or 

biotic, predictable or unpredictable environmental fluctuations, has 

consequences for the competitive dynamics and long-term competitor 

coexistence. 

It has been suggested that coexistence of B. plicatilis and B. 

manjavacas is possible partly due to salinity fluctuations (Montero-Pau 

et al. 2011). The brackish ponds on the Iberian Peninsula where these 

cryptic species co-occur are characterised by environmental 

fluctuations (Comín et al. 1992). In the case of B. plicatilis and B. 

manjavacas, salinity is the only ecological factor known to differentially 

affect these species: B. manjavacas grows better at higher salinities 

(Montero-Pau et al. 2011). However, previous work has not 

thoroughly investigated how cryptic species with virtually identical 

biotic niches respond to major abiotic factors. Specifically, it is 

unknown, whether differential response to salinity and trade-offs 

resulting from a key life-cycle stage –namely, diapause– occurs, which 

is most relevant to understand how the long-term co-occurrence of 

these species is maintained. 

The objective in the present work was to test if B. plicatilis and 

B. manjavacas differentiate their niches in relation to two major abiotic 

factors: salinity and temperature. The focus was on their effect on 
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current growth rates, sexual reproduction and diapause patterns. 

Three experiments were performed to explore differences in (1) 

population growth rates and sexual reproduction ratio under different 

salinities and temperatures, (2) hatching proportion and hatching 

pattern of diapausing eggs produced and hatched under three 

salinities, and (3) degradation pattern of diapausing eggs produced 

under the same three salinities. The aim was to assess how these two 

important abiotic variables affect niche differentiation of B. plicatilis 

and B. manjavacas in ways that may allow for the rotifer species to co-

occurrence. 

Materials and Methods 

Rotifer isolation, species identification and culture conditions 

The experiments were carried out with B. plicatilis and B. manjavacas 

clones founded from hatchlings from diapausing eggs. Because 

rotifers can grow asexually, clonal lines can be established starting 

from a single female. Diapausing eggs were isolated from sediment 

samples collected in June 2010 with a Van Veen grab (Eijelkamp 

Agrisearch Equipment) from the upper sediment layer of Salobrejo 

Lake (Eastern Spain: 38º 54.765' N, 1º 28.275' W). Samples were 

taken in different points of the lake and thoroughly mixed. Sediment 

was stored in darkness at 4ºC during three months before diapausing 

egg isolation and hatching induction. Hatchlings were identified at 

species level by PCR-RFLP (for isolation and identification details, 

see Gabaldón et al. 2013). For each rotifer species, 25 clonal lines 

were established. The clones were maintained in stock cultures at 10 g 
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L-1 salinity, at 20ºC and weekly fed the unicellular microalga Tetraselmis 

suecica (see Gabaldón et al. 2013 for details).  

The pre-experimental and experimental rotifer culture media 

were the same as described for the stock cultures, but salinity was 

fixed at the indicated experimental values (see below). In the third 

experiment, in which rotifers were grown under several different 

salinity conditions, inert T. suecica was used as food. Using inert algae 

avoids the problem of growing T. suecica at salinities outside of its 

optimum and ensures a constant quality of the food provided in the 

different salinity treatments. Inert algae have been used to grow 

efficiently Brachionus (Yamasaki et al. 1989; Lubzens et al. 1995). To 

obtain inert algae, cultures of T. suecica were grown at 27.5 g L-1salinity 

and 20° C, which are intermediate conditions within the range of 

experimental conditions; and then were concentrated by 

centrifugation for 11 min at 1,500 r.c.f. (relative centrifugal force) and 

maintained at -80° C until use. 

Effect of salinity on the hatching patterns of diapausing eggs 

Differences between B. plicatilis and B. manjavacas in the hatching 

success of diapausing egg were tested in relation to salinity. The 

hatching of diapausing eggs produced at three different salinities 

(salinity for diapausing egg formation; 8, 16 and 24 g L-1) and induced 

to hatch at the same three salinities (salinity for diapausing egg 

hatching) was recorded for the two species (18 experimental 

combinations: 3 egg-producing salinities × 3 egg-hatching salinities × 

2 species).  
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Obtaining sufficient diapausing eggs for the experiments 

required the culture of rotifers at a high density in larger volumes than 

used for the stock cultures. For this purpose, the clonal rotifer stock 

cultures were gradually increased in volume. First, each stock culture 

was transferred to 250 mL of culture medium with 12 g L-1 salinity 

and grown at 20° C, under constant illumination and agitation in an 

orbital incubator shaker at low speed (50 rpm). A salinity of 12 g L-1 

was selected because this was an intermediate value among the three 

experimental salinities. After 7 days, six pre-experimental multiclonal 

populations (2 species × 3 salinities for egg formation) were 

established by combining females from the 25 stock clones. About 

10,000-15,000 individuals from each clone were transferred to 2 L of 

fresh culture medium with salinities of 8, 16 and 24 g L-1. After three 

days of acclimation, the pre-experimental populations were 

transferred to 5 L of culture medium to establish experimental 

populations under the corresponding conditions. As diapausing eggs 

tend to sink, to avoid accidental transfer of diapausing eggs, only the 

upper part of the culture was transferred. The experimental cultures 

were allowed to grow and produce diapausing eggs for 10 days. Then, 

the diapausing eggs accumulated at the bottom of the cultures were 

isolated. This collection of eggs was split to perform two experiments: 

the experiment described in this subsection and the experiment 

described in the next subsection.  

In the first experiment, the eggs were kept at the same salinity 

as during egg formation, in the dark and at 4°C for one month to 

ensure the completion of the required period of egg dormancy 
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(Hagiwara and Hino 1989). After this period, diapausing eggs were 

individually isolated in 96-multiwell dishes (NuncTM) and induced to 

hatch in water with salinities of 8, 16 or 24 g L-1 at 25° C under 

constant illumination. For each of the 18 experimental combinations 

(2 species × 3 salinities for egg formation × 3 salinities for egg 

hatching), 40-60 eggs were assayed (total: 960 eggs). Diapausing eggs 

were checked every 24 hours, and hatchings were recorded for 17 

days.  

The effects of the species, salinity for diapausing egg formation 

and salinity for diapausing egg hatching on the proportion of 

diapausing eggs that hatched were analysed using a generalised linear 

model (GLM) with binomial errors and a logit link function. The 

goodness of fit of the model was assessed with a Chi-square test. 

These analyses were carried out using SPSS statistical software 

(version 19.0, IBM Corp R 2010). The effects of the species, salinity 

for egg formation and salinity for egg hatching on the timing of 

diapausing egg hatching were tested using a robust three-way 

ANOVA, performed with R statistical software, v. 2.12.1 (R 

Development Core Team, 2010), using the functions of the WRS 

package (Wilcox RR 2010). Robust ANOVA was used due to the lack 

of homogeneity of variances.  

Effect of salinity on diapausing egg deterioration 

The deterioration of the diapausing B. plicatilis and B. manjavacas eggs 

produced at three different salinities (8, 16 and 24 g L-1) was 

monitored for one year. Diapausing eggs were exposed to outdoor 
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temperature conditions to mimic the conditions that the eggs 

experience in lake sediments. 

Diapausing eggs from the two species produced at three 

salinities and collected as described in the previous subsection were 

used. For each experimental combination (2 species × 3 salinities for 

egg formation), 384 eggs were individually transferred to 96-multiwell 

dishes (NuncTM) containing 200 µL of 30 g L-1 saline water and 

maintained in wet chambers outdoors in the dark. High salinity and 

darkness were used to prevent egg hatching (Pourriot and Snell, 

1983). The diapausing eggs were checked weekly for the first month, 

then monthly during the next 5 months and, finally, in the 9th and 12th 

months (11 observations in total). As light is a cue that induces 

hatching (Hagiwara et al. 1985) special care was taken during 

monitoring to minimise the exposure of the eggs to light. During each 

assessment, the diapausing eggs were classified according to their 

deterioration status, based on the proportion of the egg occupied by 

the embryo: Type I if the proportion occupied by the embryo is more 

than 100%; Type II if the proportion is more than 75% but less than 

100%; Type III if the proportion is between 50 and 75%; Type IV if 

the proportion is between 25 and 50%; and Type V if the proportion 

is less than 25% (García-Roger et al., 2005). The relative contribution 

of each egg type to hatchlings found by García-Roger et al. (2005) 

was: Type I= 78.5 %, Type II= 20.4 %, Type III= 1.1%, Type IV and 

V= 0.0 %. In order to have a reasonable number of observations per 

category, in the subsequent statistical analyses these five egg types 
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were grouped into viable (Type I and II) and degraded (Type III, IV 

and V).  

The effects of the species and the salinities on the degradation 

status of the diapausing eggs were tested using a generalised linear 

model (GLM) with a multinomial distribution and logit link function. 

The goodness of fit of the model was assessed with a Chi-square test. 

The survival functions (lx) for diapausing eggs were estimated for each 

rotifer species and salinity for egg formation in order to analyse the 

time to diapausing egg degradation. Here, survival means that the egg 

conserved the Type I or II status (i.e., viable eggs). Diapausing eggs 

that remain without degrading at the end of the experiment were 

treated as censored data. Despite the high salinity and dark conditions 

imposed on eggs, it was observed that some diapausing eggs hatched 

during the experiment (see the Results section), so these data were 

also considered censored. To compare survival curves between the (1) 

species and (2) the salinity treatments within each species, two non-

parametric tests (log-rank and Breslow tests) were performed. The 

log-rank test assigns equal importance to all observations, while the 

Breslow test gives more weight to the initial part of the survival curve 

(Cox and Oakes, 1984). Statistical analyses were carried out using 

SPSS statistical software (version 19.0, IBM Corp R 2010).  

To test whether the hatching and degradation rates were 

related, Pearson's correlation coefficients between the two variables 

were calculated for each species. Additionally, the effects of the 

rotifer species and hatching rate on the degradation rate of the 

diapausing eggs were tested via ANCOVA. These statistical analyses 
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were carried out using R statistical software, v. 2.12.1 (R 

Development Core Team 2010). 

Effects of salinity and temperature on growth rates 

The combined effects of seven different salinities (5, 10, 20, 30, 40, 50 

and 60 g L-1) and three temperatures (15, 20 and 25° C) on both the 

intrinsic population growth rate and sexual investment (i.e., the 

proportion of females reproducing sexually) in the B. plicatilis and B. 

manjavacas populations were studied. Pre-experimental multiclonal 

populations were established by combining females from the 25 stock 

clones in 250 mL flasks (approx. 1 female mL-1 per clone). In the first 

step, these populations were grown for one week under intermediate 

conditions of salinity (27.5 g L-1) and temperature (20° C), with 

constant illumination to obtain a high rotifer density. In the second 

step, these multiclonal populations were used to initiate pre-

experimental cultures at the experimental salinity and temperature 

conditions by transferring 200 rotifers that were randomly selected 

from the multiclonal populations to 100 mL flasks (42 cultures: 2 

species × 3 temperatures × 7 salinities). These pre-experimental 

cultures were fed inert algae T. suecica to a density of 250,000 cells mL-

1 every three days. The rotifers were allowed to grow for 10 days 

(approx. 3 generations) for acclimatisation. Then, experimental 

cultures were initiated by randomly transferring 20 females from each 

pre-experimental culture to Petri dishes with 50 mL of medium 

containing 100,000 cells mL-1 of inert algae (same salinity and 

temperature as in the pre-experimental conditions). Three replicate 
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Petri dishes were included in the experiment (126 cultures: 2 rotifer 

species × 3 temperatures × 7 salinities × 3 replicates). Pre-

experimental and experimental multiclonal cultures fed with inert 

microalgae were maintained under constant agitation in an orbital 

shaker (50 rpm) in the dark to avoid algal degradation. Both pre-

experimental and experimental food concentrations were chosen to 

be above the daily clearance rate of rotifers during the period of 

culture, so food was not a limiting factor. 

After 4 days of growth, the cultures were fixed with 0.3 % 

Lugol solution, and rotifers were counted. The following data were 

recorded: (1) the number of non-ovigerous females; (2) the number 

of ovigerous females, classified based on the types of eggs they were 

carrying (Carmona et al., 1995) as asexual, unfertilised sexual or 

fertilised sexual; (3) the number of eggs (asexual, unfertilised sexual 

and fertilised sexual) both carried and detached; and (4) the number 

of males. Using these counts, the observed growth rate (robs) and 

sexual reproduction ratio (i.e., the fraction of sexual females to total 

females produced) at different salinities and temperatures was 

calculated. Population growth rate was calculated as robs = ln (Nt / N0) 

/ t, where Nt and N0 are the number of females at the beginning and 

after 4 days of incubation, respectively, and t is the time in days. The 

sexual ratio was calculated as the proportion of ovigerous females that 

were sexual.  

Additionally, the potential growth rate (rpot) was calculated 

(Montero-Pau et al. 2014). The rpot is defined as the growth rate that a 

population would have if all of its females were reproducing asexually. 
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rpot is a performance measure that brings to a single metric the 

investment in current population growth and in sex and diapause. 

This makes possible to compare the efficiency of converting 

resources into offspring and survival (Montero-Pau et al. 2014), 

instead the current proliferation rate. This relevance is that it 

neutralizes the effect of the diapausing investment strategy, which 

might have evolved by a suit of factors not related to the 

physiological efficiency of a genotype in the abiotic conditions of 

interest. 

A robust three-way ANOVA was carried out to analyse the 

effects of the temperatures, salinities and rotifer species on rpot. To test 

whether the investment in sex, i.e., the sexual reproduction ratio, 

responded to population density differently depending on species, an 

ANCOVA was performed independently for each experimental 

temperature. Both analyses were performed with R statistical 

software, v. 2.12.1 (R Development Core Team 2010), using the 

functions of the WRS package (Wilcox RR 2010) for the robust three-

way ANOVA. 

Niche overlap 

Interspecific abiotic niche overlap was estimated based on the studied 

life-history traits using the analytical approach of Geange et al. (2011). 

This method allows the consideration of multiple niche axes, each of 

which is characterised by a different type of data, and computes a 

unified niche overlap analysis. The hatching success, degradation ratio 

and rpot datasets were used to calculate the abiotic niche overlap 
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between B. plicatilis and B. manjavacas along the 42 axes detailed in Fig. 

3.5. Following Geange et al. (2011), niche overlap indexes (NO) were 

calculated for each dimension, and a single unified niche overlap 

index was then obtained by averaging the niche overlap along each 

axis. NO ranges from 0 (disjoint niches) to 1 (complete niche 

overlap). For the unified niche overlap index, data on eight biotic axes 

from a previous study by Gabaldón et al. (2013) related to clearance 

rates, susceptibility to predation and ability to withstand starvation 

were included. 

To assess the statistical niche differences between species, null 

model permutation tests were performed to test whether the niche 

overlap along each axis and the mean niche overlap were significantly 

lower than expected by chance (Gotelli and Graves 1996; Geange et 

al. 2011). To correct for multiple comparisons, a sequential 

Bonferroni adjustment (Quinn and Keough 2005) was performed. 

The niche overlap calculations and associated null model tests were 

performed using R version 2.12.1 (R Development Core Team 2010) 

with the source code provided as supporting information in Geange 

et al. (2011). 

Results 

Effect of salinity on the hatching patterns of diapausing eggs 

Diapausing B. manjavacas eggs showed a relatively synchronous pattern 

of hatching, with most of the hatchings occurring in the first 6 days 

of the experiment (Fig. 3.1). In contrast, the diapausing eggs of B.  
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Figure 3.1. The hatching dynamics of the diapausing eggs of B. plicatilis 

and B. manjavacas formed and hatched at 8, 16 and 24 g L-1 of salinity. 

 

plicatilis continued hatching for up to 12-17 days of incubation. For 

both rotifer species, the synchrony of the hatching pattern increased 

with an increase in the salinity for egg formation. Mean time to 

hatching for diapausing eggs of both species (Table 3.1) showed 

statistically significant differences (Table 3.2), the values being 4.08 

days for B. plicatilis and 1.6 days for B. manjavacas. Both salinity for egg 

formation and salinity for egg hatching were statistically significant as 
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well as the interaction of species with both salinity for egg formation 

and salinity for egg hatching. A consistent trend was that hatching 

was delayed with an increased salinity for diapausing egg hatching, 

with the exception of eggs formed at the highest salinity, which 

showed a rather flat response (Table 3.1). High salinities during egg 

formation decreased significantly the time to hatching in B. plicatilis. 

Interactions between salinity for egg formation and salinity for egg 

hatching and the triple interaction were not statistically significant.  

GLM analysis showed that the hatching proportion (Table 3.1) 

was significantly affected by the salinity for diapausing egg formation 

and the salinity for hatching, as well as by species × salinity for egg 

formation and species × salinity for egg hatching interactions (Table 

3.2). However, statistical differences were not found between species, 

and both the interaction of salinity for egg formation × salinity for 

egg hatching and the triple interaction were not significant. Globally, 

the proportion of hatching of both species was higher at lower 

salinities for hatching. However, the salinity for diapausing egg 

formation had a species-specific effect. B. plicatilis presented a higher 

hatching proportion at higher salinity for egg formation, except when 

salinity for egg hatching was 8 g L-1, in which case the hatching 

proportion at 24 g L-1 for egg formation was lower than at 16 g L-1. 

Instead, B. manjavacas presented its highest hatching proportion at 

lowest tested salinity for egg formation.
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Table 3.2. P-values after three-way robust ANOVA on the mean time to 

hatching (days) and after GLM analysis on the proportion of hatching 

(%) of diapausing eggs of B. plicatilis and B. manjavacas formed and 

hatched under 8, 16 and 24 g L-1 of salinity.  

 Mean time 

to hatching 

Hatching 

proportion 

Species <0.001 0.794 

Salinity for diapausing egg formation <0.001 0.004 

Salinity for diapausing egg hatching 0.002 <0.001 

Species × Salinity for diapausing egg 

formation 
0.001 <0.001 

Species × Salinity for diapausing egg 

hatching 
0.022 0.027 

Salinity for diapausing egg formation 

× Salinity for diapausing egg hatching 
0.14 0.169 

Species × Salinity for diapausing egg 

formation × Salinity for diapausing 

egg hatching 

0.1 0.989 

 

 
 

Effect of salinity on diapausing egg deterioration 

Diapausing B. manjavacas eggs began to degrade during the first week 

of incubation, earlier than those of B. plicatilis, which did not show a 

notable deterioration until the 180 days of incubation (Fig. 3.2). Once 

deterioration began, the diapausing eggs of both species began to 
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Figure 3.2. Cumulative proportions of the different diapausing egg 

status of B. plicatilis and B. manjavacas along one year of exposure to 

natural conditions. Unhatched eggs were classified into five types (I-V) 

according to their degradation following the embryo-size criterion 

(García-Roger et al., 2005). The relative contribution of each egg type to 

hatchlings found by García-Roger et al. (2005) was: Type I= 78.5 %, 

Type II= 20.4 %, Type III= 1.1%, Type IV and V= 0.0 %. 
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degrade at a high rate. According to the GLM analysis, the 

deterioration response is dependent upon the interaction between the 

species and salinity for diapausing egg formation (P < 0.001). The 

survival curves of diapausing B. plicatilis and B. manjavacas eggs formed 

under different salinity conditions differed remarkably between the 

species, and the log-rank and Breslow tests showed this difference to 

be statistically significant (P < 0.001). Both non-parametric tests 

performed independently for each species also revealed that 

salinityfor egg formation affected the survival schedule of diapausing 

eggs (P = 0.011 and 0.010 for B. plicatilis and P = 0.001 and 0.007 for 

B. manjavacas; log-rank and Breslow test, respectively).  

Although diapausing eggs were incubated in the dark to prevent 

the induction of hatching, 520 of the 2295 eggs included in these 

experiments hatched during the time course of the experiment (one 

year). No hatching of B. plicatilis eggs occurred within the first two 

months of incubation, with most of the hatchings for this species 

occurring after 180 days. In contrast, diapausing B. manjavacas eggs 

only hatched in the first 90 days of the experiment. For B. plicatilis the 

mean time to hatching (245, 261 and 241days for 8, 16 and 24 g L-1, 

respectively) was nearly coincident with the mean deterioration time 

(260, 257 and 259 days for 8, 16 and 24 g L-1, respectively). This 

coincidence was not as clear for B. manjavacas (mean times to hatching 

were 146, 82 and 69 days and the mean deterioration times were 89, 

89 and 124 days for 8, 16 and 24 g L-1, respectively). For both rotifer 

species, there was a correlation between the daily hatching rate 

(hatchings per egg per day) and deterioration rate (eggs deteriorated  
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Table 3.3. P-values after ANCOVA on degradation rate of diapausing 

egg of B. plicatilis and B. manjavacas produced under 8, 16 and 24 g L-1 of 

salinity and using egg hatching rate as a covariate. Data were collected 

during one year of monitoring.  

 P 

Species 0.001 

Hatching rate <0.001 

Species × Hatching rate 0.49 

 

 
 

per egg per day). The Pearson's correlation coefficients were 0.89 and 

0.64 for B. plicatilis and B. manjavacas, respectively (df = 28, P < 0.0001 

for both species). According to the ANCOVA with the hatching rate 

as a covariate, the deterioration rate was dependent on the species, 

and the correlation between the hatching and deterioration rates was 

confirmed, although this analysis did not detect a significant effect of 

interaction with the species factor on this correlation (Table 3.3). 

Effect of salinity and temperature on growth rates 

The observed growth rates (robs) and sexual reproduction ratios of the 

B. plicatilis and B. manjavacas differed when populations grown under 

the different experimental salinity and temperature combinations (Fig. 

