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Abstract

We study the interaction of vector mesons with the octet of stable baryons in the framework of the local
hidden gauge formalism using a coupled channels unitary approach, including also the pseudoscalar-baryon
channels which couple to the same quantum numbers. We examine the scattering amplitudes and their
poles, which can be associated to known JP = 1/2−, 3/2− baryon resonances, and determine the role of
the pseudoscalar-baryon channels, changing the width and eventually the mass of the resonances generated
with only the basis of vector-baryon states.
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I. INTRODUCTION

The approach to QCD at low energies using effective Lagrangians [1] has proved very valuable.
In particular the implementation of chiral symmetry [2, 3] has been a guiding principle to construct
effective Lagrangians which account for the basic dynamics of the strong interaction and take the
observable hadrons, mesons and baryons, as basic fields in those Lagrangians. Along this line, the
use of chiral Lagrangians in combination with unitary techniques in coupled channels of mesons
and baryons has been a very fruitful scheme to study the nature of many hadron resonances. It
allows, among many other, to evaluate meson baryon scattering amplitudes, which sometimes show
poles in the second Riemann sheet which are identified with existing baryon resonances. They are
dynamically generated resonances. In this way the interaction of the octet of pseudoscalar mesons
with the octet of stable baryons has lead to JP = 1/2− resonances which fit quite well the spectrum
of the known low lying resonances with these quantum numbers [4–12]. Similarly, the interaction
of the octet of pseudoscalar mesons with the decuplet of baryons also leads to many resonances
that can be identified with existing ones of JP = 3/2− [13, 14]. One interesting case is the one of
the Λ(1405), where all the chiral approaches find two poles close by, which have found experimental
support in the analysis of Refs. [15, 16].

Much work has been done using pseudoscalar mesons as building blocks, but the consideration
of vectors instead of pseudoscalars is also receiving much attention lately. In the baryon sector the
interaction of the ρ ∆ has been recently addressed in Ref. [17], where three degenerate N∗ states
around 1800 MeV and three degenerate ∆ states around 1900 MeV, with JP = 1/2−, 3/2−, 5/2−,
are found. This work has been recently extended to the SU(3) space of vectors and baryons of the
decuplet in Ref. [18]. The underlying theory for this study is the local hidden gauge formalism
[19–22], which deals with the interaction of vector mesons and pseudoscalars in a way respecting
chiral dynamics, providing the interaction of pseudoscalars among themselves, with vector mesons,
and vector mesons among themselves. The theory provides the chiral Lagrangians as limiting cases
at low energies through vector exchange diagrams.

In the same line, the interaction of vector mesons with the octet of baryons has been addressed
in Ref. [23], where also many states are dynamically generated which can be associated to known
resonances. A few other states remain as predictions or are difficult to associate to the known
states which show a large dispersion from different experiments. More recently, work along this
line has been done in Ref. [24], and the concrete issue of the mixing of the pseudoscalar-baryon
and vector-baryon channels, that we tackle here in the strangeness S=0 sector, has been addressed
in Ref. [25] for S=-1.

The next natural step in this direction is to put the pseudoscalar-baryon and vector-baryon
states on the same footing and two works have been already done in this direction, the first one
using a SU(6) scheme that invokes spin-isospin symmetry [26]. The transition from vector-baryon
to pseudoscalar-baryon is implemented in this latter approach through the implicit exchange of an
axial vector in the t-channel. Such a term is not present in the local hidden gauge approach, where
instead, the exchange of pseudoscalar mesons coming from the vector-pseudoscalar-pseudoscalar
vertex is responsible for the transition. The second work [25] investigates the mixing in the
strangeness S=-1 sector, using a contact pseudoscalar-vector-baryon term obtained by gauging
a theory with pseudoscalars and baryons. In the present work we stick to the standard local hid-
den gauge formalism in the unitary gauge and study the mixing in a systematic way in order to
see modifications to the resonances obtained in the work of Ref. [23] when the pseudoscalar-baryon
channels are allowed to couple to the main building blocks of vector-baryon.