3.3). Within the tested ranges, temperature had a positive effect, and 

salinity tended to have a negative effect on robs. At 15° C, the robs values 

for both species decreased approximately linearly with salinity, while 

at the other tested temperatures, robs tended to peak at an intermediate 

salinity, but in the low part of the tested range. Regardless of the 
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Figure 3.3. Growth rates and sexual reproduction ratios of the B. 

plicatilis and B. manjavacas populations grown under seven salinities (5, 

10, 15, 20, 30, 40, 50 and 60 g L-1) and three temperatures (15, 20 and 

25º C). Left panels: observed intrinsic growth rate and sexual 

reproduction ratio. Right panels: potential intrinsic growth rates. 

Vertical bars are the lower and upper 95% confidence intervals. 

. 
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global effects of these abiotic conditions, B. manjavacas always 

exhibited slightly higher growth rates than B. plicatilis. The mean 

sexual reproduction ratios were between 0 and 0.13 for both rotifers. 

In the range of 10-20 g L-1, where the two species showed very close 

robs values, B. plicatilis exhibited higher sexual reproduction ratios than 

B. manjavacas at 20 and 25°C. B. plicatilis consistently exhibited a higher 

rpot than B. manjavacas within this salinity and temperature intervals 

(Fig. 3.3), and this difference became greater as the temperature 

increased. Robust ANOVA showed that the species, temperature and 

salinity as well as their double and triple interactions had an effect on 

rpot (all P < 0.02).  

A positive relationship between sexual reproduction ratio and 

population densities of both rotifer species was observed, with B. 

plicatilis tending to present higher sexual reproduction ratios than 

B.manjavacas (Fig. 3.4). According to the ANCOVAs for the sexual 

reproduction ratios applied separately to each temperature (covariate: 

population density), the sexual reproduction ratio exhibited the 

Table 3.4. P-values of ANCOVAs on sexual reproduction ratio of B. 

plicatilis and B. manjavacas growing under 15, 20 and 25ºC using population 

density as a covariate.  

  Temperature (ºC)  

 15 20 25 

Species 0.913 0.967 0.002 

Population density 0.003 <0.001 <0.001 

Species × Population density 0.912 0.598 <0.001 
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Figure 3.4. The relationship between the sexual reproduction ratio and 

the population densities of B. plicatilis and B. manjavacas rotifer species, 

separately for the three experimental temperatures (data for the 

different salinities are not distinguished). Lines are linear regressions 

relating sexual reproduction ratios to population densities for each 

species and temperature. 
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expected significant relationship with population density (Table 3.4). 

At 15 and 20º C, the species had no significant effect on the sexual 

reproduction ratio or the relationship between sexual reproduction 

and population density. In contrast, at 25º C, B. plicatilis exhibited a 

significantly higher sexual reproduction ratio than B. manjavacas, with 

the former species showing a significantly stronger relationship 

between the sexual reproduction ratio and population density. 

Niche overlap 

The niches of B. plicatilis and B. manjavacas were found to be different 

(mean niche overlap= 0.51, P < 0.001) according to the niche overlap 

indexes (NO) between both species for abiotic axes studied in the 

present work and the biotic axes studied in Gabaldón et al. (2013) 

(Fig. 3.5). After sequential Bonferroni correction, the highest NO 

values were those associated with the hatching proportion axes, 

except for the hatching proportion of diapausing eggs formed at 8 g 

L-1 and hatched at 24 g L-1 and those both formed and hatched at a 

concentration of 16 g L-1. Additionally, the NO values showed that B. 

plicatilis and B. manjavacas had similar niches regarding the axes for 

diapausing egg hatching timing, except for the three axes 

corresponding to the hatching timing of eggs formed at 8 g L-1. The 

NO values from the diapausing egg degradation axes showed niche 

differentiation between the two species. For axes associated with rpot, 

the NO values varied and were dependent on temperature: at higher 

temperatures, more of the niche axes showed low overlap between 

species. 
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Figure 3.5. Niche overlap indexes (NO) between B. plicatilis and B. 

manjavacas. From this study: H(I,J) is based on the hatching fate of each 

single diapausing egg (binary data), and I the salinity for egg formation 

and J the salinity for egg hatching; HD(I,J) is based on the hatching day of 

each single diapausing egg (categorical data; I and J as above); D(I) is based 

on the degradation status of each diapausing egg after one year of 

maintenance (categorical data; I as above); rpot(I,J) is based on the 

potential intrinsic growth rate at temperature I and salinity J (continuous 

data). From (Gabaldón et al., 2013): Cr_ts and Cr_na are based on the 

clearance rate for T. suecica and Nannochloris atomus, respectively 

(continuous data); DeprF are DeprM are based on the susceptibility to 

predation by copepod females and by copepod males, respectively (binary 

data); Starv(I) is the potential intrinsic growth rate after starvation, and I 

the hours of starvation (continuous data). Axis with statistically different 

niches, as identified by null model tests (P <0.001), after the Bonferroni 

correction are indicated by asterisks. 
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Discussion 

Co-occurrence of cryptic species is a common phenomenon 

(Bickford et al. 2007), and the rotifers B. plicatilis and B. manjavacas are 

a good example (Gómez et al. 2007). In these highly similar rotifers, 

the niche differentiation based on biotic factors (predation and 

resources) is low (Gabaldón et al. 2013), and their morphological 

similarity therefore translates into ecological similarity for these niche 

axes. Thus, the physical environmental factors addressed in the 

present study (temperature and salinity) were good candidates for 

playing a role in niche differentiation. In fact, differentiation between 

B. plicatilis and B. manjavacas based on salinity has been previously 

suggested by experimental and field observations (Montero-Pau et al. 

2011). The fluctuations of temperature and salinity in the natural 

habitats where these species co-occur are significant (Comín et al. 

1992), and each species might therefore have the opportunity to be 

competitively dominant in a different period. In this work, the 

genotypes of B. plicatilis and B. manjavacas used were from the same 

pond to avoid a possible confounding effect due to local adaptation 

(Campillo et al. 2010). It was observed that these populations 

responded differentially to salinity and temperature in terms of several 

fitness components. Moreover, they consistently differed regarding 

life-history traits involved in diapause, from the investment in sex to 

the hatching of diapausing eggs. Differentiations of this kind have 

been invoked as mechanisms allowing stable species coexistence 

(Chesson 2000; Montero-Pau and Serra 2011). They are expected to 
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work as stabilizing processes on the competition of these species, 

which on the other hand, show similar fitness, so that even weak 

stabilization might be sufficient to allow stable coexistence if it is 

actually occurring in the wild. 

Some of the observed patterns are shared by the two species to 

some extent. First, our results show that the diapausing eggs of these 

species undergo significant levels of short-term deterioration. For 

instance, 37.6-94.2 % eggs deteriorated in less than one year. The high 

ratio of deteriorated diapausing eggs detected in our experiment for 

these species is in agreement with the values found in the sediment 

egg bank of their habitat, Salobrejo Lake, where 88% of the eggs were 

identified as deteriorated (E.M. Garcia-Roger, personal 

communication). The clones studied here inhabit shallow ponds, 

which may dry out, so that our experimental conditions mimic the 

natural conditions at least of some dry years. This means that survival 

through an adverse period, from a growing season to a future time, 

might require a large investment in the production of diapausing eggs 

and, hence, in sexual reproduction. The correlation between hatching 

and deterioration rates was clear for B. plicatilis and suggests that 

deterioration is more likely to occur during embryonic development 

once diapausing egg hatching is induced and embryonic 

developmental arrest ends. The disruption of diapause could be 

associated with an increase in egg coat permeability, as observed in 

other taxonomic groups (e.g., Perry et al. 1983), which might make 

the embryo more vulnerable. Moreover, diapausing eggs are the result 

of sexual reproduction, and during the development of the embryo, 
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new gene combinations are expressed for the first time in the 

individual. Thus, possible deleterious effects of these combinations 

would occur at this time. Inbreeding depression has been found to be 

relatively stronger in terms of diapausing egg viability (Tortajada et al. 

2009), which determines the hatching of diapausing eggs, the first 

step of the asexual proliferation phase in the rotifer lifecycle. Our data 

also indicate how costly sexual reproduction can be, as sex can reduce 

the finite growth rate (i.e., exp (r)) of clonal proliferation by up to 

38.2 %.  

Second, significant differences in diapausing egg quality 

(degradability and hatchability) related to salinity conditions during 

diapausing egg production were found. In rotifers, the sexual phase of 

the life cycle, which is the phase involved in diapausing egg 

production, can be more sensitive to environmental change than the 

asexual phase (Snell and Carmona 1995; Snell et al. 1998). In 

agreement with this observation, our findings emphasise that the life-

history traits involved in diapause are the most relevant to 

understanding the success of populations and their long-term 

persistence.  

Third, regardless the two studied species have been reported to 

be active in the water column at salinities above 45 g L-1 salinity 

(Montero-Pau et al. 2011), salinity has an adverse effect on the growth 

of these animals, except close to the mesohaline range. The growth 

rate, investment in sex and diapausing egg hatching decline with 

salinity in the range explored in the present study. One caveat 

regarding hatching is that salinity might act as a cue rather than a 
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constraining physical condition. If, as frequently observed (Gómez et 

al. 1995; Montero-Pau et al. 2011), salinity tends to increase during 

the growing season, low salinity might promote exit from diapause 

because it indicates that a suitable season has begun (e.g., heavy 

rainfall has refilled the lake), even if the optimal salinity occurring in 

that season is not the initial salinity. Nevertheless, the negative effect 

of salinity on performance is not surprising. Similar to many other 

invertebrates dwelling in saline lakes, both studied rotifer species are 

likely osmoregulators (Lowe et al. 2005), which entails metabolic 

costs. In fact, saline inland lakes, even being 47 % of all lakes (Wetzel 

2001), show low species richness, which is typical in adverse 

conditions.  

In contrast to these shared tendencies, the cryptic species B. 

plicatilis and B. manjavacas showed remarkable differences in their life-

history traits related to diapause. First, B. plicatilis tended to shows a 

greater propensity for sexual reproduction, although its higher 

investment in sexual reproduction in response to population density 

was only statistically significant at 25 ºC. As suggested by the 

differences between potential and actual growth rates, this pattern 

likely implies incurring in a cost by decreasing asexual proliferation. 

Such a high investment is expectable to evolve in response to 

environment uncertainty (Serra and King 1999; Fussmann et al. 2003) 

or with growing seasons that are short due to, for example, early 

deterioration of the physical environment or competitive exclusion. 

Second, the females of this species produce diapausing eggs that show 

lower degradation rates. Diapausing eggs are more costly than 
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subitaneous eggs (Gilbert and Schröder 2004; Alekseev et al. 2007; 

Clark et al. 2012). If this extra cost is related to keeping viability, then 

it is expectable more resistant diapausing eggs to be associated to 

fewer egg productions or to produce them at better environmental 

conditions, likely occurring early in the growing season. As the latter 

causes decreased environment exploitation, both cases imply a cost. 

Third, the diapausing eggs of B. plicatilis present a hatching pattern 

that is extended in time. This last feature has been proposed to be an 

opportunistic strategy associated with unpredictable environments 

(Pourriot and Snell 1983). It is reasonable to infer that if eggs have a 

large time window in which to hatch, then this strategy will require 

diapausing eggs to be viable for long periods with low degradation 

rates. All these features fit in what is expectable for an opportunistic 

species. 

In another study on B. plicatilis and B. manjavacas, Montero-Pau 

et al. (2011) observed a subtle differential effect of salinity on 

population growth and differences in the temporal distribution of 

these species in the water column, this temporal distribution being 

differentially associated with changes in salinity. Consequently, these 

authors suggested that salinity is a factor allowing these species to 

differentiate their niches. Accordingly, our robust ANOVA results 

showed that the potential growth rate of B. plicatilis was found to be 

more negatively affected by salinity than that of B. manjavacas (species 

× salinity interaction statistically significant) and that temperature 

significantly interacts with salinity in determining the growth rate. 

Additionally, high salinity conditions during diapausing egg formation 
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appear to have a greater effect on the egg-hatching pattern of B. 

plicatilis than on that of B. manjavacas. In agreement with this 

observation, a dramatic decrease of mean niche overlap between 

these species was found when temperature and salinity were added to 

a number of biotic factors as axes for computing the NO index (from 

NO= 0.78 to NO= 0.51 (Gabaldón et al. 2013)). However, on the 

basis of the observed growth rates, there is no range of temperature 

and salinity combinations under which B. plicatilis grows faster than B. 

manjavacas, although these rates were very similar at the lowest tested 

salinity. Nevertheless, at the two highest temperatures tested, the 

higher performance of B. plicatilis at low salinity is clear when the 

investment in sex is taken into account and the comparison between 

species is based on the potential growth rates (rpot). In other words, if 

neither species invests in sex, then B. plicatilis will exhibit higher clonal 

proliferation rates than B. manjavacas at low salinities, whereas the 

opposite pattern will occur at high salinities. 

Our results show that the trade-off between diapause and 

current population growth is relevant in these species. B. plicatilis 

consistently showed a slightly lower observed growth rate (robs) than B. 

manjavacas at low salinity. Thus, the prediction is that, in absence of 

sex and under a hypothetical scenario of constant low salinity, B. 

plicatilis, which has a higher performance (higher rpot), would be able to 

exclude B. manjavacas. Notice that a difference in growth rate of 0.1 

days-1 would result in a two-fold population density difference 

between species in a week. By contrast, when the demographic cost 

of the higher investment in sex of B. plicatilis is considered, the 
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expectation is that B. manjavacas would have an opportunity to 

increase according with the mechanism modelled in Montero-Pau and 

Serra (2011). Nevertheless, these assumptions are unlikely; the 

populations studied here inhabit in a highly variable environment, and 

they do always invest in sex. The inland pond where they were 

isolated, similar to many other ponds in the same region of the 

Iberian Peninsula, floods and dries out relatively regularly, hence 

determining the hydroperiod (length of the inundation phase) and 

causing variable salinity. Frequently, rainfall occurs in the region at 

only a few times, seldom in summer, and in large amounts 

(Domínguez-Castro et al. 2008). In dry years, the salinity is high for 

long periods, such as the period studied by Montero-Pau et al. (2011), 

and especially during the hot season due to evaporation, while in years 

that are relatively wet, a period of low, but increasing salinity from the 

cold to the hot season, is expected to occur. This period of low 

salinity offers a window of opportunity for B. plicatilis, given its higher 

performance at low salinities. However, as suggested by our findings 

B. plicatilis, rather than proliferating at higher rates than B. manjavacas 

would use its higher performance during the low salinity periods to 

produce diapausing eggs, which would then be stored in the sediment. 

These eggs appear to be suited to resist long diapause periods and to 

bet-hedge their hatching as a way to explore and take advantage of 

suitable low-salinity periods, an adaptive strategy if periods of low 

salinity will be scarce. In summary, B. plicatilis would represent an in-

time fugitive species in this type of ecological system, and in the 

trade-off between leaving diapause synchronically (i.e., trusting the 
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cues for habitat suitability), or extending diapausing egg hatching at a 

lower rate over the growing season, the latter was selected for. 

Given the strong similarity between B. plicatilis and B. manjavacas, 

is expected that they share major biological features in a greater extent 

than co-generic species. Life-history divergence has been previously 

documented within genus (Reznick et al. 2000). It is likely that the 

evolution of the resource allocation patterns shaping life histories are 

not strongly internally constrained because such evolution implies a 

diversion of resources into different sinks, rather than an increase of 

the resources acquired or the acquisition of a new function. The 

crucial idea here is that all relevant fitness components cannot be 

maximised simultaneously and that increasing one component results 

in a trade-off with other components. Thus, different species with 

very similar biology may evolve different compromises among life-

history traits if they match with different niches. Hence, a special 

attention should be paid to life histories when studying the ecological 

divergence of closely related species. 

According to phylogeographic studies, B. plicatilis and B. 

manjavacas have co-occurred in this region of the Iberian Peninsula 

since the last glaciation, 2.5 million years ago (Gómez et al. 2000; 

Gómez et al. 2007), and paleolimonological data suggest that these 

species can co-occur in the same pond for at least decades (Montero-

Pau et al. 2011). As these two rotifers show very similar 

performances, long-lasting transient exclusion of the inferior 

competitor or random walks cannot be ruled out. However, stable 

coexistence based on niche temporal differentiation is a plausible 
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explanation. If so, this coexistence might be based on time 

fluctuations or in spatial variation, although phylogeographic studies 

suggest that effective migration between ponds is rather low (De 

Meester et al. 2002; Gómez et al. 2007). A storage effect (Chesson 

2000) might be functioning because (1) the physical environment 

experienced by these species fluctuates;(2) these species are 

specialised for this environment; and (3) the variance of the 

diapausing egg densities in the sediment layers shows the expected 

signatures if the rare species is relatively free of competition, i.e., 

higher variance in the diapausing egg recruitment of the rare species 

(Montero-Pau et al. 2011). Moreover, density-dependent investment 

in sex, rather than mediating coexistence in the water-column 

(Montero-Pau and Serra 2011), appears to function as a way to 

effectively exploit short, unpredictable, beneficial periods. This would 

reinforce the storage effect by producing a stage of the lifecycle free 

of competition, i.e., the diapausing egg stage. Accumulative evidence 

makes this hypothesis a strong candidate to explain the long-lasting 

co-occurrence of these very similar species, and thus worthy of 

further investigation. This study has shown that salinity and 

temperature do decrease dramatically niche overlap, but other 

unstudied factors may work similarly. 

Classical theories of niche differentiation have stressed the 

correlation between the niche and morphology (e.g., Fenchel 1975). 

However, the consistent discovery of cryptic species challenges this 

classical view, creating an opportunity for the development of new 

stable coexistence mechanisms and for the use of these species as 
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model organisms to test the limits of the ecological theory. It would 

be interesting to investigate if cryptic species are prone to differentiate 

their niches on abiotic factors, rather than on biotic ones, more 

related to resources acquisition and anti-predator defence, and 

evolving different life history options for traded-off traits. Cryptic 

species provide a perfect benchmark for identifying adaptations that 

might offer opportunities for niche differentiation associated with low 

morphological divergence and for studying the effects of life history 

traits on ecological features, without other confounding effects. 
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Abstract 

Many zooplankters rely on diapausing stages to survive unsuitable 

conditions in time-varying habitats. In facultative sexual rotifers, 

reproductive effort allocated to the sexually produced diapausing eggs 

is at the expense of the subitaneous parthenogenetic eggs, generating 

a trade-off between current and future population growth. The timing 

and the amount of sex (the sexual pattern) affect diapausing-egg 

production. This switch to sex is complex because the reproductive 

mode is separated in distinct females: asexual (female-producing), 

unfertilized sexual (male-producing) and fertilized sexual (diapause-

egg-producing). We studied sexual patterns and life-history variation 

of these females in two cryptic species (Brachionus plicatilis and 

Brachionus manjavacas) co-occurring in Spanish ponds. Results revealed 

species-specific differences in sexual pattern; B. plicatilis had an earlier 

and higher sex allocation. Female types allocated resources differently 

among life-history traits, revealing relationships between lifespan and 

reproductive traits that demonstrate the cost of reproduction. Sexual 

females reproductive traits showed between-species differences. 

Brachionus manjavacas unfertilized females produced more sons earlier 

and at a greater daily rate than B. plicatilis ones. Moreover, B. 

manjavacas fertilized females had higher relative allocation per 

diapausing egg than those of B. plicatilis. We relate these differences to 

the environmental uncertainty faced by each species, and discuss their 

implications for competitive outcome. 

Key-words: density threshold for sex initiation; life-table parameters; 

female reproductive types; competition; diapausing eggs  
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Introduction 

The production of diapausing eggs is a widespread life-history 

adaptation among zooplankters, such as cladocerans, rotifers and 

copepods (Hairston et al. 1995; Gilbert and Schröder 2004; Alekseev 

et al. 2007). Diapausing eggs enable survival during unsuitable 

environmental conditions caused by abiotic (e.g., drought; extreme 

salinity; extreme temperature) and/or biotic factors (e.g., occurrence 

of competitors, predators, etc.) (Pourriot and Snell 1983; Slusarczyk 

1995; Alekseev and Lampert 2001). Additionally, diapausing eggs 

facilitate temporal and spatial dispersion (Hairston and Kearns 2002; 

Louette and De Meester 2005). However, the production of 

diapausing eggs is expected to have higher costs than the production 

of subitaneous eggs. First, diapausing eggs have special features 

regarding energy stores and protection that make them energetically 

costly (Gilbert and Schröder 2004; Alekseev et al. 2007; Clark et al. 

2012). This agrees with the fact that, generally, whereas subitaneous 

eggs are produced at relatively high per-capita rates, only a few 

diapausing eggs are produced (Gilbert 1993; Gilbert 2004; Fink et al. 

2011). Secondly, diapause implies an obligate dormant period during 

which development does not resume, even under favourable 

conditions (Schwartz and Hebert 1987; Hagiwara and Hino 1989; 

Marcus and Lutz 1998). This delayed hatching implies that there is no 

contribution to the immediate population growth. Thirdly, in the case 

of monogonont rotifers and most cladocerans, which are cyclical 

parthenogens, sex is required for the production of diapausing eggs. 

Because this requires the participation of males, females accrue the 
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‘twofold cost of sex’ (Maynard Smith 1971). Consequently, the switch 

from subitaneous reproduction to the production of diapausing eggs 

is associated with higher costs and depresses population growth rate.  