The idea has already been used in Ref. [27], in the study of πN scattering at intermediate
energies, where the ρN channel is also included and a resonance is dynamically generated around
1700 MeV, which has the strongest coupling to the ρN channel.
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The introduction of the pseudoscalar-baryon channels has as a main effect the widening of the
resonances found in Ref. [23] and, except in some very particular case, has a negligible effect on
the mass of the resonances. The consideration of the pseudoscalar-baryon channels also allows us
to determine the partial decay width of the resonance into these channels and, by comparing with
the PDG [28] offers new elements to judge on the most appropriate association of the resonances
found in Ref. [23] to the known resonances.

II. FORMALISM

The part of the Lagrangian of the local hidden gauge approach that provides the interaction
between vectors and is needed for the study of the vector-baryon interaction of Ref. [23], is the
three vector Lagrangian

L(3V )
III = ig〈(∂µVν − ∂νVµ)V

µV ν〉 , (1)

where Vµ is the SU(3) matrix for the nonet of the ρ

Vµ =







ρ0√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ







µ

, (2)

and g = MV

2f , with f=93 MeV. In the same way, the coupling of the vectors to pseudoscalar mesons
is given by

LV PP = −ig〈[P, ∂νP ]V ν〉 , (3)

where here P is the SU(3) matrix of the pseudoscalar mesons,

P =







π0
√
2
+ η8√

6
π+ K+

π− − π0
√
2
+ η8√

6
K0

K− K̄0 − 2√
6
η8






. (4)

As shown in Refs. [18, 23] the main source of vector-baryon interaction comes from the exchange

of a vector meson in the t-channel between the vector and the baryon. This involves the L(3V )
III

Lagrangian of Eq. (1) and a Lagrangian for the coupling of the vector to the baryon, given by

LBBV = g
(

〈B̄γµ[V
µ, B]〉+ 〈B̄γµB〉〈V µ〉

)

, (5)

where B is now the SU(3) matrix of the baryon octet

B =







1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ






. (6)

For the transitions V B → PB we need the VPP Lagrangian of Eq. (3) and one of the two
pseudoscalar mesons is exchanged between the external VP and the baryon. The coupling of the
pseudoscalar to the baryon for the two SU(3) octet is given by

LBBP =
F

2
〈B̄γµγ5[u

µ, B]〉+ D

2
〈B̄γµγ5 {uµ, B}〉 (7)
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where F = 0.51, D = 0.75 [29] and at lowest order in the pseudoscalar field

uµ = −
√
2

f
∂µP , (8)

which allows to rewrite the Lagrangian of Eq. (7) as

LBBP = −
√
2

f

D + F

2
〈B̄γµγ5∂

µPB〉 −
√
2

f

D − F

2
〈B̄γµγ5B∂µP 〉 . (9)

Taking the SU(3) trace for a particular case of two baryons, the previous Lagrangian can be written
in terms of an effective vertex as

− itBBP =

{

α
(D + F )

2f
+ β

(D − F )

2f

}

~σ~k (10)

where ~k is the incoming momentum of the meson in the BBP vertex. The coefficients α and β,
can be found in Appendix C.

V1 V2

V

B2B1

FIG. 1: Diagram of the V B → V B interaction mediated by a vector meson.

As shown in Ref. [23], the leading term of the V B → V B interaction is given by the diagram
of Fig. 1 which involves the three vector vertex of Eq. (1), with one vector meson exchanged, and
the coupling of this exchanged vector to the baryon, given by Eq. (5). The potential provided by
this term, keeping the dominant γ0 term in Eq. (5), is given by

Vij = −Cij
1

4f2

(

k0 + k′0
)

~ǫ~ǫ ′ (11)

where k0, k′0 are the energies of the incoming and outgoing vector mesons. The result of Eq. (11)
with the ~ǫ~ǫ ′ factor for the polarization of the vector mesons stems from considering the three
momentum of the external vectors small with respect to the mass of the vector mesons [23]. The
Cij coefficients can be found in Appendix A of Ref. [23], where the subindex i and j correspond to
the different channels for all the states of isospin and strangeness.

However, it is more convenient to work with a relativistic potential as seen in Ref. [30], which
is given by

Vij = −Cij
1

4f2

(

2
√
s−MBi

−MBj

)

(

MBi
+ EBi

2MBi

)1/2 (MBj
+ EBj

2MBj

)1/2

(12)
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where MBi
, MBj

are the masses of the initial or final baryons respectively, and EBi
, EBj

their on
shell energy.