Optimizing the trade-off between current population growth 

and investment in sex and diapause is especially relevant for rotifer 

populations inhabiting temperate zone habitats. In these habitats, 

water bodies show strong and random temporal environmental 

variability (Quintana Pou et al. 2006; Zacharias et al. 2007). Because 

diapause is the only way to survive unsuitable conditions between 

growing seasons under this selective regime, optimally timing the 

switch to sexual reproduction and balancing resource allocation 

between the two modes of reproduction are expected to be selected 

to maximize diapausing egg production (Serra and Carmona 1993; 

Serra et al. 2004). The number of diapausing eggs produced at the end 

of a growing season is a between-year fitness measure (Serra and King 

1999; Campillo et al. 2010). Rotifer populations, such as those in the 

common genus, Brachionus, are temporary and annually colonize the 

water column (during the planktonic growing period) through the 

hatching of diapausing eggs located in sediment. The hatchlings are 

asexual females that produce subitaneous eggs parthenogenetically, 

which hatch into other genetically identical females. This asexual 

mode of reproduction, which can continue for many generations 

resulting in an exponential growth of clonal lineages, co-occurs with 

episodes of sexual reproduction. Sex initiates when environmental 

factors trigger asexual females to produce some sexual-female 

offspring (e.g., Gilbert 1974; Schröder 2005). Sexual females produce 
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meiotic haploid eggs that develop into either dwarf males or, if 

females are fertilized while young, into diapausing eggs. After an 

obligatory dormant period of varying duration (Hagiwara and Hino 

1989; Martínez-Ruiz and García-Roger 2014), diapausing eggs hatch 

into asexual females and begin a new growing season once suitable 

water column conditions are present. 

The switch between the two reproductive modes is density 

dependent in the genus Brachionus. Sex is induced by an infochemical 

(Snell et al. 2006) produced by females and released into the medium 

(Gilbert 1963; Stelzer and Snell 2003). The concentration of this 

infochemical increases with population density and triggers sexual 

reproduction when reaching a threshold. This density threshold for 

the initiation of sex allows the characterization of the patterns of 

sexual reproduction because it determines when sex occurs in the 

growing season of a rotifer population (Serra and King 1999; 

Carmona et al. 2010). Thus, estimating this threshold has ecological 

and evolutionary importance due to the large impact that the timing 

of sex has on fitness in cyclical parthenogenetic rotifers (Aparici et al. 

1996; Serra et al. 2004). Differences in timing of and allocation to sex 

can affect competitive interactions and sympatric species coexistence 

(Montero-Pau and Serra 2011), as well as clonal selection, genetic 

diversity and adaptive traits (Gómez and Carvalho 2000; Ortells et al. 

2006; Serra and Snell 2009).  

In a sexually reproducing rotifer population, three different 

types of females can be found: (i) asexual females that produce 

parthenogenetic eggs that hatch into females, (ii) unfertilized sexual 
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females that produce parthenogenetic meiotic eggs that hatch into 

males and (iii) fertilized sexual females that generate diapausing eggs. 

These three types of females are morphologically indistinguishable, 

except for their mode of reproduction. This lack of morphological 

difference makes it possible to analyze how different reproductive 

allocation behaviours relate to life-history traits without the 

interference of other phenotypic variation (King 1970). Several 

studies have addressed life-history traits of asexual and unfertilized 

sexual females in different rotifer species (King 1970; Pourriot 1977; 

Carmona and Serra 1991; Pourriot and Rougier 1991; Snell and 

Carmona 1995; Gribble and Welch 2013; Smith and Snell 2014), but 

only a few have included fertilized sexual females (revised by Gilbert, 

1993; Snell, 2014; Xi et al., 2001). These studies showed that female 

reproductive types differ in their age schedules of reproduction and 

survival and that there is interspecific variation in these allocation 

patterns. However, despite the fact that the occurrence of cryptic 

species complexes is very common among rotifers (Gómez et al. 

2002; Walsh et al. 2009; Fontaneto et al. 2010), no study on whether 

this divergence among female types is consistent among these closely 

related species has yet been conducted. 

The cryptic rotifer species Brachionus plicatilis and Brachionus 

manjavacas live in sympatry in brackish inland ponds in Spain (Gómez 

et al. 2002; Gómez et al. 2007). Because of their striking 

morphological similarity and large ecological overlap (Gabaldón et al. 

2013), competition is expected to be high. Previous records have 

shown that these species differ in their tolerance to salinity and in 
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traits relating to sexual reproduction and diapause (Gabaldón et al. 

2015). These differences may play an important role in their 

coexistence. In the present study, to gather more evidence on these 

species’ trait divergence, we thoroughly investigated patterns of sexual 

reproduction by estimating sexual reproduction ratios and density 

thresholds for the initiation of sex in both species. We also compared 

life histories of asexual, unfertilized sexual and fertilized sexual 

females. The aim of this study was to gain insight in the divergence of 

reproductive allocation patterns in these two species, their 

relationships with the biotic and abiotic environment and the 

implications for species coexistence. 

Material and Methods 

Isolation, identification and culture of rotifers clones of B. plicatilis and 

B. manjavacas were obtained by asexual proliferation of individual 

females hatched from diapausing eggs isolated from sediments of 

Salobrejo Lake (Eastern Spain; 38854.7650N, 1828.2750W) 

(Gabaldón et al. 2013). Species identification of each clone was 

performed by the RFLP-PCR method (Gabaldón et al. 2013). Stock 

cultures of 20 clones per species were individually maintained at 10 g 

L-1 salinity and 20ºC temperatures. Both rotifer species co-occur 

under these conditions in the field (Montero-Pau et al. 2011). Culture 

medium was f/2-enriched saline water (Guillard and Ryther 1962) 

prepared with commercial sea salt (Instant Ocean®; Aquarium 

Systems). Culture medium contained 2 × 105 cells mL-1 of the 

microalga Tetraselmis suecica (ICMAN Collection) as food for rotifers. 
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Microalgae were maintained in exponential growth phase and 

constant illumination. Unless otherwise indicated, pre-experimental 

and experimental rotifer culture media and conditions were the same 

as for stock cultures (hereafter, ‘standard conditions’). 

Estimation of density threshold for sex initiation 

Genetic variation in the propensity to reproduce sexually in B. plicatilis 

and B. manjavacas was studied by conducting 96 bioassays (2 species × 

16 clones × 3 replicates) to estimate the density threshold for sex 

initiation following the procedure of Carmona et al., (2009). Before 

bioassays, rotifer clones were pre-cultured under standard conditions 

at a low population density and medium renewal for three generations 

to control for any effect the maternal environmental conditions may 

have on the reproductive type of the offspring (Snell et al. 2006). To 

do so, three independent sublines (one per replicate) for each clone of 

both species were created. From every clone stock culture, one egg-

carrying asexual female was individually transferred to a dish with 40 

mL of culture medium. After 24 h, one newborn female (F1) was 

transferred to a new dish where it proliferated asexually for 48 h. 

Then, one second-generation newborn female (F2) was transferred to 

a new dish to produce a third generation, from which one newborn 

female (F3) was used in the bioassay. Each experimental newborn was 

individually isolated in a dish with 15 mL of culture medium, allowed 

to grow and reproduce, and monitored every 12 h until the first male 

was observed. Then, the culture was fixed with 0.3% Lugol’s solution 

and the population density estimated (Aparici et al. 2001). 
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The effects of species and clone on the log-transformed 

population density at first male appearance were tested by a nested 

robust ANOVA using R statistical software v. 3.1.1 (Wang et al. 

2010). The genetic variation of this trait was measured using broad-

sense heritability (H2), which is the appropriate measure for clonal 

organisms (Lynch and Walsh 1998). H2 (i.e., the ratio of the among-

clone variance to the total within- and among-clone variance) was 

estimated from the genetic (i.e., between clones) component of the 

variance for each species following the procedure for clonal 

organisms (Pfrender and Lynch 2000). For these estimations, a one-

way ANOVA was performed using SPSS statistic software v. 19.0 

(IBM Corp 2010). 

Life-history trait analysis 

Dynamic life-table experiments were performed to compare life-

history traits of the three female reproductive types in both rotifer 

species. Female cohorts of each species were established from 

multiclonal populations created by mixing 50 females of each of the 

20 clones in 1 L of culture medium. These populations were grown 

under standard conditions. To obtain the three female types, males 

were allowed to fertilize newborn females (insemination is possible 

for only a few hours after birth) (Snell and Childress 1987). The 

multiclonal populations were grown in continuous flow culture 

conditions in a chemostat with a dilution rate of 0.15 per day and 

regularly monitored. Once sexual reproduction was observed, culture 

aliquots were gently shaken to detach extruded eggs from the females 
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(Tortajada et al. 2010). Only detached eggs in an advanced stage of 

development were selected. Eggs containing male embryos were 

identified by their smaller size. Several wells were set, each containing 

100 eggs with female embryos and 100 eggs with male embryos. 

Preliminary experiments showed that there was a lower number of 

fertilized females in B. manjavacas, so for this species a higher number 

of wells were set. Eggs usually hatch in, 4-5 h and mating was allowed 

for 48 h (Tortajada et al. 2010). Afterwards, cohort females were 

individually isolated in 24-well plates (NuncTM) containing 1 mL of 

medium and kept under standard conditions in darkness. At maturity, 

each cohort female was classified as (i) asexual if giving rise to 

daughters, (ii) unfertilized sexual, if giving rise to sons or (iii) fertilized 

sexual, if producing diapausing eggs. When female type was identified, 

the group of asexual females was reduced to 400 females by random 

elimination of surplus females to reduce experimental effort. Survival 

and the numbers of offspring or diapausing eggs produced were 

recorded daily for the entire lifespan of each cohort female. At the 

time of each observation, the surviving parental females were 

transferred to wells with fresh medium. The sexual reproduction ratio 

(i.e., the mixis ratio) of each species was calculated as the proportion 

of sexual females in the initial cohort (including the eliminated asexual 

females). From life-table experiment records, the following were 

calculated individually for each female: (i) the lifespan and the 

reproductive lifespan (i.e., timing between first and last offspring 

produced), (ii) the lifetime reproductive output, (iii) the mean daily 

fecundity (i.e., lifetime reproductive output divided by reproductive 
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lifespan) and (iv) the generation time (i.e., weighted average age at 

birth of the offspring). These individual parameters were averaged for 

the asexual, unfertilized sexual and fertilized sexual cohorts of B. 

plicatilis and B. manjavacas. Additionally, the age-specific survival (lx) 

functions of each female type for both species were computed by 

pooling individual values. Survival curves were compared using 

nonparametric tests: log-rank and Breslow tests (Cox and Oakes 

1984). We performed two-way robust ANOVAs using the ‘robust’ 

package (Wang et al. 2010) in R statistical software v. 3.1.1 (R Core 

Team 2014) to compare the lifespan, generation time, lifetime 

reproductive output and mean total daily fecundity between B. plicatilis 

and B. manjavacas and between female reproductive types. Post hoc 

Games–Howell tests (Games et al. 1981) for pairwise multiple 

comparisons were performed using SPSS statistic software v. 19.0 

(IBM Corp 2010). 

Following Snell and King (1977), we used partial correlation 

analysis to test the relationships between lifespan and life-history 

traits related to timing, amount and rate of offspring produced by all 

females and by females grouped by reproductive type (SPSS v. 19.0, 

IBM Corp, 2010). For each comparison between lifespan and a given 

reproductive variable, partial correlation coefficients were calculated 

while controlling for the effect of the two remaining reproductive 

variables. 

To compare reproductive allocation of female reproductive 

types between species, we calculated the ratios of both female and 

male offspring (produced by asexual and unfertilized asexual females, 
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respectively) to diapausing eggs produced by fertilized sexual females. 

The 95% confidence intervals for these ratios were obtained using 

bootstrap resampling (Caswell 2006) and corrected following the bias-

corrected percentile method (Efron 1981), implemented in R version 

3.1.1(R Core Team 2014). A total of 1000 randomizations were 

performed for each ratio and species. 

The intrinsic growth rates (r) of B. plicatilis and B. manjavacas 

were calculated from life-table data by solving Euler–Lotka’s equation 

(e.g., Stearns 1992). Additionally, the potential intrinsic growth rates 

(rpot) were calculated for these species following the method of 

Montero-Pau et al., (2014). The rpot is the growth rate of a population 

entirely composed of asexual females and is considered a measure of 

performance. The 95% confidence intervals for intrinsic growth rates 

were obtained by bootstrapping the life-table dataset using the 

procedure described above. 

Results 

In general, population density at first male appearance was lower in B. 

plicatilis clones than in B. manjavacas clones, ranging from 0.55 to 7.15 

females mL-1 for B. plicatilis (average 2.91 females mL-1) and from 1.22 

to 22.64 females mL-1 for B. manjavacas (average 8.24 females mL-1) 

(Fig. 4.1). Statistical analyses confirmed differences in density at first 

male appearance between species (P< 0.001) and among clones 

within species (P< 0.001). H2 estimates of this parameter were high 

(0.51) for B. plicatilis and intermediate (0.29) for B. manjavacas. These 

heritability differences were due to differences in the amount of 
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Figure 4.1. Box-and-whisker plot of clonal averages of population 

density at first male appearance in B. plicatilis and B. manjavacas. The 

bottom of the box is the 25th percentile and the top is the 75th 

percentile. Median (straight line) and average (dotted line) values are 

shown. The whiskers extend to the 10th and 90th percentiles; 

observations outside this range are plotted as circles. 

 

genetic variance (0.11 for B. plicatilis and 0.04 for B. manjavacas, 

whereas environmental variance was ~0.10 for both species). 

We analysed the life histories of 400 asexual, 126 unfertilized 

sexual and 62 fertilized sexual females of B. plicatilis, and 399 asexual, 

111 unfertilized sexual and 17 fertilized sexual females of B. 

manjavacas. Age-specific survival (lx) and mean lifespan for the three 

female reproductive types of both species are shown in Figs 4.2 and 

4.3. Survivorship followed type I curves (Pearl 1928), but different 

trends were found. Both female type and species affected lifespan; the  
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Figure 4.2. Age-specific survivorship (lx) curves of the three female 

reproductive types of B. plicatilis and B. manjavacas. 

 

effects of both factors and their interaction were highly significant 

(two-way robust ANOVA, P< 0.001). Survival curves of the three 

female types were significantly different in both species (P< 0.001 

log-rank and Breslow tests). Fertilized sexual females had higher 

survival rates at middle age classes (Fig. 4.2) and longer lifespans, on 
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average (Fig. 4.3A), than did unfertilized females of either species. 

Fertilized sexual females also had significantly longer mean lifespans 

than asexual females in B. plicatilis, but not in B. manjavacas. Between-

species comparison of survival curves of each female reproductive 

type was only significantly different between asexual females (log-rank 

and Breslow tests; P< 0.001 for asexual and P> 0.540 for unfertilized 

and fertilized sexual). Asexual females of B. manjavacas had higher 

survival at both middle and old age classes and, consequently, a longer 

mean lifespan than asexual females of B. plicatilis (Fig. 4.3A). In 

contrast, unfertilized and fertilized sexual females had remarkably 

similar survivorship patterns and lifespan across species (P> 0.54 for 

both tests). In both species, female fertilization status affected 

lifespan; unfertilized sexual females had shorter lifespans than 

fertilized ones. Unfertilized sexual females also had shorter lifespans 

than asexual females, although this difference was marginally 

significant in B. plicatilis.  

Reproductive female type had a statistically significant effect on 

lifetime reproductive output, generation time, mean total daily 

fecundity and reproductive lifespan; however, species only had a 

significant effect on the latter three parameters (two-way robust 

ANOVA, P< 0.001, Fig. 4.3B–E). The interaction effect of the three 

parameters was significant (P< 0.001), indicating that the species 

effect differed among female types. In both species, unfertilized 

sexual females produced their offspring earlier than both asexual and 

fertilized sexual females (Fig. 4.3B). In B. plicatilis, asexual females 

reproduced earlier than fertilized sexual females, whereas in B. 
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manjavacas the opposite pattern was found. These differences between 

generation times were statistically significant, except between 

unfertilized and fertilized sexual females of B. manjavacas. Post hoc 

comparison of each female type between species showed that 

unfertilized B. plicatilis females produced male offspring significantly 

later than did B. manjavacas, whereas the production of female 

offspring by asexual females followed the opposite pattern. In both 

species, asexual females had the highest lifetime reproductive output, 

and fertilized females had the lowest (Fig. 4.3C); these differences 

were statistically significant except for asexual and unfertilized sexual 

females of B. manjavacas. When comparing this parameter between 

species for each female type, the only statistically significant 

difference detected was that unfertilized sexual females of B. 

manjavacas produced higher numbers of males than B. plicatilis ones. 

Both species had the same general trend in the mean total daily 

fecundity: unfertilized sexual females had significantly greater daily 

fecundity than asexual females, which in turn had higher daily 

fecundity than fertilized sexual females. 

However, unfertilized sexual females of B. manjavacas had 

significantly higher total mean daily fecundity than B. plicatilis females. 

This pattern reversed when comparing the daily fecundities of asexual 

females of both species (Fig. 4.3D). Reproductive lifespan was shorter 

in sexual than asexual females of both species, but fertilization status 

had no effect on this parameter (Fig. 4.3E). Asexual and unfertilized 

sexual females of B. manjavacas had higher reproductive lifespans than 

those of B. plicatilis.  



Allocation patterns to reproduction modes in rotifers 

- 157 - 

 

 

 

Figure 4.3. Lifespan (A), generation time (B), lifetime reproductive output 

(C), mean daily fertility (D) and reproductive lifespan (E) of the three 

female reproductive types of B. plicatilis and B. manjavacas. Vertical bars 

are the standard deviation of the mean. Horizontal lines in black and grey 

connect values that are statistically significant (P< 0.05) and marginally 

significant (P= 0.08), respectively, after pairwise multiple comparisons 

performed by a post hoc Games–Howell test. 
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Partial correlations (Table 4.1) revealed significant relationships 

between lifespan and reproductive traits for all females. This result 

holds for the three female types, with the exception of lifespan and 

generation time for fertilized females (the group with the smallest 

sample size). The positive, moderate partial correlation of lifespan and 

generation time indicates that females producing their offspring 

earlier tend to have shorter lifespans. This relationship was not a mere 

consequence of short-lived females being unable to complete 

reproduction, as 81% of females had a post- reproductive lifespan. 

The negative partial correlations between mean daily fecundity and 

lifespan, albeit weak, indicate that higher rates of offspring production 

during reproductive lifespans are associated with shorter overall 

lifespans. The lifetime reproductive output and the lifespan showed a 

weak and positive partial correlation. Likely, this relationship is due to 

the extension of the reproductive period in long-lived females and not 

to a higher rate of reproduction during the reproductive period, 

which is consistent with (i) the negative relationships found between 

mean daily fecundity and lifespan and (ii) the significant positive 

simple correlation between lifetime reproductive output and 

reproductive lifespan (r= 0.45; P< 0.0001). Longer-lived females had 

higher fecundity, but lower rates of offspring production during their 

reproductive period. 

Fertilized sexual B. plicatilis females produced up to five 

diapausing eggs and fertilized sexual B. manjavacas females produced 

up to four diapausing eggs, with an average of 2.8 diapausing eggs for 

B. plicatilis and 2.2 diapausing eggs for B. manjavacas. Although this  
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Table 4.1. Partial correlation coefficients (and their probabilities) of three 

reproductive traits, with the lifespan of both all females and females 

grouped by reproductive type. In the calculation of each coefficient, the 

effects of the two remaining reproductive variables are partialled out. 

 
Total 

females 
Asexual 
females 

Unfertilized 
sexual 

females 

Fertilized 
sexual 

females 

Generation 
time 

0.49 
(P< 0.0001) 

0.51 
(P< 0.0001) 

0.42 
(P< 0.0001) 

-0,02 
(P= 0.8750) 

Lifetime 
reproductive 
output 

0.15 
(P< 0.0001) 

0.20 
(P< 0.0001) 

0.22 
(P< 0.0100) 

0.25 
(P= 0.0280) 

Mean daily 
fecundity 

-0.23 
(P= 0.0010) 

-0.36 
(P< 0.0001) 

-0.20 
(P= 0.0020) 

-0.32 
(P= 0.0040) 

 
 

difference was not statistically significant (Fig. 4.3), there were 

differences between species in allocation to diapausing-egg 

production relative to subitaneous reproduction: B. manjavacas had 

ahigher relative resource allocation per diapausing egg (when 

compared with subitaneous reproduction) than did B. plicatilis (Fig. 

4.4). To produce one diapausing egg, B. manjavacas requires a resource 

allocation equivalent to that used to produce 8.5 daughters or 8.2 sons 

by parthenogenetic reproduction. The resources used to produce one 

diapausing egg was slightly lower for B. plicatilis, equivalent to that 

used to produce 7.3 daughters or 5.5 sons by parthenogenetic 

reproduction. 

The intrinsic population growth rate of both species was 

similar. However, when considering the potential values of this  
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Figure 4.4. Ratios of parthenogenetic offspring (daughters produced 

by asexual females or sons produced by unfertilized sexual females) to 

diapausing eggs (produced by fertilized sexual females) of B. plicatilis and 

B. manjavacas. Error bars show 95% confidence intervals. 

 

parameter (i.e., in the absence of sexual reproduction), B. plicatilis had 

a higher performance than B. manjavacas (Fig. 4.5). This finding agrees 

with the estimated values of the mixis ratios: 0.371±0.037 for B. 

plicatilis and 0.085±0.013 for B. manjavacas. 

Discussion 

Sexual reproduction pattern (i.e., investment in sex during the 

growing season) is a key feature of the cyclically parthenogenetic 

rotifer life cycle (Schröder 2005) and has two major components: the 

timing of sex and the proportional allocation to sexual reproduction,  
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Figure 4.5. Comparison between observed (r) and potential (rpot) 

intrinsic growth rates of B. plicatilis and B. manjavacas. Median (thin line) 

and average (thick line) values are shown. The whiskers extend to the 

10th and 90th percentiles; observations outside this range are plotted as 

circles. 