This potential has been used as the input of the Bethe-Salpeter equation to study the scattering
matrix,

T = [1− V G]−1 V (13)

where G is the loop function of a vector meson and a baryon which is calculated in dimensional
regularization, as shown in Ref. [8, 30], is given by

Gl = i2Ml

∫

d4q

(2π)4
1

(P − q)2 −M2
l + iǫ

1

q2 −m2
l + iǫ

=
2Ml

16π2

{

al(µ) + ln
M2

l

µ2
+

m2
l −M2

l + s

2s
ln

m2
l

M2
l

+

+
q̄l√
s

[

ln(s− (M2
l −m2

l ) + 2q̄l
√
s) + ln(s+ (M2

l −m2
l ) + 2q̄l

√
s)

− ln(−s+ (M2
l −m2

l ) + 2q̄l
√
s)− ln(−s− (M2

l −m2
l ) + 2q̄l

√
s)
]}

, (14)

where µ=630 MeV is a regularization scale and al(µ) a subtraction constant with a value of -2 in
Ref. [23], which is considered a natural size in Ref. [8].

In the cases where the iteration of the Bethe-Salpeter equation includes the ρ or K∗ mesons,
which have a relatively large widths, a convolution of the loop function G with the mass distribution
of these vector mesons is needed. So the loop function with the convolution would be

G̃(s) =
1

N

∫ (m+2Γi)2

(m−2Γi)2
dm̃2

(

− 1

π

)

Im
1

m̃2 −m2 + im̃Γ(m̃)
G(s, m̃2, M̃2

B) , (15)

where G̃ is normalized with

N =

∫ (mρ+2Γi)2

(mρ−2Γi)2
dm̃2

(

− 1

π

)

Im
1

m̃2 −m2
ρ + im̃Γ(m̃)

(16)

considering the widths of the vectors Γi (i = ρ, K∗) Γρ=149.4 MeV and ΓK∗=50.5 MeV. The
Γ(m̃) function is energy dependent and is given in Ref. [31] as

Γ̃(m̃) = Γi
q3off
q3on

θ(m̃−m1 −m2) (17)

with m1 = m2 = mπ for the ρ using that

qoff =
λ(m̃2,m2

π,m
2
π)

2m̃
, qon =

λ(m2
ρ,m

2
π,m

2
π)

2mρ
(18)

or m1 = mπ and m2 = mK for the K∗ using

qoff =
λ(m̃2,m2

K ,m2
π)

2m̃
, qon =

λ(m2
K∗ ,m2

K ,m2
π)

2mK∗
, (19)

where λ is the Källen function and Γi is the nominal width of the ρ or the K∗. Without these
convolutions, the peaks that we find in the scattering matrix in the channels where the ρ or the
K∗ are involved, have a zero width or are very narrow. But when the loop function G is replaced
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by the convolution function G̃ using the correspondent mass distribution, those peaks acquire a
substantial width.

The ~ǫ~ǫ ′ factor involving the polarization of the vector mesons factorizes in all the iterations of
the potential implicit in the Bethe-Salpeter equations, as a consequence of which there will be a
degeneracy in the spin, 1/2−, 3/2−, for the resonances found for each isospin and strangeness.

Once the scattering matrix is evaluated some peaks appear that can be associated to states.
Next step is to find the poles associated to those peaks, in order to obtain the couplings of the
different channels to those states. The method used is to search poles in the second Riemann sheet,
changing the momentum ~q to −~q in the analytical formula of the G function when Re(

√
s) is over

the threshold of the corresponding channel. Using this method one can find poles, as (MR+ iΓ/2),
where the real part correspond to the mass of the resonance and the imaginary part is half of
the width of this state. However the convolution of the G function eventually can make the pole
disappear in channels with the ρ or the K∗ mesons. In this case one can study the amplitude in
the real axis using that near the peak the T matrix will be as

Tij =
gigj√

s−MR + iΓ/2
(20)

where MR is the position of the maximum and Γ the width at half-maximum. The couplings gi
and gj are related to the channels which couple to this resonance. Then one can take the diagonal
channel where the coupling is largest and obtain

|gi|2 =
Γ

2

√

|Tii|2 (21)

where the coupling gi has an arbitrary phase. With one coupling determined, we can obtain the
other ones from the Tij matrices using Eq. (20), given by

gj = gi
Tij(

√

(s) = MR)

Tii(
√

(s) = MR)
. (22)

This procedure has been used to calculate all the couplings of all the states of the vector-baryon
interaction in Ref. [23], so this method that we will use in order to calculate our results in the
present work.