 

the mixis ratio (Serra and Carmona 1993; Serra and King 1999). In 

rotifer species where population density induces sexual reproduction, 

timing of sex can be estimated by the density threshold for sex 

initiation (Serra et al. 2004; Serra and Snell 2009). A low-density 

threshold will cause early sex initiation and high investment in sex, as 

this would lead to a lower rate of asexual proliferation during the 

growing period (Serra et al. 2004; Carmona et al. 2009). In the present 

study, despite among-clone variation within species, B. plicatilis 

showed consistently lower density thresholds for sex initiation than 

did B. manjavacas. Heritability analysis revealed the existence of genetic 
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variation for this trait in the populations of these cryptic species co-

occurring in Salobrejo Lake. Genetic variation in propensity to sex in 

B. manjavacas is reported here for the first time, but H2 values from 

both species fall within the range of those already recorded in B. 

plicatilis populations (Aparici et al. 2001; Carmona et al. 2009). Our 

pre-experimental procedure was designed to reduce phenotypic 

differences due to environmental differences among mothers (Lynch 

and Ennis 1983; Schwaegerle et al. 2000). Notwithstanding, this 

procedure ensures that clonal heritabilities were not upwardly biased 

by environmental maternal effects because these effects did not 

contribute to the between-clone component of variance in the final 

analysis (Pfrender and Lynch 2000). Consequently, it is reasonable to 

interpret our heritability values as providing meaningful insights into 

the potential for adaptive evolution in natural populations of B. 

plicatilis and B. manjavacas (Weigensberg and Roff 1996). The finding 

of a substantial amount of genetic variation in sex propensity is 

particularly relevant, given the effect of timing of sex on individual 

fitness (reviewed in Serra et al. 2004; Gilbert 2010). These results also 

suggest that the fraction of phenotypic variation in the propensity to 

initiate sex that could be attributable to heritable variation is higher in 

B. plicatilis than in B. manjavacas. Therefore, these species may differ in 

this trait in terms of their evolutionary potential to respond to 

selection. 

The second relevant component of the sexual reproduction 

pattern, the mixis ratio, was four times higher in B. plicatilis than in B. 

manjavacas, consistent with previous studies of Salobrejo populations 
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(García-Roger et al. 2009; Gabaldón et al. 2015). This difference can 

also account for the divergent sexual reproduction patterns of these 

species. Because sex and diapause are linked in the monogonont life 

cycle, sexual females do not contribute to current population growth. 

Thus, the higher the mixis ratio, the greater the decrease in population 

growth rate (Snell 1987). In fact, the mixis ratio quantifies the within 

growing season cost of sex in cyclical parthenogenetic rotifers (Serra 

and Snell 2009; Carmona et al. 2009). According to our observed and 

potential intrinsic growth rates, sexually reproducing B. plicatilis could 

decrease their population growth rate 1.6 times more than B. 

manjavacas, incurring a higher cost of sex. However, despite this cost, 

sexual females contribute to long-term population persistence by 

producing diapausing eggs, which leads to the trade-off between 

current and future population growth. Both components, timing of 

sex and mixis ratio, have been studied in terms of the optimal 

patterns that maximize diapausing-egg production in relation to 

habitat features (e.g., Serra and King, 1999; Serra et al., 2004). For 

instance, earlier sex and higher mixis ratios, the pattern found in B. 

plicatilis has been reported in rotifer populations undergoing more 

environmental risk and uncertainty during their growing seasons 

(Carmona et al. 1995; Campillo et al. 2009; Gilbert and Diéguez 

2010).  

In our sexually reproducing populations of B. plicatilis and B. 

manjavacas, as in many other rotifer species, asexual females produced 

asexual and sexual daughters. As typically reported (Schröder 2005), 

mixis ratio was lower than 0.5 in both species. This incomplete sex 
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induction is a conservative bet-hedging strategy that allows the 

maintenance of several female reproductive modes within the 

population (Gilbert 2003; Fussmann et al. 2007). Hence, diapausing 

eggs are produced concurrently with population proliferation by 

asexual reproduction, as long as the environment remains suitable 

(Carmona et al. 1995; Serra and King 1999). 

Our study shows that, in both species, the three female 

reproductive types allocate resources differently among life-history 

traits. These females are morphologically indistinguishable, but differ 

in the eggs and offspring they produce. Both asexual and unfertilized 

sexual females produce subitaneous eggs similar in appearance, 

although unfertilized female eggs that hatch into males are much 

smaller. Contrary to what might be expected from the trade-off 

between size and number of offspring (e.g., Stelzer, 2005), unfertilized 

sexual females tended to show lower lifetime reproductive output 

than asexual females, at least in B. plicatilis. Although the relative 

reproductive output of these two types of females varies among 

rotifer species (King 1970), previous studies on the B. plicatilis 

complex also reported a lower production of sons by unfertilized 

sexual females (Carmona and Serra 1991; Gribble and Welch 2013). 

Assuming that egg and offspring size properly reflect resource 

provisioning, the higher fecundity of asexual females implies that 

unfertilized sexual females allocated fewer resources to offspring 

production than did asexual females. However, unfertilized females 

produced their offspring earlier than asexual females and had a larger 

mean daily fecundity, which can be interpreted as a direct result of the 
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lower cost of producing males because of their significantly smaller 

size (Carmona and Serra 1991). By allocating fewer resources per 

descendant, unfertilized sexual females can produce offspring sooner 

and at a higher rate than asexual females. Because their reproductive 

lifespan is shorter, unfertilized sexual females consequently invest the 

resources allocated to reproduction over a shorter period of time than 

asexual females. Hence, unfertilized sexual females had a higher 

reproductive effort at earlier ages. This age-specific reproductive 

allocation could account for the shortness of their lifespan due to a 

physiological trade-off. This interpretation agrees with our finding 

that lifespan was positively correlated with generation time and 

negatively correlated with mean daily fecundity in these females. Our 

results are consistent with the interpretation that a high rate of male 

production will increase the fitness of unfertilized females (Epp and 

Lewis Jr 1979; Carmona and Serra 1991). It will be adaptive for these 

females to produce male offspring as quickly as possible, to increase 

the probability that their sons will find a mate and lead to the 

production of diapausing eggs (Carmona and Serra 1991; Gribble and 

Welch 2013). 

A second important difference in the pattern of resource 

allocation is that fertilized sexual females had a much smaller lifetime 

reproductive output and mean daily fecundity than the other two 

types of females. This is a general tendency in cyclical parthenogenetic 

rotifers (Xi et al. 2001; Snell 2014), supported by the fact that 

diapausing eggs are more costly to produce than subitaneous eggs. 

Not only are diapausing eggs bigger and structurally more complex, 
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but they also contain more energy-storing molecules and protective 

compounds than subitaneous eggs (Gilbert 2004; Clark et al. 2012). 

These costly adaptive traits would result in a diminished fertility of 

fertilized females. We found that fertilization increased the lifespan of 

sexual females, which coincides with the only two previous reports on 

the B. plicatilis complex (Lubzens and Zmora 2003; Snell 2014). These 

changes in the life-history pattern of fertilized females could occur 

because the optimal allocation strategy for sexual females differs 

according to their mating status. For instance, late onset of 

reproduction and the more spread reproductive investment over 

reproductive period might be a way to conserve resources and survive 

longer, thus maximising a female’s diapausing-egg output. Overall, the 

different resource patterns of B. plicatilis and B. manjavacas females 

revealed relationships between lifespan and reproductive traits related 

to timing, amount and rate of offspring production, providing 

evidence of the trade-off between reproduction and future survival. 

The cost of reproduction in rotifers has been addressed using a 

variety of approaches (revised in Stelzer, 2005), but empirical data 

differentiating between rotifer female reproductive types have been 

missed. 

Our primary focus was to detect differences in reproductive 

allocation between B. plicatilis and B. manjavacas. The relative fecundity, 

lifespan and rate of offspring production of sexual and asexual 

females may differ considerably among rotifer species (Gilbert 1993). 

In the present study, significant differences between species were 

found to mainly affect reproductive traits of sexual females. 
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Unfertilized sexual B. manjavacas females produced significantly more 

sons, and at an earlier age and greater daily rate, than did unfertilized 

sexual B. plicatilis females. On the other hand, fertilized B. manjavacas 

females tended to produce a lower maximum and a lower average 

number of diapausing eggs than fertilized B. plicatilis females. This 

difference was not statistically significant, most likely due to the 

smaller sample size of this group. However, the observed tendency is 

consistent with the higher relative resource allocation per B. manjavacas 

diapausing egg; more costly eggs might result in a lower fecundity of 

fertilized females of this species. Few studies have explicitly examined 

fertilized females in the genus Brachionus (Pourriot and Rieunier 1973; 

Xi et al. 2001; Gilbert 2010), and only two investigated species in the 

B. plicatilis complex. Interestingly, it was found that B. manjavacas (Snell 

2014) produced a lower average number of diapausing eggs than B. 

plicatilis (Lubzens and Zmora 2003). 

The differences in allocation to reproductive modes and life-

history traits between female reproductive types of these cryptic 

species are striking. The studied B. plicatilis and B. manjavacas 

populations co-occur in the same habitat in Salobrejo Lake (Montero-

Pau et al. 2011). This inland shallow brackish pond, similar to many 

other ponds in the western Mediterranean region (see Quintana Pou 

et al., 2006 for references; Walsh et al. 2014), has highly variable water 

inputs that cause sharp fluctuations in water level and 

physicochemical and biological composition. Randomness in these 

abiotic and biotic factors determines the variance in the growing 

season length of the rotifer populations and, hence, the uncertainty 
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these populations must cope. The sexual reproduction pattern of B. 

plicatilis, which places a high investment into sex, is the pattern that is 

expected in highly uncertain or ephemeral environments. This 

strategy protects against unpredictably short growing seasons by 

ensuring diapausing-egg production (Serra and King 1999; Carmona 

et al. 2009; Franch-Gras et al. 2014). 

The divergent strategies of these two cryptic species occupying 

the same habitat might be related to their tolerance of salinity. The 

range of B. manjavacas is wider and includes higher salinities than that 

of B. plicatilis (Montero-Pau et al. 2011; Gabaldón et al. 2015). 

Accordingly, B. plicatilis occurs in Salobrejo during low-range salinity 

periods (Montero-Pau et al. 2011). Salinity exhibits large seasonal and 

interannual variability in Mediterranean shallow lakes (e.g., Comín et 

al. 1992) and is very sensitive to water inputs and evaporation (Coops 

et al. 2003). Typically, these habitats have a much greater inter-annual 

variation in rainfall than in evaporation rates, the latter showing a 

marked seasonality (Vicente et al. 2006; Beklioğlu 2007). In other 

words, whereas periods of high-salinity predictably occur annually 

each summer, low-salinity periods associated with rainfall episodes 

will vary more randomly. Hence, we suggest that Salobrejo Lake 

might be a more uncertain habitat for B. plicatilis than for B. 

manjavacas, which could account for their different patterns of sexual 

reproduction observed in our experiment. Further monitoring of 

populations of these species in Salobrejo Lake might provide valuable 

information in this respect. 
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Diapausing-egg production is dependent upon the number of 

sexual females in the population. The higher the population density 

and mixis ratio at the onset of sexual reproduction, the more 

diapausing eggs will be deposited in the sediment bank. Assuming 

that population size increases during the growing season, B. manjavacas 

(which has a higher density threshold) will initiate sex later and at 

higher population density than B. plicatilis. However, the mixis ratio of 

B. plicatilis quadruples that of B. manjavacas; in addition to the tendency 

in fecundity of B. plicatilis fertilized females, this might act to partially 

equalize the diapausing-egg output of both species. Despite providing 

a greater potential of producing diapausing eggs, late onset of sex 

risks the possibility of resource shortage before diapausing eggs can 

be produced (Gilbert 2010). This could be particularly critical for B. 

manjavacas due to its higher relative resource allocation per diapausing 

egg, which suggest a possible adaptive explanation for the differences 

in reproductive traits of unfertilized sexual females we found between 

species. This suite of traits could allow B. manjavacas to complete 

diapausing-egg production sooner than B. plicatilis. On the other hand, 

timing of sex is expected to affect not only the number of diapausing 

eggs but also their diversity. Since clonal selection erodes genetic 

diversity during the growing season (Gómez and Carvalho 2000; 

Ortells et al. 2006) diapausing eggs produced early in the growing 

season will be more diverse than those produced later in the growing 

season. This expectation coincides with the higher genetic variation in 

the propensity to sex within the B. plicatilis population (i.e., the one 

initiating sex earlier), as revealed in our heritability analysis. 
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The presence of competitors can also affect the length of the 

period that a rotifer population will grow in the water column. An 

early onset of sex may ensure diapausing-egg production if the 

population is prone to competitive exclusion. B. plicatilis only 

performs better than B. manjavacas at low salinity and has been 

characterized as a species that opportunistically exploits salinity 

favourable periods by engaging in sex and producing diapausing eggs 

(Gabaldón et al. 2015).The higher investment in sex found in the 

present study implies a trade-off with the ability of B. plicatilis to offset 

competitively induced mortality through rapid asexual proliferation 

(King and Serra 1998). Consequently, its sexual pattern might 

accelerate B. plicatilis exclusion from the active planktonic growth 

phase. Accordingly, higher investment in sex by the inferior 

competitor has been reported to have this accelerating effect on 

exclusion in pairwise competition experiments between B. plicatilis and 

two other species in the cryptic species complex (Ciros-Pérez et al. 

2002). Other recent studies have stressed the relationships between 

sexual reproduction and interspecific competition outcome in 

zooplankters (Aranguiz-Acuña and Ramos-Jiliberto 2014; Montero-

Pau and Serra 2011; Gabaldón et al., unpublished data), showing that 

investment in sex and diapausing eggs can lead to different short-term 

outcomes. However, in fluctuating environments, the long-term 

competitive dynamics can strongly rely on the diapausing eggs 

recruited to the sediment (Montero-Pau and Serra 2011); diapausing 

eggs are insensitive to competition and may allow the persistence of 

competitors that otherwise would not coexist (i.e., storage effect; 
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Chesson, 2000). Hence, patterns of allocation to sexual reproduction 

by determining diapausing egg production can have both short-term 

and long-term consequences on competitive dynamics. This study, by 

expanding our knowledge of species-specific differences in 

reproductive traits, contributes to the increasing knowledge that life-

history variation shaped by biotic and abiotic environmental factors 

has the potential to substantially alter the outcomes of interspecific 

interactions. 
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Abstract 

Life-history traits may have an important role in promoting species 

coexistence. However, the complexity of certain life cycles makes it 

difficult to draw conclusions about the conditions for coexistence or 

exclusion based on the study of short-term competitive dynamics. 

Brachionus plicatilis and B. manjavacas are two cryptic rotifer species co-

occurring in many lakes on the Iberian Peninsula. They have a 

complex life cycle in which cyclical parthenogenesis occurs with 

diapausing stages being the result of sexual reproduction. B. plicatilis 

and B. manjavacasare identical in morphology and size, their biotic 

niches are broadly overlapping, and they have similar competitive 

abilities. However, the species differ in life-history traits involving 

sexual reproduction and diapause, and respond differently to salinity 

and temperature. As in the case of certain other species that are 

extremely similar in morphology, a fluctuating environment are 

considered to be important for their coexistence. We studied the 

long-term competitive dynamics of B. plicatilis and B. manjavacas under 

different salinity regimes (constant and fluctuating). Moreover, we 

focused on the dynamics of the diapausing egg bank to explore how 

the outcome of the entire life cycle of these rotifers can work to 

mediate stable coexistence. We demonstrated that these species do 

not coexist under constant-salinity environment, as the outcome of 

competition is affected by the level of salinity –at low salinity, B. 

plicatilis excluded B. manjavacas, and the opposite outcome occurred at 

high salinity. Competitive dynamics under fluctuating salinity showed 

that the dominance of one species over the other also tended to 
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fluctuate. The duration of co-occurrence of these species was 

favoured by salinity fluctuation and perhaps by the existence of a 

diapausing egg bank. Stable coexistence was not found in our system, 

which suggests that other factors or other salinity fluctuation patterns 

might act as stabilizing processes in the wild. 
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Introduction 

Competitive theory predicts that the strength of competition 

involving two or more species is greater between closely related 

species than between distantly related species (Darwin 1859). 

According to the phylogenetic limiting similarity hypothesis (Violle et 

al. 2011), cryptic species –which have a close phylogenetic 

relationship and high morphological similarity– are expected to have 

similar ecological requirements (i.e.,, niche conservatism) (Wiens and 

Donoghue 2004; Losos 2008; Wiens et al. 2010; Violle et al. 2011) 

and, hence, to experience stronger competition and competitive 

exclusion (Hardin 1960). However, there are many examples of co-

occurrence of cryptic species (e.g., Hebert et al. 2004; Stuart et al. 

2006; Murray et al. 2007; King et al. 2008). Coexistence may be 

mediated by subtle niche differentiation, e.g., differential susceptibility 

to predation and/or resource partitioning (Ciros-Pérez et al. 2004; 

Nicholls and Racey 2006; Wellborn and Cothran 2007). In certain 

cases, this niche differentiation is based on small morphological 

differences that were neglected due to the past taxonomic status of 

the species (e.g., Ciros-Pérez et al. 2001). Moreover, coexistence of 

cryptic species would be favoured as a result of their shared features if 

these features translate into similar fitness. Similar fitness (an 

equalizing process) implies that weak stabilizing processes (niche 

differentiation) can be sufficient for stable coexistence (Chesson 

2000; Adler et al. 2007).  

The potential role of the organism’s life cycle in promoting the 

coexistence of competitors has been demonstrated (Loreau and 
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Ebenhöh 1994; Moll and Brown 2008). For instance, investment in 

diapause by a superior competitor may provide an opportunity for 

coexistence to inferior ones (Montero-Pau and Serra 2011). 

Moreover, the occurrence of life cycle stages relatively free of 

competition –as are diapausing stages– is a necessary condition for 

the storage effect, a stable coexistence process based on 

environmental fluctuations (Chesson and Huntly 1989; Loreau and 

Ebenhöh 1994; Chesson 2000; Moll and Brown 2008; Montero-Pau 

and Serra 2011). A fluctuating environment may allow species 

coexistence if conditions favour different species at different times, 

indefinitely delaying the outcome of competitive exclusion. 

In complex life cycles, the study of competitive dynamics and 

conditions for coexistence or exclusion becomes more difficult as 

fitness components relate to fitness in a complex way. This makes it 

difficult to predict the outcome of competition solely from 

observations of short-term dynamics such as somatic growth in plants 

or clonal proliferation in cyclical parthenogens. This problem might 

particularly affect congeneric species because their life cycle strategies 

may diverge (Fournet et al. 2000; Reznick et al. 2000). 

Cyclically parthenogenetic rotifers have complex life cycles 

involving sexual and asexual reproduction. This is the case of 

Brachionus plicatilis and B. manjavacas, two cryptic species that belong to 

the B. plicatilis species complex. Their species status is guaranteed by 

prezygotic reproductive isolation which has been confirmed by 

mating experiments as well as by the lack of evidence for 

hybridization in field studies (Gómez and Snell 1996; Ortells et al. 
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2000). These two species co-occur in salt ponds of the Iberian 

Peninsula (Gómez et al. 2002; Gómez et al. 2007), with marked 

salinity fluctuations. In temperate climates, rotifer populations are 

active in the water column during a fraction of the year (the so-called 

growing season) even in permanent ponds. Thus, they periodically re-

colonize the water column from banks of diapausing eggs, which are 

the product of sexual reproduction. During the growing season, their 

populations can fluctuate due to episodic investment in sex or due to 

exposure to substantial environmental variation. B. plicatilis and B. 

manjavacas have identical morphology and size (Campillo et al. 2005; 

Fontaneto et al. 2007) and consistently do not show ecological 

differentiation in biotic niche axes (Gabaldón et al. 2013). Hence, 

because these species inhabit a rather spatially homogeneous habitat, 

classical niche differentiation mechanisms that operate independently 

of environmental fluctuations (Tilman 1982; Chesson 2000), such as 

resource partitioning or differential susceptibility to predation, are 

unlikely to influence their coexistence (Gabaldón et al. 2013). 

B. plicatilis and B. manjavacas differ in life-history traits 

(Gabaldón et al. 2015), such as their growth response to salinity and 

temperature (Montero-Pau et al. 2011), and their patterns of 

investment in diapause and hatching of diapausing eggs (Gabaldón et 

al. 2015). Single-species cultures have shown that the salinity tolerance 

ranges of the two species largely overlap (Montero-Pau et al. 2011). 

However, if salinity is low, B. plicatilis shows better performance and 

invests more in the production of diapausing eggs than B. manjavacas, 

even at the cost of decreasing its current proliferation rate. 