Using this formalism, nine resonances are found in Ref. [23], which are associated to known
states of the PDG [28], through the isospin and strangeness and the pole position. However the
widths obtained with this approach are smaller than the experimental ones. This result leads us to
think that there should be some other mechanisms which contribute to the vector meson - baryon
interaction potential. Since vector mesons and baryons couple to pseudoscalar mesons, there can
be diagrams where the interaction is mediated by pseudoscalar mesons. The next section is devoted
to study such mechanisms.

III. THE BOX DIAGRAM

In addition to the driving term in the V B → V B potential of Eq. (12) there are other terms
involving the exchange of pseudoscalar mesons that also contribute to this interaction. The idea
is that an external vector meson decays into two pseudoscalar mesons, through the Lagrangian of
Eq. (3), and one of the pseudoscalar mesons is exchanged and absorbed by the baryon. Then a
pseudoscalar-baryon state propagates in the intermediate state and the inverse procedure occurs

6



V1 V2

P2

P1 P3

B2BB1

~pV1
− ~q

~pV1

~pB1
~pB2

~pV2

~q ~pB1
+ ~q − ~pB2

~pB1
+ ~q

FIG. 2: Diagram of the V B → V B interaction mediated by a pseudoscalar meson-baryon loop.

in a second vertex, giving rise to a V B again. The mechanism is depicted in Fig. 2 in terms of a
Feynman diagram, which gives a contribution to the V B → V B potential given by

− itBox =

∫

d4q

(2π)4
igCV1

(~pV1
− ~q − ~q) · ~ǫ1igCV2

(~pV1
− ~q − ~pB1

− ~q + ~pB2
) · ~ǫ2

i

q2 −m2
1 + iǫ

i

(pV1
− q)2 −m2

2 + iǫ

i

(pB1
+ q − pB2

)2 −m2
3 + iǫ

i

(pB1
+ q)0 − EB(~pB1

+ ~q) + iǫ
~σ · ~q ~σ · (− ~pB1

− ~q + ~pB2
)

{α1(D + F ) + β1(D − F )} 1

2f
{α2(D + F ) + β2(D − F )} 1

2f
(23)

where q is the loop four-momentum, ~pVi
and ~pBi

are the momenta of the external vector mesons
and baryons and mi are the masses of the three pseudoscalar mesons of the loop. The coefficients
of the VPP vertex CVi

are obtained from Eq. (3) and the coefficients for the couplings of the
pseudoscalars to the baryons, αi and βi are shown in Table VI of Appendix C.

In other to calculate this integral, we perform analytically the integration over the q0 component
of the four-momentum of the loop. This leads to a residue, which is simplified to eliminate the
fallacious poles with no determined position in the complex plane ((x − x0 + iǫ− iǫ′)−1), and the
result is given in Appendix A.

Consistently with the approximation in Ref. [23] of neglecting the three momentum of the
external vectors, we take here the same prescription and set these momenta to zero. The integral
simplifies since we can substitute

〈

m′|~σ · ~q ~σ · ~q|m
〉

=
〈

m′|~q 2|m
〉

= ~q 2δm′m (24)

and

qiqj →
1

3
~q 2δij (25)
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The most generic expression for the vertex of Fig. 2, is given by

VBox = −g2CV1
CV2

1

2f2

{

a(D + F )2 + b(D − F )2 + c(D + F )(D − F )
}

~ǫ1~ǫ2

1

2π2

4

3

∫

d|~q||~q|6
(

Λ2

Λ2 + |~q|2
)2

Num

Den
(26)

where we have introduced the usual form factor accompanying the Yukawa vertex with Λ=1 GeV.
The coefficients a, b and c, depend on each state, channel and particles involved in the box diagram,
and can be found in Tables of Appendix D. The numerator and denominator (Num and Dem) of
Eq. (26) are given in Appendix A.