Competitive dynamics between rotifers 

- 187 - 

 

Diapausing eggs of B. plicatilis also show a greater viability than those 

of B. manjavacas. Therefore, although B. manjavacas is predicted to be a 

better competitor (i.e., can tolerate a wide range of salinities), a 

growing season of low salinity might offer an opportunity window for 

B. plicatilis to produce the diapausing eggs needed for its persistence. 

Previous empirical studies have analysed the importance of 

competition among coexisting cryptic species of zooplankters and the 

conditions to avoid exclusion (e.g., Seitz 1980; Hebert 1982; Spaak 

1994; Boersma 1995; Ciros-Pérez et al. 2002; Ortells et al. 2003; 

Ciros-Pérez et al. 2004; Montero-Pau et al. 2011). Several of these 

studies emphasise the importance of changing environments and of 

disturbance for the maintenance of coexistence (Hebert 1982; Spaak 

1994; Ciros-Pérez et al. 2001a; Ciros-Pérez et al. 2002; Ciros-Pérez et 

al. 2004). However, empirical evidence on the implications of 

fluctuations is still scarce. When dealing with changing environments, 

zooplankters have to face fluctuations of different magnitude scales: 

those fluctuations leading alternation between suitable and unsuitable 

periods, and those fluctuations causing variation in conditions when 

the habitat is suitable. The long-term competitive output will rely on 

the rates of diapausing stages production under a range of suitable 

conditions, as diapausing stages are the way to survive during 

unsuitable periods. The objective of the present work was to study 

experimentally the long-term competitive outcome of B. plicatilis and 

B. manjavacas. According with the habitat characteristics of these 

species we explored the effect of salinity fluctuations, comparing 

constant salinity and different patterns of time-varying salinity. In our 
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experiments, periods of habitat unsuitability were simulated 

experimentally. In this way, investment in diapause had a role on the 

competitive experimental dynamics. Hence, it included the whole life 

cycle of these rotifers mimicking what is expected to occur in nature. 

Like in the wild, each suitable period the active population was 

initiated by the hatchlings of diapausing eggs produced in previous 

active growth periods (i.e., growing seasons). Two conditions for 

diapause duration were simulated. In one, no diapausing egg was 

allowed to survive longer that a single unsuitable period. Similarly to 

the terminology used for plant seed banks, this pattern was called 

‘without diapausing egg bank’. In the other condition, called ‘with 

diapausing egg bank’, survival of diapausing eggs for longer than a 

single unsuitable period might occur (Hairston Jr 2000). Our 

approach to the experimental study of zooplankton is novel. As far as 

we are concerned, it is the first time that competitive dynamic of two 

zooplanktonic species is explored not only during the growth of the 

active populations in the water column but also taking into account 

the effect of the production of diapausing eggs which remain in the 

sediment and are able to hatch in next growing seasons. Notice also 

that a putative stable species coexistence could rely on diapause. 

We are interested in testing the following points. First, we 

hypothesise that the dynamics of competition depends on salinity; 

specifically the expectation is that low salinity favours B. plicatilis 

whereas high salinity is advantageous to B. manjavacas. This hypothesis 

is based on previous results on single-species cultures, and, if 

accepted, it would show the predictive power of single-species studies 
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on the outcome of competition. Second, we want to know whether 

the divergence in diapause investment of these species (Gabaldón and 

Carmona 2015; Gabaldón et al. 2015), makes possible stable 

coexistence or, at least, delays exclusion. Third, we hypothesise that 

fluctuating salinity affects the competitive outcome, we expect 

coexistence or, at least, an extremely long time to exclusion. 

Materials and Methods 

Rotifer clone foundation and maintenance 

Diapausing eggs were isolated from sediment samples collected in 

Salobrejo Lake (Eastern Spain: 38° 54.765' N, 1° 28.275' W) as 

described in Gabaldón et al. (2013). Permission for the field work was 

issued by the Junta de Comunidades de Castilla-La Mancha, Spain 

(Consejería de Agricultura y Medio Ambiente).Clones of B. plicatilis 

and B. manjavacas were established by asexual proliferation of the 

hatchlings from these diapausing eggs. Each clonal line was identified 

to the species level by PCR-RFLP (Gabaldón et al. 2013). For each 

rotifer species, 25 clones were founded and kept individually as stock 

cultures in 15 mL flasks at 25°C and a salinity of 10 g L-1. Each week, 

one-half of each stock culture was renovated with fresh medium. This 

medium was f/2-enriched saline water (Guillard and Ryther 1962) 

prepared with commercial sea salt (Instant Ocean; Aquarium Systems) 

in which the microalga Tetraselmis suecica (Collection of Marine 

Microalgae of Marine Sciences Institute from Andalusia, Spain) was 

grown as a source of food for the rotifers. Microalgae were grown at 

10 g L-1 salinity, 25°C, and constant aeration and illumination (PAR: 
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approx. 35 μmol photons m-2 s-1). The pre-experimental and 

experimental rotifer culture media were the same as described for the 

stock cultures, except for salinity (see below). 

Experiment 1: Interspecific competition and different salinities 

Experimental populations of B. plicatilis and B. manjavacas were grown 

in competition for 24 day cycles in the lab. Field observations show 

that such short growing seasons can be common and are enough to 

observe both species in the water column in Salobrejo pond 

(Montero-Pau et al. 2011). Moreover, due to the short generation 

time of Brachionus females, this period is enough for diapausing egg 

hatching, to reach population density for sexual reproduction 

initiation, and to produce diapausing eggs (e.g., Hairston Jr 2000). The 

successive growing seasons were restarted from the hatchlings of 

diapausing eggs produced in the previous season, mimicking the 

process that occurs in a natural pond after desiccation and refilling. 

The experiment lasted for six cycles (growing seasons) or less if one 

species was not detected in the diapausing eggs produced in two 

consecutive cycles or no diapausing egg was observed after a cycle.  

These competition experiments were performed under five 

different salinity regimes: (1) 10 g L-1 constant salinity (all growing 

seasons at 10 g L-1); (2) 40 g L-1 constant salinity (all growing seasons 

at 40 g L-1); (3) 10–40 g L-1 alternating salinity (first growing season at 

10 g L-1); (4) 40–10 g L-1 alternating salinity (first growing season at 40 

g L-1); and (5) 10 to 40 g L-1 increasing salinity within each growing 
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season. Thus, the experiment consisted of 15 cultures (five salinity 

regimes × three replicates). 

Before the experiments, pre-experimental cultures of each 

clonal line were started from the stock cultures and grown in culture 

medium at 10 and 40 g L-1 in 75 mL flasks (2 rotifer species × 2 

salinities × 25 clonal lines = 100 pre-experimental cultures). Each 

clonal line was reared in exponential growth for at least three 

generations to control for maternal effects (e.g., Stelzer and Snell 

2006) and to acclimate the rotifers to the experimental conditions. 

Juvenile females from these pre-experimental cultures were used to 

initiate experimental cultures. For each experimental culture (i.e., 

salinity regime and replicate), 10 juvenile females were randomly 

selected from each of the 25 clones of the two rotifer species and 

inoculated in 500 mL of culture medium containing 250,000 cells mL-

1 of T. suecica. Experimental cultures were kept in 2000 mL plastic 

containers at 25°C in darkness and under constant agitation (60 rpm). 

Darkness was selected in order to avoid algae proliferation. Every six 

days, 500 mL of fresh culture medium containing 250,000 cells mL-1 

of T. suecica at 10 or 40 g L-1 was added to each experimental culture. 

Thus, three feeding events within growing season were performed, 

and the final volume at the end of the growing season was 2000 mL. 

In the case of the fifth salinity regime (10 to 40 g L-1 increasing 

salinity), the salinity was increased in each feeding event, first at 20 g 

L-1, then at 30 g L-1 and finally at 40 g L-1. 

At the end of every 24 day cycle (i.e., growing season), rotifer 

populations were filtered through 30 μm Nitex mesh, and the 
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diapausing eggs produced were collected and isolated in Petri dishes 

that were exposed at 25°C to allow water evaporation. Dried 

diapausing eggs were kept at 4°C and in the dark for 28 days to 

ensure the completion of the obligate period of dormancy of 

Brachionus diapausing eggs (Hagiwara and Hino 1989). Then, one-half 

of these diapausing eggs were allocated to species identification, and 

the other half of the eggs were used to restart the following growing 

season. Immediately before the restart of a new growing season, the 

dried diapausing eggs were rehydrated and incubated for 72 hours at 

25°C and constant illumination to induce hatching (Minkoff et al. 

1983; Hagiwara et al. 1985). To improve hatching (Gabaldón et al. 

2015), induction salinity conditions were set at 5 g L-1 for those eggs 

starting the next growing season at 10 g L-1 and at 20 g L-1 for those 

starting at 40 g L-1. All hatchlings were used to initiate the new 

growing season. Because B. plicatilis has an extended diapausing egg 

hatching pattern (Gabaldón et al. 2015), the remaining unhatched 

diapausing eggs were monitored daily, and the new hatchlings were 

successively added to the experimental cultures during the first six 

days of each growing season (i.e., until the cultures were fed for the 

second time). The diapausing eggs remaining unhatched after this 

time were discarded. 

Species identification of the harvested eggs at the end of each 

growing season was performed by PCR-RFLP as detailed in 

Gabaldón et al. (2013). In this case, DNA was extracted from 

individual diapausing eggs. For each replicate, up to 100 diapausing 

eggs were identified if possible. This identification allowed the 
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proportion of diapausing eggs produced by B. plicatilis and B. 

manjavacas during the competition dynamics to be determined. For 

each regime, the analyses were performed until we determined that all 

the identified individuals belonged to the same species during two 

consecutive growing seasons. This information allowed us to assume 

that the other species had been excluded. 

Experiment 2: Interspecific competition, fluctuating salinity, and 
diapausing egg bank 

We used a design similar to that in Experiment 1 to test the effect of 

salinity fluctuations on the competitive dynamics between B. plicatilis 

and B. manjavacas under two different conditions for diapause duration 

(1) ‘without diapausing egg bank’ as in Experiment 1 and (2) ‘with 

diapausing egg bank’. In this second experimental condition, in 

contrast to Experiment 1, the successive growing cycles were started 

with all of the diapausing eggs harvested in the previous season (i.e., 

non-hatched diapausing eggs were not discarded but were inoculated 

in the culture). As a result, recruitment from the diapausing eggs 

might occur at any time during the 24 days of a growing season (i.e., 

delayed hatching can take place). Additionally, the harvested eggs in a 

growing season might have not been produced in that growing season 

(i.e., eggs that could persist in diapause for longer than a single 

growing season are included). These are the conditions that 

characterize a diapausing egg bank (Hairston Jr 2000), as new clones 

can originate from diapausing eggs produced in any of the previous 

growing seasons. Three replicates of each condition were used (2 

conditions × 3 replicates = 6 experimental cultures). Experimental 
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culture populations were founded with hatchlings from diapausing 

eggs formed during Experiment 1 after single-species cultures had 

been achieved. For each replicate, 500 diapausing eggs of each species 

were mixed in a Petri dish with 50 mL of saline water at 10 g L-1 and 

allowed to hatch for 72 hours at 25°C and constant illumination.We 

selected the salinity regime of 10-40 g L-1 alternating salinity because 

Experiment 1 showed that a salinity fluctuation starting at low salinity 

favours B. plicatilis, which was commonly inferior competitor. The 

experiment ended when one of the two species was not detected in 

the diapausing eggs produced after two consecutive growing seasons. 

To avoid fluctuations in food supply, each growing season was 

carried out in a chemostat with 950 mL of culture medium and a 

dilution rate of 0.15 day-1. The inflow rotifer culture médium 

consisted of T. suecica continuously cultured in f/2 medium (see 

above) at 25°C and constant illumination. 

During each growing season, the effluent volume from each 

experimental rotifer culture was recovered in a container with a filter 

of 30 μm Nitex mesh. This mesh size ensured that individuals and 

eggs were retained. Every 1 or 2 days, the material retained on the 

filters was transferred to Petri dishes with saline water, and the 

diapausing eggs were counted. These eggs were then dehydrated and 

kept at 4°C in darkness until the start of the next growing season. 

After 24 days (the duration of the growing season), the rotifer 

populations were filtered, and diapausing eggs were isolated, 

dehydrated and kept at 4°C in the dark for 28 days. 
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As in the first experiment, the next growing season was initiated 

after 28 days of diapause from hydrated diapausing eggs from the 

previous growing season, and one-half of the eggs were allowed to 

hatch. To obtain a successful hatching, the hatching salinity was 10 g 

L-1 if the next season was at 10 g L-1 and 20 g L-1 if it was at 40 g L-1. 

The other half of the diapausing eggs were used for species 

identification based on PCR-RFLP. At least 100 diapausing eggs per 

growing season were identified. 

Statistical analysis 

Heterogeneity among replicates within a cycle and salinity condition 

was tested by chi-square test (counts of diapausing eggs identified as 

B. plicatilis and B. manjavacas × replicate). The association between the 

competitive output (winner species) in Experiment 1 and salinity 

regime (10 g L-1 constant, 40 g L-1 constant, fluctuating salinity) was 

tested by a chi-square test with Yate’s correction for continuity. This 

analysis could not be performed for Experiment 2 due to low count 

number. In these tests, performed with R statistical software v. 2.12.1 

(R Core Team 2014), Ps were compute by Monte Carlo simulation. 

In order to assess the effect of salinity on the diapausing egg 

production of competitors, we computed a rate of diapausing egg 

increase (log of diapausing eggs produced/eggs inoculated per 

growing season) for each replicate where both species were presented. 

The arithmetic difference between the rates of the competitors was 

used as the dependent variable in an ANOVA with salinity (10 g L-1 
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vs. 40 g L-1) as factor. These analyses were carried out using SPSS 

statistical software (IBM Corp 2010). 

Results 

In Experiment 1, the diapausing egg number averaged 1870 per 

growing period and replicate (n = 50; range: 0–3,970) (Fig. 5.1). The 

total number of diapausing eggs identified as B. plicatilis or B. 

manjavacas via molecular methods was 3,738. We followed an average 

of 3.27 cycles per replicate. This relatively low number of cycles was 

due primarily to the absence of one of the species in the diapausing 

eggs produced during two consecutive growing seasons. However, 

one of the replicates at 10-40 g L-1 alternating salinity was lost in its 

fourth cycle due to unknown causes after a 100% frequency of B. 

plicatilis frequency had been achieved, and another replicate 

maintained at the same conditions did not produce diapausing eggs. 

The proportion of B. plicatilis in the diapausing eggs produced after 

each growing season in response to the five salinity fluctuation 

regimes (Experiment 1) is shown in Fig. 5.2. If the salinity regime was 

constant throughout the growing seasons, one of the species was 

excluded in all replicates in a consistent way. At a lower salinity, B. 

manjavacas was excluded; at a high salinity, B. plicatilis was excluded. B. 

plicatilis was also excluded under a fluctuating-salinity regime in which 

the salinity of the first growing season was high (40-10 g L-1 

treatment). 

In the fluctuating salinity regime starting at low salinity and in 

the regime of increasing salinity during the growing season, the same 
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Figure 5.1. Total number of diapausing eggs produced during each 

growing season in response to the salinity fluctuation regime in both 

experiments. Experiment 1 (A) 10 g L-1 constant salinity (all growing 

seasons at 10 g L-1); (B) 40 g L-1 constant salinity (all growing seasons at 

40 g L-1); (C) 10–40 g L-1 alternating salinity (the first growing season at 

10 g L-1 followed by the second growing season at 40 g L-1, and then 

again at 10 g L-1, and so on); (D) 40–10 g L-1 alternating salinity (the 

same as (C) but starting at 40 g L-1); and (E) 10 to 40 g L-1 increasing 

salinity (each growing season started at 10 g L-1, but the salinity was 

gradually increased during the growing season until it reached 40 g L-1); 

and Experiment 2 (F-G) 10–40 g L-1 alternating salinity regime in two 

conditions: without and with diapausing egg bank. 
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Figure 5.1. Continued. 

species was not consistently excluded in the three replicates. In 

certain cases, we found that a species became extinct even after its 

competitor was extinct. In these cases, extinction occurred after a 

substantial decrease in the production of diapausing eggs. The 

competitive output was significantly associated to the salinity regime 

(X2 = 6.96; d.f. = 2; P = 0.03). 

In Experiment 2, the diapausing egg number averaged 5,717 per 

growing season and replicate (n = 24; range: 197-7,457) (Fig. 5.1). A 

total of 2,601 diapausing eggs were identified by molecular methods 

as B. plicatilis or B. manjavacas, and an average of four cycles per 

replicate were followed. The population densities were noticeably 

higher. No anomalies (e.g., a lack of diapausing egg production) 

occurred. Fig. 5.3 shows the proportion of B. plicatilis in the 

diapausing eggs after each growing season in response to a fluctuating 

salinity regime in the two conditions tested (with and without a 

diapausing egg bank). B. plicatilis was excluded by B. manjavacas in all 

replicates of both conditions. However, in one of the replicates of the
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Figure 5.2. B. plicatilis diapausing egg ratio in the egg bank produced 

during each growing season inresponse to the salinity fluctuation regime 

in Experiment 1. (A) 10 g L-1 constant salinity (all growing seasons at 10 

g L-1); (B) 40 g L-1 constant salinity (all growing seasons at 40 g L-1); (C) 

10–40 g L-1 alternating salinity (the first growing season at 10 g L-1 

followed by the second growing season at 40 g L-1, and then again at 10 

g L-1, and so on); (D) 40–10 g L-1 alternating salinity (the same as (C) 

but starting at 40 g L-1); and (E) 10 to 40 g L-1 increasing salinity (each 

growing season started at 10 g L-1, but the salinity was gradually 

increased during the growing season until it reached 40 g L-1). Vertical 

bars are ± SE. 
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Figure 5.3. B. plicatilis diapausing egg ratio in the egg bank harvested 

after each growing season in Experiment 2. Rotifer populations were 

grown under a 10–40 g L-1 alternating salinity regime in two conditions 

(A) without diapausing egg bank and (B) with diapausing egg bank. 

Vertical bars are ± SE. 

 

condition ‘with diapausing egg bank’ B. plicatilis was able to recover –

62 diapausing eggs were observed– in the third growing season, which 

corresponded to one of the low salinity periods (10 g L-1) within the 

alternating salinity regime. 

The replicates in each growing season, were frequently 

heterogeneous in their proportion of diapausing eggs belonging to 

each species. According to chi-squared test, heterogeneity was 

significant (P< 0.05) in seven out of the thirteen cases where the test 

could be applied. 

The difference (B. manjavacas minus B. plicatilis) in the log rate of 

increase of diapausing eggs per growing season average 1.48 and 3.2 

at 40 g L-1 salinity in Experiment 1 and 2 respectively, showing an 
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advantage for B. manjavacas. The corresponding averages were -0.91 

and -1.18 at 10 g L-1. The effect of salinity on this difference was 

significant (F = 21.8; d.f. = 1,29; P< 0.01). 

Discussion 

B. plicatilis and B. manjavacas are a well-documented instance of the 

long-term coexistence of cryptic species (Gómez et al. 2002; Gómez 

et al. 2007), which is a more common phenomenon than previously 

thought. These species also provide a good example of how close 

phylogenetic relationship, especially if associated with an almost total 

morphological similarity, translates into niche overlap, particularly on 

the biotic axis (Gabaldón et al. 2013). However, the two species 

physiologically respond differently to temperatura and salinity 

(Gabaldón et al. 2015), two factors with low spatial variation but with 

large temporal fluctuation in their habitat (Comín et al. 1992). 

Additionally, each species has evolved different patterns for the trade-

off involved in their complex life cycles. B. plicatilis, as an 

opportunistic species, invests earlier in diapause, producing 

diapausing eggs with a higher viability and a more extended hatching 

pattern than B. manjavacas (Gabaldón et al. 2015). In this study, we 

have proved that salinity affects the competitive outcome of B. 

plicatilis and B. manjavacas. The observed outcomes in constant salinity 

support our prediction made from single-species cultures where 

species performance was assessed (Montero-Pau et al. 2011; 

Gabaldón et al. 2015): at low constant salinity B. manjavacas is 

excluded whereas at high constant salinity B. plicatilis is excluded. 



Chapter 5 

- 202 - 

 

Competition experiments between zooplankters have commonly 

focused on the dynamics of interactions in the water column. In 

contrast, our experiment integrated the complete life cycle of the 

competitors from clonal propagation to sex initiation and the 

production of diapausing eggs, and from the production to the 

hatching of these eggs. This approach allowed us to explore whether 

exclusion in the water column implies competitive exclusion as a 

result of the long-term dynamics. Note that the merely observation of 

exclusión in the water column is not conclusive, as the excluded 

competitor could have sufficient time to produce a large number of 

diapausing eggs before its exclusion in the water column. As 

expected, our results show that exclusion occurs rapidly in constant 

salinity, in 2–3 growing seasons, despite the similar performance of 

both species when they grow without competitor. Interestingly, the 

prediction that B. plicatilis was superior to B. manjavacas at low salinity 

has been demonstrated in our experiments. This prediction was based 

not only on the former species growth rate, but also on its potential 

to invest in diapause at this salinity level. Previous works have 

reported that the potential growth rate (rpot; (Montero-Pau et al. 2014), 

Gabaldón and Carmona 2015; Gabaldón et al. 2015), which is a 

measure of performance that takes into account the growth rate and 

the diversion of resources to diapause, was higher in B. plicatilis than 

in B. manjavacas at low salinity. Therefore, our results support that the 

higher performance of B. plicatilis at low salinity is used to produce 

diapausing eggs at the cost of decreasing its rate of asexual 

proliferation, i.e., its within-growing season growth rate. This strategy 
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would cause the demographic dominance of B. plicatilis at low salinity 

in a sequence of growing seasons. Our results suggest that the 

dynamics of competition in the wáter column, if based solely on the 

rates of proliferation, could not be a good predictor of the longterm 

output because the competitor that was in the process of being 

excluded from the wáter column might be contributing more 

diapausing eggs in the sediment bank. 

Under fluctuating salinity, our results showed that the 

dominance of one species over the other also tended to fluctuate. The 

fluctuations in the relative frequencies of the species were consistent 

with the species-specific preferences in terms of salinity: at low 

salinity, the recovery of B. plicatilis was more probable than at high 

salinity, which is consistent with the effect of salinity showed by 

ANOVA. Moreover, Experiment 1 showed that, on average, salinity 

fluctuations tended to delay exclusion by 0.6 growing seasons. Salinity 

fluctuation within a growing season had not a noticeably different 

effect when compared to salinity fluctuation among growing seasons. 

Under fluctuating conditions, B. manjavacas tended to be the persistent 

species. This finding is consistent with the observation that its 

performance was superior to that of B. plicatilis at intermediate fixed 

salinities in single-species cultures (Montero-Pau et al. 2011; 

Gabaldón et al. 2015). Although exclusión was observed in all the 

replicates, the persistent species varied among replicates within the 

same fluctuation regime. This heterogeneity is not surprising given the 

similar fitness of both species (Gabaldón et al. 2015). 
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The saline ponds where these rotifers co-occur in the Iberian 

Peninsula are habitats characterised by substantial salinity fluctuations 

within and between growing seasons (Comín et al. 1992; Montero-

Pau et al. 2011). Hence, coexistence or, at least, an extremely long 

time to exclusion might be expected in our fluctuating experimental 

conditions, but these outcomes did not occur. The lack of long co-

occurrence periods in our experiments can be a result of several 

factors. First, co-occurrence in the wild might be maintained by 

spatial, among-pond heterogeneity. Second, the fluctuation regime in 

our experiments might not be the same process that stabilizes 

coexistence in the wild. Other factors (correlated or not correlated 

with salinity) or other salinity fluctuation patterns might act as 

stabilizing processes. However, this seems to be unlikely because, the 

experimental salinity does have an effect on the species excluded and 

because the experimental salinity fluctuation range was observed in 

the natural habitats where the species occur (Montero-Pau et al. 2011; 

Gabaldón et al. 2015) and both species tolerate the extreme values in 

this range. Third, demographic stochasticity can play a role in 

preventing coexistence. Notice that the number of diapausing eggs 

fluctuated strongly over growing seasons, the number being rather 

low in some of them. This explanation is suggested by the 

heterogeneity among replicates and the variation in the outcome of 

competition in two of the experimental conditions. Additionally, we 

found a few replicates in which a population became extinct after the 

other species had already been excluded. Moreover, variation among 

replicates was higher in Experiment 1, where pulses in the food 
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supply and the corresponding changes in population densities were 

expected to increase intrinsic stochasticity. Contrasting to 

experimental populations, natural rotifer populations are composed 

of extremely large numbers of individuals. For instance, a density up 

to 8 females mL-1 has been reported for the B. plicatilis population of 

Salobrejo pond (Montero-Pau et al. 2011) which considering the pond 

dimensions (Montes and Martino 1987) allow to roughly estimate a 

population size of 230×109 individuals for this species. Hence natural 

populations will have much lower demographic stochasticity. If so, 

small volume experiments could yield exclusion for conditions 

allowing coexistence in nature. 

Experiment 2 incorporates a diapausing egg bank which 

involves the opportunity of delayed hatchlings of diapausing eggs 

produced in previous seasons to take part in the competitive 

dynamics. In nature, not all diapausing eggs produced in a growing 

season hatch when the conditions are favourable for population 

growth, instead they accumulate in the sediment forming diapausing 

egg banks (Kotani et al. 2001; García-Roger et al. 2006). The recovery 

of the outcompeted B. plicatilis only happened in one of the replicates 

carried out ‘with diapausing egg bank’. This constitutes a weak 

evidence of the buffering effect of the diapausing egg bank, but it 

suggests that exclusion of B. plicatilis is more difficult when a bank is 

present as occur in natural habitats. Interestingly, this strategy agrees 

with the fact that diapausing eggs of B. plicatilis have lower 

degradation rates than those of B. manjavacas (Gabaldón et al. 2015), 

allowing them to overcome longer unsuitable periods. 
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This study is the first to empirically address the competitive 

dynamics of the cryptic species B. plicatilis and B. manjavacas by 

growing the two species together. It is also the first pair-wise 

competition experiment in rotifers that includes the whole life cycle. 

We have demonstrated that these competitors are unable to coexist in 

a constant environment. Their competitive capabilities are similar, and 

the result of the competitive dynamics between the two species is 

dependent on the salinity regime. We found that B. plicatilis has higher 

productivity in terms of diapausing eggs produced when it grows at 

10 g L-1, showing a faster growth at low salinity. The timespan of co-

occurrence of these competing species increases due to salinity 

fluctuation and perhaps due to the existence of a diapausing egg bank. 

However, none of these effects is dramatic, and stable coexistence has 

not been found.We suggest that demographic stochasticity, which is 

also associated with fluctuations and is important in small scale 

experiments, is obscuring a stabilizing the effect of fluctuations based 

on niche differentiation. 
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Abstract 

Competition for resources can lead to species exclusion. However, 

this exclusion may be avoided if species present differential 

adaptation to physical environment. Empirical studies on competition 

became difficult when species are phylogenetically close and have 

complex life-cycles. This is the case of B. plicatilis and B. manjavacas, 

two cryptic rotifer species differing in their salinity niches and in life-

history traits related to sex and diapause. These differences have been 

suggested to promote the stable co-occurrence observed in natural 

populations of these species. However, in a previous empirical study 

the outcome of competition between both species was always 

exclusion. Here, we theoretically explored the effect of complex life-

history traits and salinity fluctuations on the long-term competitive 

output of B. plicatilis and B. manjavacas. We developed a model and 

simulated ecological scenarios combining different growing period 

lengths, levels of crossed induction of sex between species and salinity 

regimes. Results showed that a fluctuating salinity regime, an 

intermediate length of the growing seasons and a low level of crossed 

induction of sex are essential conditions to take into account to 

explain coexistence.  

 

 

Key-words: competitive dynamic, diapause, growing season, crossed 

induction to sex, long-term coexistence  
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Introduction 

Competition between species belonging to the same trophic level has 

been a common interest in ecological studies. Interspecific 

competition for the same limiting resources can lead to exclusion of 

some species, which is relevant to understand the geographic ranges 

of species and the limits of species richness in a locality. However, 

exclusion might be delayed if species have similar competitive abilities 

(Hubbell 2001) or avoided by a spatial separation if similar species 

present partially different preferences (Leibold 1991). Moreover, 

species may also differ in their adaptation to physical environment 

and succeed temporarily or even coexist synchronically if this 

environment fluctuates (Chesson and Huntly 1997; Lampert et al. 

1997; Chesson 2000). Finally, coexistence of competing species may 

be based on species differences in life-history trait trade-offs instead 

of on niche differentiation (Lei and Hanski 1998; Wellborn 2002; 

Angert et al. 2009; Montero-Pau and Serra 2011). 

Studies about interspecific competition of closely related 

species have increased in the last decades (Bickford et al. 2007). These 

species constitute an especially interesting case as they are expected to 

share similar ecological requirements (Futuyma and Mitter 1996; 

Webb 2000; Violle et al. 2011) and hence to experience a strong 

competition for resources. The closer the phylogenetic relationship 

between species is, the more likely competitive exclusion occurs 

(MacArthur and Wilson 1967; Violle et al. 2011). Cryptic species 

constitute a limit case; these are species phylogenetically closely 

related and so similar morphologically that traditionally have been 
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considered as a single species (Bickford et al. 2007; Pfenninger and 

Schwenk 2007). Cryptic species are more common than previously 

thought and coexistence of species belonging to the same cryptic 

species complex has been demonstrated in both terrestrial and aquatic 

habitats (Bickford et al. 2007). Cryptic diversity has been discovered 

in the three major groups of zooplankters: copepods, cladocerans and 

rotifers (see reviews in Hebert 1998).  

Brachionus plicatilis is a well-known rotifer cryptic species 

complex constituted by several species which commonly co-occur in 

Spanish ponds (Ortells et al. 2000; Gómez et al. 2002). Coexistence 

among some of the species of this complex having the greatest level 

of morphological differentiation (Ciros-Pérez et al. 2001b) has been 

explained as a result of seasonal succession (Gómez et al. 1995; 

Gómez et al. 1997; Ortells et al. 2003), and both differential use of 

resources and susceptibility to predation (Ciros-Pérez et al. 2001a; 

Lapesa et al. 2002; Ciros-Pérez et al. 2004). However, co-occurrence 

of other species of the complex like B. plicatilis and B. manjavacas, 

which are virtually identical in morphology and size (Campillo et al. 

2005; Fontaneto et al. 2007), seems to be unlikely mediated by a 

different resource use and/or vulnerability to predation, as 

morphological similarity correlates with niche similarity in biotic axes 

(Gabaldón et al. 2013). Long-term co-occurrence of B. plicatilis and B. 

manjavacas has been suggested to be possible by both the salinity 

fluctuations and the temporality of their habitat based on their 

partially different response to salinity and diapause strategies 

(Montero-Pau et al. 2011; Gabaldón et al. 2015b). These two species 
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have co-occurred in inland salt lakes of Eastern Spain since the 

Pleistocene (Gómez et al. 2002; Gómez et al. 2007). These habitats 

are commonly temporary (Comín et al. 1992; Rodriguez-Puebla et al. 

1998) as they dry up and flood more or less regularly following rain 

and temperature patterns. Thus, salinity and hydroperiod (duration of 

the flooding) differ within and between years depending on the 

amount of precipitation. 

Rotifers, as other zooplankters, face the recurrent unsuitability 

of their habitat by producing diapausing stages (McPeek and Kalisz 

1998). Brachionus species are cyclical parthenogens (Wallace et al. 

2006), which means that they proliferate asexually forming clones of 

females, but sexual reproduction is episodically induced in the 

population. In Brachionus, sex is induced by a density-dependent 

chemical signal released by the rotifers that accumulates in the 

environment during population growing. This infochemical is not 

completely species-specific for B. plicatilis and B. manjavacas and some 

levels of crossed induction of sex occur (García-Roger et al. 2009) 

despite these two species are reproductively isolated (Gómez and 

Snell 1996; Ortells et al. 2000; Suatoni et al. 2006). Once sex 

induction takes place, asexual females (amictic) begin to produce 

sexual (mictic) daughters, but asexual reproduction continues 

occurring concurrently. Sexual females produce either encased 

diapausing embryos or males, depending on whether they have been 

fertilized or not. These diapausing eggs, which are the product of 

sexual reproduction, sink to the bottom sediment of the pond where 

accumulate forming an egg bank. These eggs are able to remain in the 



Chapter 6 

 

- 218 - 

 

sediment from years to decades (Kotani et al. 2001; García-Roger et 

al. 2006). When environmental conditions became suitable a fraction 

of the diapausing eggs hatch into asexual females that restart the 

cycle. 

Diapause is a relevant fitness component in rotifers’ life-cycle 

that allows to survive unsuitable periods, and to overcome habitat 

unpredictability (Pourriot and Snell 1983). Because diapausing egg 

production involves a great cost (Aparici et al. 1996; Gilbert and 

Schröder 2004; Clark et al. 2012), the timing of production and 

hatching of these resting stages is critical (Ellner 1997). An early 

investment in sex, and hence in diapause stages, is expected when 

environmental unpredictability is high, which would increase the 

likelihood of producing diapausing stages during the growing season 

(Carmona et al. 1995; Campillo et al. 2009; Gilbert and Diéguez 

2010). B. plicatilis has been shown to have an earlier and higher 

investment in diapause than B. manjavacas (Gabaldón and Carmona 

2015; Gabaldón et al. 2015b). Moreover, the diapausing eggs of the 

former had lower degradation rates and a hatching pattern extended 

in time (Gabaldón et al. 2015b). After these traits, B. plicatilis has been 

regarded as more opportunistic species than B. manjavacas. These 

differences have been suggested to have implications in their 

competitive dynamics and hence in their long-term coexistence. 

Accordingly, it might be expected that the length of the growing 

season could have relevant effects on the competitive outcome.  
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Studies on niche differentiation and life-history traits have 

showed that these two cryptic species differ in traits related to 

diapause (Gabaldón and Carmona 2015; Gabaldón et al. 2015b) and 

in their response to salinity (Montero-Pau et al. 2011; Gabaldón et al. 

2015b). Hence, their response to the major abiotic factors is well 

known, showing that B. plicatilis has its highest performance at lower 

salinity that B. manjavacas. In a previous empirical study (Gabaldón et 

al. 2015a), B. plicatilis and B. manjavacas were grown together under 

several salinity regimes for rows of suitable and unsuitable periods in 

order to know their long-term persistence. This study confirmed the 

differential preferences regarding salinity observed by Gabaldón et al. 

(2015b). However, the competitive outcome was always the exclusion 

of one or the other species, depending on the salinity regime. This 

results contrast with observations of co-occurrence in the wild 

(Gómez et al. 2002; Gómez et al. 2007; Montero-Pau and Serra 2011).  

The aim of the present work was to theoretically address the 

effect of complex life-history traits on the competitive output. 

Despite our study system could be regarded as a specific one, it has 

the advantage that has been thoroughly empirically characterized, 

which allows us to include the most relevant complexities in our 

study. These are: the complete life cycle of these rotifer species which 

includes phases of active growth and others of diapause; the species 

interactions in relation to both exploitative competition and crossed 

induction of sex; the succession of habitat suitable and unsuitable 

periods; and the changes in salinity.  
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Accordingly, we built a model to explore the long-term 

dynamics of these two cryptic rotifer species with similar niches 

inhabiting a temporary aquatic system. The simulated scenarios were 

the combinations of (1) different salinity regimes: constant salinity, 

fluctuating salinity between growing season and fluctuating salinity 

within growing season; (2) a range of growing season lengths and (3) 

different levels of crossed induction of sex. Our focus is to integrate 

available empirical data with complex features to explore stable 

coexistence of both rotifer species. This brings the opportunity to 

understand how empirical data estimated in the laboratory fit 

observations performed in the wild, and to explain disagreements 

between laboratory and field studies.  

Methods 

Model 

The model is composed of two consumer rotifer species, which 

compete for a microalga as single resource. The model assumes 

rotifer habitat to be suitable temporarily, so that a row of suitable 

periods, called ‘growing seasons’ (i.e., the period of time in which a 

rotifer population is active in the water column), each one followed 

by an unsuitable period (e.g., drought), was simulated. The effect of 

growing season length () was explored by performing simulations 

differing in . In each growing season, the active population is 

initiated by hatchlings from diapausing eggs produced in previous 

seasons. Not all diapausing eggs hatch necessarily in the ongoing 

growing season and they can survive several years. Thus, a diapausing 
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egg bank in the lake sediment may exist. During the growing season, 

females proliferate asexually, compete by resources, and produce 

sexual offspring and diapausing eggs. This proliferation is assumed to 

be dependent on salinity, which could change within or among 

growing seasons following predictable patterns (see below). 

Population dynamics in the water column (i.e., within growing 

season) was described by a modification of the model proposed by 

Serra and King (1999) where asexual (Ai) and sexual (Si) female 

densities are modeled for two competing species (i =1, 2) as follow:  

iiioiiioi
i DhAqAmRb

dt

dA
 ,, )1)((      (Eq. 1a) 

ioiiioi
i SqAmRb

dt

dS
,, )(     (Eq. 1b) 

here, b is the species-specific birth rate and is dependent on both the 

level of explicitly modeled resource (R) and the salinity (o), q is the 

species-specific death rate assumed to be density-independent but 

salinity-dependent, m is the mixis ratio or proportion of sexual 

females in the offspring of an asexual female and is a measure of 

investment in sexual reproduction, D is the diapausing egg density 

(see below) and h is the hatching rate of these eggs. It is assumed that 

m is dependent on the species density and h on the time from the 

starting of the growing season, in a species-specific way. For notation 

simplicity, dependence of m and h on other variables is dropped in 

Eq. 1. Note that sexual females, S, do not contribute with births to 

the active population (i.e., to dA/dt or dS/dt). Sexual females only 
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contribute to the diapausing egg bank (see below) either indirectly 

(through males) or directly producing diapausing eggs. Male density is 

not modeled because males do not eat, and because it is expected that 

half sexual females produce males and half sexual females produce 

diapausing eggs (Aparici et al. 1998; Aparici et al. 2002). Thus, S 

determines the diapausing egg production. Both birth and death rates 

are considered to be equal for asexual and sexual females because 

these females are morphologically indistinguishable and they are 

assumed to be functionally equivalents except for their reproductive 

mode.  

Resource ingestion rate is assumed to follow a Monod function, 

KR

RI
RI i

i



*

)(     (Eq. 2a) 

where I* is the maximum ingestion rate, and K is the Monod constant; 

i.e., the resource concentration at which ingestion rate is half the 

maximum. We assumed the Monod constant being independent on 

the consumer species (Gabaldón et al. 2013). As above, the subscript i 

refers to the species. The birth rate is assumed to be proportional to 

the resource ingestion rate (I); that is, consumed resources are 

allocated to consumer population growth with a given conversion 

efficiency. We express the birth rate using bi
* as a parameter: 

KR

Rb
Rb

oi

oi




*

,

, )(    (Eq. 2b) 

Notice that *

,oib is the conversion efficiency times Ii
*. 
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The concentration of resource available in the medium tends to 

decrease depending on the ingestion rate and the number of 

individuals of both species, but the habitat supplies resources at a 

constant rate, Rs: 

  )()( RISAR
dt

dR
iiis     (Eq. 3) 

The dynamics of the diapausing egg bank within the growing 

season is modelled as: 

iiiii
i DhdSp

dt

dD
)(     (Eq. 4) 

where p is the rate of diapausing egg production per sexual female and 

d is the death rate of these eggs.  

The dynamics of the diapausing egg bank (D) during an adverse 

period is described by the equation: 

),()1,0( tDstD iii      (Eq. 5) 

where the time at the two relevant time scales, within- and between-

growing seasons, is explicitly stated. Here 0 and  are respectively the 

start and the end of the growing season, t is the growing season 

number and s is the proportion of diapausing eggs surviving the 

adverse period. 
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Parameterization: fixed parameters  

Table 6.1 shows the set of parameters whose values were keeping 

constant in all the simulations. Values of the rest of parameters were 

varied in order to know whether they affected the competition 

output. For some model parameters lacking of empirical estimations, 

we made derivations from other traits. Birth rates were derived from 

the growth and death rates estimated in Gabaldón et al. (2015b), as b 

= r – q. Resource-dependent birth rate and the algae ingestion rate are 

assumed to be proportional (see above) and to follow Monod 

equations. The corresponding Monod constant (K), which is common 

to both rates, was derived using the relationship K = KC – R(0) 

(mathematical proof in Appendix A), where KC is the Monod constant 

for the Monod function relating the growth rate (r) to the resource 

level (R). We used the KC estimate for B. plicatilis in Ciros-Pérez et al. 

(2001a). R(0) is the resource level for zero growth and it was 

estimated using the maximum growth rate and the KC reported in 

Ciros-Pérez et al. (2001a), and the death rate estimated in Gabaldón et 

al. (2015b). All data the corresponded to the rotifer species Brachionus 

plicatilis (see Appendix 6.A). To derive the maximum ingestion rates, 

we used the relationship I*= Cr
* K, where K is the Monod constant in 

eq. 2 (see above) and Cr
* is the maximum clearance rate. The 

corresponding rates were estimated in Gabaldón et al. (2013). The 

relationship we used was derived from the definition of the clearance 

rate as the resource ingestion rate divided by the resource 

concentration. (Cr(R) = I(R)/R). According to Eq. 2a, Cr(R) decreases 

with R, having a maximum at R = 0, so that Cr
* = I*/K. The daily rate 
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of diapausing egg production per sexual female (p) for each species 

was calculated from the net reproduction rate (NRR) (i.e., the average 

number of diapausing eggs produced per fertilized sexual female) and 

the longevity (LON) estimated in Gabaldón and Carmona (2015). 

Assuming that half of the sexual females are fertilized (Aparici et al. 

1998; Aparici et al. 2002), p = 0.5 NRR/LON. Resource supply and 

the duration of the adverse periods –which were needed to estimate 

diapausing egg survival in these periods– were chosen to allow 

comparison with the experiments performed in Gabaldón et al. 

(2015a). 

Parameters explored 

In order to gain insight into the effect of the salinity regime 

promoting the coexistence of both rotifer species, their long-term 

dynamics growing alone and together were explored under different 

salinity regimes. Moreover, a range of growing season lengths () was 

studied, as well as different degrees of crossed induction of sex (Table 

6.2). In total 858 different scenarios were explored (13 different 

salinity regimes × 6 growing season lengths × 11 values of crossed 

induction of sex) if the competitive dynamics were on focus, and 156 

different scenarios were explored when the dynamics for each single 

rotifer species growing alone were simulated (2 rotifer species × 13 

different salinity regimes × 6 growing season lengths; crossed 

induction of sex, dropped). By comparing the single-rotifer species vs. 

the two-rotifer species dynamics it was possible to find out whether 

lack of persistence was due to competition.  
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Table 6.1. Model parameters that were fixed in the simulations and their 

assumed values. 

Symbol Parameter Value  

b*1,10 

Maximum birth rate of B. 

plicatilis at 10 g L-1 salinity 
0.9251 day-1 (1) 

b*2,10 

Maximum birth rate of B. 

manjavacas at 10 g L-1 salinity 
1.1657 day-1 (1) 

b*1,20 

Maximum birth rate of B. 

plicatilis at 20 g L-1 salinity 
1.0358 day-1 (1) 

b*2,20 

Maximum birth rate of B. 

manjavacas at 20 g L-1 salinity 
1.2254 day-1 (1) 

b*1,30 

Maximum birth rate of B. 

plicatilis at 30 g L-1 salinity 
1.2893 day-1 (1) 

b*2,30 

Maximum birth rate of B. 

manjavacas at 30 g L-1 salinity 
1.2152 day-1 (1) 

b*1,40 

Maximum birth rate of B. 

plicatilis at 40 g L-1 salinity 
0.8916 day-1 (1) 

b*2,40 

Maximum birth rate of B. 

manjavacas at 40 g L-1 salinity 
0.9248 day-1 (1) 

q1,10 

Death rate of B. plicatilis at 10 g 

L-1 salinity 
0.20189 day-1 (2) 

q2,10 
Death rate of B. manjavacas at 

10 g L-1 salinity 
0.42978 day-1 (2) 

q1,20 

Death rate of B. plicatilis at 20 g 

L-1 salinity 
0.425918 day-1 (2) 

q2,20 

Death rate of B. manjavacas at 

20 g L-1 salinity 
0.567559 day-1 (2) 

q1,30 

Death rate of B. plicatilis at 30 g 

L-1 salinity 
0.726335 day-1 (2) 

q2,30 

Death rate of B. manjavacas at 

30 g L-1 salinity 
0.632440 day-1 (2) 

q1,40 

Death rate of B. plicatilis at 40 g 

L-1 salinity 
0.4966 (day-1) (2) 

q2,40 

Death rate of B. manjavacas at 

40 g L-1 salinity 
0.4480 (day-1) (2) 
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Table 6.1. Continued. 

Symbol Parameter Value  

m1 Mixis ratio, B. plicatilis 0 if Ne1 < 2.9 ind·mL-

1; otherwise, 0.0346 

Ne1.  

Maximum value 0.1. 

(3) 

m2 Mixis ratio, B. manjavacas 0 if Ne2 < 8.2 ind·mL-

1; otherwise, 0.0093 

Ne2.  

Maximum value 0.1  

(3) 

Rs Resource supply 30000 cells mL-1 day-1 (4) 

I* Maximum ingestion rate 

(consumer-independent) 

0.2615 cells ind-1 day-1 (5) 

K Monod constant for the 

ingestion and birth rates 

(consumer-independent) 

736.8 cells mL-1 (6) 

p1 Rate of diapausing egg 

production, B. plicatilis  

0.1199 eggs per female-

1 day-1 

(7) 

p2 Rate of diapausing egg 

production, B. manjavacas  

0.0865 eggs per female-

1 day-1 

(7) 

d1 Death rate of diapausing 

eggs, B. plicatilis (growing 

season) 

0.002 days-1 (8) 

d2 Death rate of diapausing 

eggs, B. manjavacas (growing 

season) 

0.006 days-1 (8) 

s1 Proportion of diapausing 

eggs surviving the adverse 

period, B. plicatilis 

0.047 (9) 

s2 Proportion of diapausing 

eggs surviving the adverse 

period, B. manjavacas 

0.135  (9) 
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Table 6.1. Continued. 

Symbol Parameter Value  

h1 Time-dependent diapausing 

egg hatching rate, B. plicatilis (t 

= 0-16 days) 

0.0026, 0.2955, 0.0267, 

0.0296, 0.0436, 0.0307, 

0.0288, 0.0073, 0.0251, 

0.0252, 0.0097, 0.0025, 

0.0082, 0.0000, 0.0126, 

0.0023, 0.0000 

hatchings day-1 

(10) 

h2 Time-dependent diapausing 

egg hatching rate, B. manjavacas 

(t = 0-16 days) 

0.0356, 0.4281, 0.0609, 

0.0079, 0.0044, 0.0043, 

0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 

0.0000, 0.0000 

hatchings day-1 

(11) 

(1) Derived from the intrinsic growth and death rates estimated 

empirically in Gabaldón et al. (2015b). 

(2) Gabaldón et al. (2015b). 

(3) This defines a truncated linear relationship between mixis ratio and the 

effective density, Ne. Nei = Ni + fi,j Nj where N is the species density, the 

subscripts i and j refer species, and fi,j  is a factor from 0 to 1 accounting 

for the crossed induction of sex. Values estimated in Gabaldón et al., 

(2015b). For each species, a different density threshold for sex initiation 

was assumed accordingly to Gabaldón and Carmona (2015).  

(4) Chosen in order to compare simulation to experimental set up in 

Gabaldón et al. (2015a). 
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Table 6.1. Continued. 

 (5) Derived from clearance rate estimated empirically in Gabaldón et al., 

(2013) and the Monod constant (see parametrization section). 

(6) Derived from Ciros-Pérez et al. (2001a) (see parametrization section). 

(7) Derived from Gabaldón and Carmona (2015) (see parametrization 

section). 

(8) Gabaldón et al. (2015b). 

(9) As (7) and assuming a length of the adverse period chosen to compare 

simulations to experimental set up in Gabaldón et al. (2015a). 

(10) Gabaldón et al. (2015b). Diapausing egg hatching rate is zero after 16 

days since the beginning of the growing season. 

  

Simulations: initial conditions and time explored  

Simulations were run for 1000 growing seasons. At the starting of any 

growing season, the resource level was fixed at 2 × 105 cells mL-1, and 

population density (A+S) was assumed to be zero, so that diapausing 

egg hatching was required to initiate population dynamics in the water 

column. The only exception was the first growing season where no 

previous diapausing egg reservoir was assumed, and populations 

started with 1 asexual female mL-1 per rotifer species. Data recorded 

were (1) density of diapausing eggs in the bank for each species (zero 

diapausing eggs at the end of a growing season means exclusion of 

the species); (2) the day of the exclusion if it occurs; and (3) the 

population density of each species over time within a growing season, 

which was only recorded in specific cases of coexistence to explore if 

species exclusion took place during the growing season.  
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Table 6.2. Parameters varied among simulations 

Symbol Parameter/Condition Tested values 

Salinity regime  

N Salinity kept constant at N; 10, 20, 30 & 40 gL-1 

N1-N2 Cyclical oscillation of salinity  

N1 a season, N2 the next, 

N1 the next and so on. 

10-20, 10-30, 10-40, 20-

10, 30-10, 40-10 

N1toN2 Salinity increase at constant 

rate, from N1 to N2, within 

each growing season 

10to20, 10to30, 10to40 

Other parameters  

ɷ Growing season length 10, 18, 24, 50, 100 and 

250 d 

f Crossed induction to sex 0 (absence of crossed 

induction), 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 

1 (complete crossed 

induction) 

 

Analysis 

Our assumed model is deterministic. However, as a number of 

conditions were simulated, we analysed the relevance of different 

factors mimicking statistical analysis. Differences on the competitive 

outcome (i.e., in the number of cases of coexistence or competitive 
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exclusion) between constant and fluctuating salinity regimes were 

assessed by a chi-square test with Yate’s correction for continuity. For 

those scenarios were competitive exclusion occurred, robust 

ANOVAs were applied on the time (i.e., growing season) for 

exclusion. In a first ANOVA the following salinity fluctuation 

regimes were compared: (a) among-growing season fluctuations with 

the first growing season at 10 g L-1 salinity, (b) among-growing season 

fluctuations with the first growing season at salinity >10 g L-1 and (c) 

within-growing season fluctuation, which starts at 10 g L-1 salinity. 

Moreover, two different ANOVAs were carried out to assess the 

effect of crossed induction of sex on the average growing cycle at 

which B. plicatilis and B. manjavacas were excluded. Chi-square tests 

with Yate’s correction for continuity were also performed to assess 

(1) the differences in the competitive outcome (i.e., the number of 

cases of persistence) between absence of and complete crossed 

induction of sex for each species, and (2) the effect of the 

hydroperiod length on the competitive outcome (i.e., B. manjavacas 

exclusion, B. plicatilis exclusion or species coexistence). All the tests 

were performed with R statistical software v. 3.1.1 (R Core Team 

2014). 

Results 

The effect of competition is evident when the number of scenarios in 

which one and/or the other species persisted is compared between 

single rotifer species and two-rotifer species dynamics, the later for 

the two extreme values of the crossed induction of sex (i.e., absent 
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and complete) (Fig. 6.1). B. plicatilis and B. manjavacas were able to 

persist in most of the simulated scenarios when growing alone, but 

competitive displacement happened when they were on interaction. 

This displacement was much stronger when there was a lack of 

specificity in the signal inducing sex (i.e., complete crossed induction 

of sex). The outcomes of all the simulations for the two-rotifer 

species dynamics showed that in 22 out of the 858 scenarios both 

species were excluded (Appendix 6.B). These scenarios were those 

with 30 or 40 gL-1 constant salinity and the shortest tested 

hydroperiod (10 days). Not surprisingly, results from single-rotifer 

species dynamics showed that in these salinity and hydroperiod 

conditions neither species could persist if they were growing alone 

(Appendix 6.B). Coexistence was found in 365 scenarios, whereas 

extinction of one of the species occurred in 471 scenarios –B. plicatilis 

became extinct in 332 and B. manjavacas in 139. B. plicatilis could 

persist if growing alone in all the salinity and hydroperiod conditions 

corresponding to these 332 cases where it was excluded. Thus, 

although its exclusion in some of the salinity and hydroperiod 

conditions might be dependent on the assumed value for the crossed 

induction of sex, these exclusions were caused by the presence of the 

competitor B. manjavacas. From the 139 scenarios in which B. 

manjavacas is the excluded species, nine are cases without crossed 

induction of sex, and in six out of these nine cases B. manjavacas could 

not persist growing alone. Surprisingly, a facilitation case was found. 

At 30-10 g L-1 salinity and 10-days hydroperiod B. manjavacas could 

not persist if growing alone but coexisted with B. plicatilis when  



Chapter 6 

 

- 234 - 

 

 

Figure 6.2. Percentage of cases for the four possible competitive 

outputs after simulations in each constant salinity regime. 

 

crossed induction of sex ranged 0.1-0.5. According to simulation 

results, in a very large number of scenarios where only one of the 

pecies persisted (471= 332 resulting in B. plicatilis exclusion + 139 in 

B. manjavacas exclusion); the exclusion was due to the competitive 

interaction between the two species. 

Coexistence of B. plicatilis and B. manjavacas was rarely found at 

constant salinity regimens (Fig. 6.2). At 10 g L-1 salinity, B. plicatilis was 

able to exclude B. manjavacas except in those scenarios with extended 

hydroperiod (100 and 250 days) where coexistence occurred. In 

contrast, at the two higher salinities (i.e., 30 and 40 g L-1) B. manjavacas 

excluded B. plicatilis in all simulations, except in those with the 

shortest hydroperiod where neither of the two species persisted. At 
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constant 20 g L-1 salinity, exclusion was dependent on hydroperiod 

length: B. plicatilis was excluded by B. manjavacas when the hydroperiod 

was long, but this outcome reversed with short hydroperiods. 

Coexistence at 20 g L-1 constant salinity was only possible when there 

was not crossed induction of sex between species. 

Fluctuation in salinity favored coexistence (Fig. 6.3). The 

percentage of cases where both species persist together was higher 

under fluctuating salinity regime (56.4%) than under constant salinity 

regime (11.7%) (X2= 149.8, df = 1, P < 0.001). The highest 

percentages of coexistence were found in regimes with varying 

salinities between 10 and 20 g L-1 (i.e., 10-20, 20-10 and 10 to 20). The 

percentage of cases in which both rotifer species coexisted was 80% 

for this range of salinity fluctuation, whereas it was 50% and 40% for 

intermediate and high levels of fluctuation respectively (i.e., with 

varying salinities between 10 and 30 g L-1 and with varying salinities 

between 10 and 40 g L-1, respectively). Moreover, the highest 

percentages of coexistence occurred at salinity regimes starting at 10 g 

L-1 and varying between growing seasons (Fig. 6.3). This initial salinity 

condition was the one favoring B. plicatilis. When coexistence was not 

found, an effect of the scheme of salinity fluctuation regime on the 

time for exclusion was observed (robust ANOVA for each species, 

both P < 0.001). Exclusion tended to occur later when the fluctuating 

regime started at the lowest salinity (data not shown).  

Hydroperiod length also affected the competitive outcome (X2 

= 128.2, df = 4, P < 0.001) in a way suggesting species-dependence 

(Fig. 6.4). At short and intermediate hydroperiods B. manjavacas had a 
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higher tendency to be excluded, increasing its competitive superiority 

at long hydroperiods. The opposite pattern (i.e., the observed 

competitive superiority of B. plicatilis) was observed at the shortest 

hydroperiod. As stated above, the shortest hydroperiod negatively 

affected to both species when salinity was constant and high (i.e., at 

30 and 40 g L-1) resulting in exclusion of both species. The most 

favorable scenario for the coexistence was a hydroperiod of 50-days. 

Moreover, the hydroperiod length effect was different for the two 

schemes of salinity fluctuation regime. While coexistence did not 

occur at long hydroperiods for among-growing-season fluctuation, B. 

manjavacas being favored, coexistence was promoted by long 

hydroperiods when within-growing-season fluctuation was assumed. 

Crossed induction of sex affected rotifer species persistence, 

coexistence being promoted at low values of this parameter (Fig. 6.5). 

There were a few cases where crossed induction of sex did cause 

coexistence (see above). B. plicatilis, the species more negatively 

affected by that crossed induction, showed a significant four-fold 

increase in its percentage of exclusion when crossed induction of sex 

was complete as compared to the absence of crossed induction (X2 = 

19.8, df = 1, P < 0.001). Instead the percentage of cases in which B. 

manjavacas was excluded did not statistically differ between these two 

conditions of crossed induction of sex, (X2 = 2.3, df = 1, P = 0.133). 

There was not statistical effect of the crossed induction values on the 

average growing season at with exclusion occurred for neither species 

(robust ANOVA for each species, both P > 0.112). 
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In general, the cases of long-term coexistence, which was 

assessed at the diapause stage, corresponded to cases where both 

species coexist within growing season along the complete 

hydroperiod. However, at the longest hydroperiods (i.e., 100 and 250 

days) B. plicatilis was excluded from the water column within each 

growing season, but was able to produce enough diapausing eggs to 

allow its long-term coexistence (see Fig. 6.6 as an instance). 

Discussion 

B. plicatilis and B. manjavacas are a case study of coexistence and 

exclusion of species with remarkable morphological similarity. These 

two cryptic species have co-occurred in Easter Spain since the 

Pleistocene (Gómez et al. 2002; Gómez et al. 2007). They co-occur 

frequently in inland, shallow saline ponds, where spatial niche 

separation is unlikely, at least for long periods (Montero-Pau et al. 

2011). However, an experimental system allowing their coexistence 

has not been found (Gabaldón et al. 2015a). After a series of studies, 

it is known that they have similar competitive abilities (Gabaldón et 

al. 2015a), they almost completely overlap in the biotic axis of their 

niches (Gabaldón et al. 2013), and they experience a strong 

exploitative competition (Gabaldón et al. 2015a). Consequently, their 

coexistence in a non-fluctuating, spatially homogeneous environment 

is rather difficult. However, these species differ in their response to 

salinity and temperature, as well as in life-history traits regarding 

timing and investment in sex and diapause (Montero-Pau et al. 2011; 

Gabaldón and Carmona 2015; Gabaldón et al. 2015b). Because their 
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habitat shows strong seasonality and random temporal fluctuations 

(Comín et al. 1992), it has been hypothesized that a fluctuating regime 

of salinity is essential for their stable coexistence (Montero-Pau et al. 

2011; Gabaldón et al. 2015b). Our theoretical model included a high 

number of parameters estimated for these species describing their 

life-history traits, their consumer behavior and their response to the 

physical environment. Competitive dynamics yielded the four possible 

qualitative outcomes –i.e., no species persists, one or the other species 

persists, and the two species persist–, which shows that the 

parametric space explored in our model and the fixed parameters 

assumed are not biased to find a given result. We also checked that 

the within growing season population densities are in the range of the 

observed values for these species (e.g., Carmona et al. 1995; Carmona 

et al. 2009; Montero-Pau et al. 2011). Most interestingly, we found 

that (1) a fluctuating salinity regime, (2) an intermediate length of the 

growing seasons and (3) a low level of crossed induction of sex are 

essential conditions to take into account to explain coexistence.  

Pre-interactive and post-interactive niches 

A first remarkable result was that these rotifers, even being fast 

colonizers, might be jeopardized by short growing seasons (e.g., very 

ephemeral ponds; 10 days in our simulations). The life cycle cannot 

be successfully completed and recruitment of diapausing eggs is too 

low. It has been reported that sexual reproduction could be very 

sensitive to non-optimal conditions (Snell and Carmona 1995; Snell et 

al. 1998). Interestingly, some differences between species were 



Life-history, environment and competition: modelling rotifers 
 

- 243 - 
 

working. On one hand, under short hydroperiods B. plicatilis failed to 

persist at high salinity. Despite being an early-sex species, B. plicatilis 

performs better at low salinity (Gabaldón and Carmona 2015; 

Gabaldón et al. 2015b), which implies that at high salinity it was 

unable to proliferate enough to reach the population density to induce 

sex. On the other hand, B. manjavacas, which is a late-sex species, 

failed regardless the salinity, –suggesting that it had not enough time 

to produce diapausing eggs. This delay of B. manjavacas to initiate sex 

seems to make it more sensitive to salinity fluctuation, and is 

consistent with the idea that B. plicatilis is a more opportunistic species 

(Gabaldón et al. 2015b). 

Most of the simulated physical environments allowed 

persistence of both species if growing alone (91%), implicating a high 

potential overlap between their pre-interactive abiotic niches. 

However, our model showed a strong reduction of niche overlap due 

to competitive exclusion when both species were interacting. For the 

set of conditions simulated, the reduction was not even; B. plicatilis 

having a higher reduction than B. manjavacas. B. plicatilis was favored 

by low constant salinity, and had its private niche at low salinity and 

relatively short hydroperiods; while the opposite held for B. 

manjavacas. This is consistent with the model assumptions, which in 

turn are based on experimental observations. The added information 

in the present study is that, when all the experimental observations 

were implemented in a rather complex life cycle, the dynamics fitted 

in the basic signatures previously observed in single species 

experiments. 
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Exclusion vs. coexistence 

Surprisingly, we found that species coexistence is possible at constant 

salinity. That coexistence was observed (1) at the lowest constant 

salinity and long growing seasons for any value of crossed induction 

of sex, and (2) at medium-low constant salinity and very low crossed 

induction of sex. At these salinities, the species performances for 

clonal proliferation are very similar (Montero-Pau et al. 2011; 

Gabaldón et al. 2015b). This suggests that an equalizing mechanism 

exists, and that a weak stabilizing mechanism might be sufficient to 

allow stable coexistence (Adler et al. 2007). A possible explanation for 

the cases of coexistence at constant salinity is that formulated by 

Montero-Pau and Serra (2011), consisting in a negative effect of the 

investment in diapause on the competitive capability of the best-

performing species. Allocation of resources in sex and diapause might 

cause demographic fluctuations allowing coexistence of opportunistic 

and non-opportunistic species. This effect is expected to be more 

important when crossed induction of sex is lower. If so, the 

differential patterns for sex induction of these two rotifer species 

might have a role on coexistence.  

Salinity fluctuation dramatically promotes competitor 

coexistence, in line with the theory of the ‘storage effect’. This theory 

states that fluctuations in the physical environment, when combined 

with species specialization regarding that environment and a life-cycle 

stage relatively free of competition (e.g., diapausing stages), are an 

important mechanism for coexistence of species with identical 

resource use (Chesson 2000). Most likely, in our model simulations 
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we were observing the predictions of the storage effect theory, but 

combined with other mechanisms (e.g., Montero-Pau and Serra 2011). 

Crossed induction of sex generally acted as an antagonistic factor, 

making coexistence difficult. This is expectable because, if crossed 

induction of sex occurs, the species with a high population density 

can drive the species with low density excluded from the water 

column. Crossed induction of sex has been demonstrated in the 

species of the B. plicatilis complex, and different levels of species-

specificity have been detected (Stelzer and Snell 2006; García-Roger 

et al. 2009). According to our results, B. plicatilis is more negatively 

affected by crossed induction of sex. This effect may be explained by 

the fact that B. plicatilis invests early in sex during the growing season, 

when its population density is low (Gabaldón and Carmona 2015; 

Gabaldón et al. 2015b). If it also responds to infochemicals released 

by B. manjavacas, B. plicatilis is likely to induce sex at too low 

population densities, which reduces both the number of sexual 

females and the chances of encounters among males and females 

resulting in a lower production of diapausing eggs (Serra and 

Carmona 1993; Serra et al. 2004).  

Hydroperiod length had a non-monotonous effect on 

coexistence, this being more common at intermediate lengths. As 

expected, hydroperiod length favored B. manjavacas, the least 

opportunistic, the best competitor of both species, whereas it was 

detrimental for B. plicatilis. The corresponding patterns of sex and 

diapausing egg production explain well these contrasting effects. 
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Thus, not surprisingly, the performance of these species was more 

even at intermediate hydroperiod lengths.  

Modeled and experimental dynamics 

Contrarily to what we observed in our model simulations, microcosm 

competition experiments between B. plicatilis and B. manjavacas failed 

to find such coexistence, despite these experiments mimicked salinity 

fluctuations and rows of growing seasons each one followed by an 

adverse period (Gabaldón et al. 2015a). Nevertheless, this 

disagreement between experimental and theoretical results is partial. 

First, both experimental and modeled populations are unable to 

coexist under the most extreme constant salinity regimes (i.e., 10 and 

40 g/L), and the same consistence was found for a regime of strong 

salinity fluctuation within a growing season (i.e., 10 to 40 regime). 

Second, the model –in some scenarios– and the experiments agree 

that, if fluctuating, the salinity at the onset of the dynamics can be 

important. When the salinity at the onset is the highest, B. plicatilis is 

the species more likely excluded. However, these coincidences do not 

dismiss the striking disagreement regarding coexistence, particularly 

because coexistence was found in simulations assuming both 

hydroperiod and regimes for salinity fluctuation almost identical to 

those set in the experiments with contrasting results. 

A factor that may help to explain the disagreement between 

modeled and experimental populations is the importance of crossed 

induction of sex on the competitive interaction between species, and 

if this effect is symmetrical. Notice that intraspecific variation in the 
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capability for that crossed induction exists (García-Roger et al. 2009). 

However, as these species co-occur in the wild (Montero-Pau et al. 

2011), we favor the model results over the experimental ones. An 

important difference between microcosms on the one hand, and 

model and nature, on the other, is the role of demographic 

stochasticity. Demographic stochasticity, which was not included in 

the model, is not expected to be a strong factor in the wild, given the 

typical rotifer population sizes. For instance, it can be estimated that 

population size of B. plicatilis in Salobrejo pond is 2.3 × 1011 

individuals (Montes and Martino 1987; Montero-Pau et al. 2011). 

However demographic stochasticity could be important in 

experimental systems, due to the culture volume. Similarly, diapausing 

egg banks are huge in the wild and in the model, but much smaller in 

the experimental populations. Hence, some of the observed 

extinctions in the experimental cultures could be random.  

Our study has shown that case studies can be addressed 

theoretically after intense experimental studies so that almost all 

relevant parameters are known or a sound conjecture on their value 

can be performed. Our model did not intend to be general, but one 

focused on a specific case study. However, this allowed us to build a 

rich-detail model, which has been able to represent a system with 

species with complex life cycles living in a complex environment. Our 

simulations showed that this model clarifies how intrinsic and 

extrinsic complexities have to be combined in order to gain insight 

into the factors allowing species persistence in a competitive scenario. 
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Chapter 7 

 

 

Final remarks and conclusions 

 

 

 

How biological diversity is generated and maintained is a fundamental 

question in ecology and evolutionary biology (Pressey et al. 2003; 

Chase and Myers 2011). Traditionally, it has been considered that 

plant diversity is more difficult to explain than animal diversity 

(Hutchinson 1959; Huston 1979), as plants use the same resources. 

However, the discovery in the last two decades of similar animal 

species, being cryptic species an extreme case (Losos 2008; Violle et 

al. 2011), with similar ecological niches has challenged this classical 

idea (McPeek and Gomulkiewicz 2005; Leibold and McPeek 2006). 
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Niche retention (or niche conservatism) is strong among congeneric 

species, which makes more difficult to explain their persistence and 

contribution to diversity, in the Earth and particularly in single 

locations. Not surprisingly, some ideas initially developed to explain 

plant coexistence have been applied to explain the diversity of 

ecologically similar animals. This is the case of the mechanistic 

Tilman’s models (Tilman 1982) initially focused on both plants and 

phytoplankton species (Tilman 1982; Sommer 1989; Huisman et al. 

1999), but afterwards applied to, for example, rodents, snails or 

zooplankton (Abramsky and Rosenzweig 1984; Rothhaupt 1988; 

Boraas et al. 1990; Kreutzer and Lampert 1999; Byers 2000; Ciros-

Pérez et al. 2001a). Particularly in rotifers, Rothhaupt (1988), Boraas 

et al. (1990) and Ciros-Pérez et al. (2001a) have predicted the 

competitive outcome of congeneric species using these models. 

Additionally, theoreticians have performed a long lasting effort to 

delineate new mechanisms making compatible the expected 

competition between similar animal species and their observed co-

occurrence, and hence biodiversity maintenance (Shmida and Ellner 

1984; Zhang and Hanski 1998; Chesson 2000; Montero-Pau and Serra 

2011).  

But, what ‘similar’ species means? Usually the first information 

collected on a species is its morphological description and sampling 

location. Thus, ‘similar’ usually means ‘morphologically similar’ and 

‘ecologically similar’, the latter being stated frequently in gross terms 

(e.g., habitat sharing), and more rarely in a more technical way (e.g., 

overlap of their pre-interactive niches). The species studied in this 
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thesis fit in this conception of ‘being similar’. Firstly, B. plicatilis and B. 

manjavacas are two rotifer species almost morphologically identical 

(Campillo et al. 2005; Fontaneto et al. 2007). Secondly, both rotifer 

species co-occur in a number of shallow, saline ponds in the Iberian 

Peninsula (Gómez et al. 2002; Gómez et al. 2007; Montero-Pau et al. 

2011). How theses similarities are relevant to predict competition? 

Firstly, ecological similarity provides opportunities to interact by 

sharing the distribution ranges. This is the case of our model species, 

which, as proved in this thesis overlap their ecological tolerance 

ranges (salinity, temperature), resource use (food intake) and 

geographical distribution. Secondly, morphological similarity is related 

to (1) resource use and (2) similar vulnerability to the same predators 

(Chapter II). However, morphological similarity and apparent 

complete biotic overlap may not necessarily lead to strong 

competitive interaction. For example, a differential physiological 

tolerance of closely related consumers to chemical defenses in their 

resources might be decoupled from a morphological divergence 

(DeMott 1999). This is suggested by differential tolerance to toxicants 

between congeneric species (Sturmbauer and Opadiya 1999; Umina 

and Hoffmann 1999; Mcgovern and Hellberg 2003). As another 

instance, different behaviors can cause differences in the vulnerability 

to predation without differentiation in morphology (Losey and 

Denno 1998). In our study case, we found that the low morphological 

differentiation between B. plicatilis and B. manjavacas translates into 

very low niche differentiation regarding biotic axes (Chapter II). This 

contrasts with previous reports on other species belonging to the 
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same cryptic complex. This discrepancy is likely resulting from the 

fact that in the latter case, species present differences in body size that 

are involved in their differential resource use and vulnerability to 

predators (Ciros-Pérez et al. 2001a; Ciros-Pérez et al. 2001b; Ciros-

Pérez et al. 2004; Lapesa et al. 2004). Therefore, the critical challenge 

to understand co-occurrence of ‘similar’ species is to identify in what 

way, if any, these species differ. If these differences exist, then there 

are chances that trade-offs between their performances could emerge 

enabling their stable coexistence (Chesson 2000).  

One of the major changes in ecology during the last decades of 

the previous century was the transition from an equilibrium, spatially 

homogeneous approach for the population and community dynamics 

to a new paradigm that, besides equilibrium, includes the role of 

disturbances, environmental fluctuations and spatial heterogeneity in 

shaping critical ecological features –as the population density, the 

species richness or the species composition (Hutchinson 1961; 

Connell 1978; Holt 1984). This conceptual revolution has affected 

many areas of ecology, and not surprisingly has had effects on the 

ideas to explain the co-persistence of similar species. For instance, 

trade-offs between different aspects of species performance 

combined with habitat heterogeneity may cause each competitor 

being superior in a locality or microhabitat, and then species co-

occurrence even at small spatial scale, could be explained by source-

sink models (Levin 1974; Shmida and Ellner 1984; Holt 1993). 

Moreover, species in a guild could be ecologically equivalent, with 

similar fitness in their complete ecological spectrum, so that their 
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dynamics would follow a slow random walk to extinction of all 

species except one (Hubbell 2001). None of these two explanations 

seems to be likely for the two species studied in this thesis. Firstly, the 

co-occurrence of B. plicatilis and B. manjavacas is suggested to be 

ancient, since the last glaciations in the Pleistocene (Gómez et al. 

2000; Gómez et al. 2007), so a transient co-occurrence seems to be an 

unlikely explanation. Secondly, the ponds these species inhabit are 

shallow, lacking spatial heterogeneity, which makes improbable a co-

occurrence mediated by habitat heterogeneity. Moreover, both rotifer 

species have been observed together in the water column (Montero-

Pau et al. 2011). 

A coexistence mechanism that is increasingly gaining attention 

is the so-called ‘storage effect’ (Chesson 2000). This mechanism states 

that competitive exclusion of species may be avoided by the 

combination of fluctuations in the physical environment, a differential 

ecological specialization regarding that environment, and the 

investment in a life cycle stage relatively free of competition (e.g., 

diapausing stages). Our model study seems to fit in this explanatory 

mechanism because the physical environment experienced by B. 

plicatilis and B. manjavacas fluctuates (Comín et al. 1992; Rodriguez-

Puebla et al. 1998); there is evidence of specialization of both species 

to one of the main abiotic factors in this environment (i.e., salinity; 

Montero-Pau et al. 2011; Chapter III) and their reproductive cycle 

involves the investment in persistent long-lived diapausing eggs. As 

we have discussed, the differential response to salinity suggests that a 

fluctuating environment may allow long-term co-occurrence of both 
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species. In fact, we have proved that under a constant environment 

one or the other species is consistently excluded from the competitive 

dynamics (Chapter V). However, the experimental competitive 

dynamics we performed in microcosms failed to found coexistence 

(Chapter V). A reasonable explanation for species exclusion in the 

microcosms under a fluctuating environment, even when a diapausing 

egg bank was present, is the effect of the demographic stochasticity. 

Laboratory rotifer population and diapausing egg bank sizes were 

small, in contrast with their sizes in natural habitats. For instance, B. 

plicatilis population size is estimated to be 2.3 × 1011 individuals in 

Salobrejo pond (Montes and Martino 1987; Montero-Pau et al. 2011), 

where demographic stochasticity is unlikely to have important effects. 

Accordingly, the size of the experimental population has to be taken 

into account in future studies on competitive dynamics. Performing 

experiments in mesocosms instead of microcosms could prevent 

species exclusion caused by demographic stochasticity.  

Our results show that the studied system, apart from 

qualitatively fitting in the assumptions of the ‘storage effect’ theory, 

also points out a possible role of differentiation in life-history traits in 

promoting species coexistence. The ‘storage effect’ theory remarks 

the relevance of life-history traits in competitive dynamics (Chesson 

and Huntly 1988; Chesson and Huntly 1989; Chesson 2000). Notice 

that organism’s life history is not the response to a single factor or 

process, namely competition, but is envisaged as the result of a suit of 

environmental factors acting as selective pressures on vital traits –

such as survival, growth, age and size maturity, age-specific fertility, 
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rates related to resting stages, etc.– that directly affect fitness and are 

linked by trade-offs (Stearns 1992; Roff 1993). Here we stress that the 

‘storage effect’ theory is not based on divergence in life-history traits. 

The relevance of both competition and environmental fluctuations in 

life-history evolution was recognized early with the theory of r/K -

selection (MacArthur and Wilson 1967; Pianka 1970). However, apart 

from r/K-selection theory, the role of divergence on life-history traits 

on species coexistence has received little attention. Some theoretical 

models (Zhang and Hanski 1998; Montero-Pau and Serra 2011) have 

suggested that the cost of males and reproduction could also promote 

coexistence of competitors with complex life cycles. The stable 

coexistence mechanism proposed by Montero–Pau and Serra (2011) 

is based on the negative effect that investment in sexual reproduction 

and diapause will cause on the competitive capability of the best 

performing species, which creates an opportunity for the inferior 

species to grow and reproduce. The present thesis demonstrates that 

B. plicatilis and B. manjavacas differently invest in sex and diapause 

(Chapters III and IV). However, the higher investment in sex of B. 

plicatilis, rather than acting as a mechanism mediating coexistence in 

the water-column –the one suggested by Montero-Pau and Serra 

(2011)–, seems to work as a way for this opportunistic species to 

effectively exploit short and unpredictable favorable periods (i.e., low 

salinity) and to produce diapausing eggs (Chapter III). Few 

experimental studies have previously addressed the effects of sexual 

reproduction patterns and investment in diapause in the competitive 

outcome of zooplankton species. A high investment in diapause has 



Chapter 7 

 

- 262 - 

 

been found to accelerate short-term –i.e., in the water column– 

competitive exclusion (Ciros-Pérez et al. 2002; Li and Niu 2014; 

Chapter VI) or promote coexistence (Aranguiz-Acuña and Ramos-

Jiliberto 2014). It has been suggested that these different competitive 

outcomes could be related with the phylogenetic relatedness of the 

species and hence with the strength of competition (Aranguiz-Acuña 

and Ramos-Jiliberto 2014). Obviously, further research is needed to 

clarify this question. In our study system, B. plicatilis might bet on 

diapause investment at the expense of being excluded from the water 

column in the short-term by B. manjavacas. Thus, long-term 

persistence of this former species may be possible through the 

diapausing eggs produced. In fact, the persistence of B. plicatilis and B. 

manjavacas was prolonged when a diapausing egg bank was included in 

the long-term competitive dynamics (Chapter V). Moreover, B. 

plicatilis and B. manjavacas not only differ in patterns of sexual 

reproduction (timing of and proportional allocation to sex), but also 

in patterns of diapause (viability and hatchability strategies of their 

diapausing eggs; Chapters III and IV). In short, the impact of the 

‘storage effect’ to promote coexistence might be reinforced by 

divergent patterns of investment in sex and diapause: the effect of 

salinity fluctuation is enhanced by the coupling of the species growth 

cycles to it.  

Overall, this thesis highlights the importance of considering the 

whole life cycle in competition studies, especially if the competing 

species have complex life cycles. Conclusions about the conditions 

for coexistence or exclusion cannot be drawn solely from the study of 
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short-term competitive dynamics. On the one hand, short-term 

exclusion of the active stages of a competitor is compatible with this 

species being the long-term winner if it allocates more resting 

propagules than its competitor. On the other hand, short-term 

reciprocal exclusion of active stages is compatible with long-term 

coexistence. 

Besides the achievements and the gaps in knowledge stressed 

above, some other questions remain open, as whether coexistence of 

these critically similar cryptic species can be found in controlled but 

fluctuating laboratory conditions. The role of demographic 

stochasticity on species persistence needs additional attention, other 

salinity fluctuation patterns should also be experimentally 

investigated, as well as fluctuations of other ecological factors as 

temperature, pH or oxygen concentration. 

This thesis has demonstrated the potential of combining 

different approaches –i.e., empirical and theoretical studies– in 

competition studies between species with complex life histories. As a 

whole, this thesis presents a complete description of the main factors 

that have a role mediating the observed coexistence of two highly 

similar rotifer species in the wild. 

Conclusions 

The main conclusions derived from this thesis are enumerated below: 

1. B. plicatilis and B. manjavacas have a wide biotic niche overlap. 

The two species have similar resource use and susceptibility to 
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predation by copepods. In contrast to other species of the B. 

plicatilis cryptic species complex, these biotic factors are 

unlikely to act in the stable coexistence of B. plicatilis and B. 

manjavacas. In this case, similar morphology translates into 

similar biotic niches. 

2. The two studied species respond differently to salinity and 

temperature in terms of both the intrinsic growth rate and the 

investment in sexual reproduction. B. manjavacas grows better 

than B. plicatilis in a wide range of salinity, but the latter has 

higher performance than B. manjavacas at the lower salinity 

values explored. B. plicatilis uses its high performance at low 

salinity to produce sexual, diapausing eggs, so that its 

performance does not result in a high rate of clonal 

proliferation. Differences in relation to these abiotic factors 

dramatically enhance niche differentiation between these 

species.  

3.  These cryptic species differ in life-history traits related to sex 

and diapause. At the level of detail achieved in this thesis, this 

is a novel result in zooplankton studies including species so 

similar. B. plicatilis induces sexual reproduction at lower 

population density and makes a higher proportional 

allocation; hence it invests more in sex and produces the 

diapausing eggs earlier than B. manjavacas. The diapause 

pattern also differs between species. If compared to B. 

manjavacas, the diapausing eggs of B. plicatilis survive longer 

and have an extended hatching pattern.  
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4. The three reproductive types of females –asexual, unfertilized 

sexual and fertilized sexual females– allocate resources 

differently among life-history traits, revealing relationships 

between lifespan and reproductive traits that demonstrate the 

cost of reproduction. Reproductive traits of sexual females are 

different between species. B. manjavacas unfertilized sexual 

females produced more sons earlier and at a greater rate than 

B. plicatilis ones. Moreover, B. manjavacas fertilized sexual 

females had higher relative allocation per diapausing egg than 

those of B. plicatilis. 

5. Differentiation in sex and diapause traits suggests that B. 

plicatilis behaves as an opportunistic species which takes 

advantage of favorable low salinity conditions to invest in sex 

and produce diapausing eggs. These characteristics of B. 

plicatilis fit to what is expected to evolve in an unpredictable 

environment. Since B. plicatilis is more negatively affected by 

high salinity, likely variation in salinity makes the habitat more 

uncertain for B. plicatilis than for B. manjavacas which grows 

and invests in sex in a wider range of salinity.  

6. It is shown that the long-term outcome of the competition is 

reasonably predicted from a thoroughly study of these species 

in isolation. This conclusion was possible by integrating the 

whole life cycle in the competitive dynamics, a novel approach 

in zooplankton studies.  

7. B. plicatilis and B. manjavacas have similar competitive abilities 

and the outcome of the competitive dynamics depends on the 
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salinity regime (i.e., salinity values and fluctuation patterns). 

Results prove that their coexistence is unlikely at constant 

salinity. Moreover, accordingly to predictions from single-

species studies, when salinity is low, B. plicatilis is favored and 

B. manjavacas is excluded; the opposite holds when salinity is 

high.  

8. Laboratory population dynamics suggests that the persistence 

of both species is most likely under a fluctuating salinity 

regime that starts at low salinity. 

9. Competitive exclusion tends to be delayed by the existence of 

diapausing egg banks. Despite this evidence is preliminary, it 

seems that a longer co-persistence of B. plicatilis and B. 

manjavacas is found when a diapausing egg bank is presented 

across growing seasons than when diapausing eggs are 

allowed to survive only a single unsuitable period.  

10. Simulations of the long-term competitive dynamics, using the 

developed theoretical model, show that a low level of crossed 

induction of sex and intermediated lengths of the growing 

seasons promote the coexistence of B. plicatilis and B. 

manjavacas. The effect of these factors is different for each 

species in accordance with their different strategies of 

investment in sex and diapause.  

11. The findings on differentiation in life-history traits suggest the 

hypothesis that they play a role in the long-term coexistence 

of these cryptic species. B. plicatilis would tend to be excluded 

in the water column by B. manjavacas, the superior competitor, 
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but at low salinity the higher performance of B. plicatilis would 

allow it to invest in sex and produce diapausing eggs, which 

would take place early in the growing season and at the 

expense of reducing its population density and competitive 

ability. Nevertheless, with this production B. plicatilis would 

achieve its long-term persistence.  

12. Theoretical and empirical results stress the idea that 

investment to diapause is not only a way to cope with 

environmental unsuitable conditions but it also might act as a 

component of the coexistence mechanism. Co-occurrence of 

B. plicatilis and B. manjavacas must be understood as a 

phenomenon stabilized by processes working in the long-

term, rather than by mechanisms acting only in single growing 

seasons, i.e., in the water column, and at short-term scale.  
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Appendix 6.A.  

Derivation of the parameter relationships needed to estimate K 

1. Derivation of the relationship K = Kc – R(0). 

Variation of the rotifer growth rate (r) as depending on the resource 

level (R) can be modelled using the Monod equation (Ciros-Pérez et 

al., 2001a) as: 

𝑟(𝑅) =
𝑟∗(𝑅 − 𝑅(0))

𝑅 + 𝐾𝑐 − 𝑅 (0)
  

where r* is the maximum growth rate, R(0) is the resource 

concentration where growth rate is zero (i.e., birth rate equals death 

rate), and Kc is the relevant Monod constant. Hereafter, we will 

assume that the effect of the resource level on the growth rate is 

through the birth rate, so that the mortality rate (q) is resource-

independent; that is r(R) = b(R) - q. From this, and as birth rate 

without resources is zero, it follows that r (0) = b(0) – q = –q. Thus,  

𝑞 = −𝑟(0) =
𝑟∗𝑅(0)

𝐾𝑐 − 𝑅(0)
         Eq. a1 

and 

𝑏(𝑅) = 𝑟(𝑅) − 𝑞 =
𝑟∗(𝑅 − 𝑅(0))

𝑅 + 𝐾𝑐 − 𝑅 (0)
+

𝑟∗𝑅(0)

𝐾𝑐 − 𝑅(0)
 

This equation with some algebra and recalling that r = b* – q 

(where b* is the maximum birth rate) yields: 
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𝑏(𝑅) =
𝑏∗𝑅

𝑅 + 𝐾𝑐 − 𝑅 (0)
+

𝑟∗𝑅(0)

𝐾𝑐 − 𝑅(0)
− 

𝑟∗𝑅 (0)

𝑅 + 𝐾𝑐 − 𝑅 (0)

−
𝑞𝑅

𝑅 + 𝐾𝑐 − 𝑅 (0)
 

A little additional algebra shows that in this equation the three 

last additive terms sum to zero, so that 

𝑏(𝑅) =
𝑏∗𝑅

𝑅 + 𝐾𝑐 − 𝑅 (0)
 

Comparing this equation with Eq. 2b, and keeping in mind that 

appropriate subscripts are required to term the parameter dependence 

on species and conditions, we find 

)0(RKK c   

Notice that Eq. a1 allows estimating )0(R  if q, r* and Kc are 

known. 

2. Primitive estimations used: 

r* = 0.81 d-1 (Ciros-Pérez et al., 2001a). 

Kc = 0.20 mg C L-1 (Ciros-Pérez et al., 2001a), which is 1053 cells mL-1 

(each microalga Tetraselmis suecica, which is used as source of food for 

rotifers and is the resource assumed in the model, has 19 10-8 mg C 

(unpublished data). 

q = 0.32 d-1 (Gabaldón et al., 2015). 
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