We found that for the channels with strangeness it was sufficient to consider only the diagonal
terms of the Box diagram, but for the channels with S=0, the consideration of the non-diagonal
terms made changes in the K∗Λ → K∗Λ amplitude that recommended its explicit consideration.
Hence in the case of S=0, the non-diagonal terms are evaluated for the most relevant channels,
ρN , K∗Λ and K∗Σ.

This V B → V B potential modifies the original potential, with only the vector meson exchange,
giving a new potential including both interactions.

Ṽ = V + VBox (27)

where V (tree level) and VBox are given by Eq. (12) and Eq. (26) respectively. In Fig. 3 we can see
a comparison of the real and imaginary parts of the tree level potential and the box potential for
the ρN diagonal term. The same figure (right panel) shows the box contribution for the different
diagonal terms of all channels that couple to S = 0, I = 1/2.

The results show that the box potential has a small real part, which is near zero close to the
threshold, and an important imaginary part in contrast with the null imaginary part of the tree
level potential. It is clear that the total potential will contribute to the scattering matrix generating
a widening of the resonances. Using this new potential, we can introduce it in the Bethe-Salpeter
equation and recalculate the scattering matrix for all the states and channels.

Although there is a Lagrangian which involves the coupling of the pseudoscalar mesons con-
necting the baryon octet and baryon decuplet, in the present work we have neglected the diagrams
with a decuplet baryon as an intermediate state since the results of the box integral for these cases
are less than 10% of those for the octet baryon in the intermediate state.

One can see qualitatively why this box diagram gives a small contribution to the real part. For
this exercise we select the ρ+n → π+n vertex, together with the ρ+n → ρ+n. The π0 exchange
diagram in the first case provides a transition amplitude

tρ+n→π+n ≈ 2
√
2√
3

~q 2

q02 − ~q 2 −m2
π

g
D + F

2f
(28)

while the ρ+n → ρ+n gives

tρ+n→ρ+n ≈ 2mρ

4f2
(29)

and we chose q0, ~q in the π exchange corresponding to the πN on shell situation for
√
s ≈ 1650

MeV. We find the ρ+n → ρ+n vertex about 4 times bigger than the ρ+n → π+n one. Yet, one
must consider that to get a contribution to ρ+n → ρ+n, the ρ+n → π+n terms must be iterated in
the box (and multiplied by G(π, n)) and this further reduces the contribution of the box diagram
to the real part of the V N → V N amplitude. The accurate numerical results can be seen in Fig. 3,
corroborating the qualitative explanation.
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FIG. 3: Left) Comparison between the tree-level (TL) and the box diagram (Box) potential: (Top) Real
part and (Bottom) Imaginary part. Right) Comparison of the box diagram potential between the different
channels of the state I=1/2 and S=0: (Top) Real part and (Bottom) Imaginary part.

IV. CONTACT TERMS VPBB FOR THE BOX DIAGRAMS

V P

B2B1

V P

B2B1

(a) (b)

FIG. 4: Diagram of the V B → PB contact term.

As we are following the local hidden gauge, there are some other diagrams requested by the
gauge invariance of the theory in the presence of baryons. Hence, in addition to the diagram
of Fig.4 (a), we have to add the diagram of Fig.4 (b). This has been known for long and has
been taken into account in the literature under the denomination of vertex corrections [25, 32–37].
This diagram of Fig.4 (b) corresponds to a contact term of VPBB and as seen in Ref. [36], the
correspondence between the meson in flight term (Fig.4 (a)) and the contact term (Fig.4 (b)) is
given by:
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Meson in flight:

− itcon = CV g~ǫ(~PV1
+ ~q + ~q)

1

(PV1
+ q)2 −m2

{α (D + F ) + β (D − F )} 1

2f
~σ(~PV1

+ ~q) (30)

Contact term:

− itcon = CV g {α (D + F ) + β (D − F )} 1

2f
~σ~ǫ (31)

Using this vertex, one has to rewrite Eq. (23), to calculate the diagrams of Fig. 5. First of all,
we should relabel the momenta of the the box diagram in a more convenient way,

− itBox =

∫

d4q

(2π)4
igCV1

(−~PV1
− ~q − ~q)~ǫ1igCV2

(−~q − ~PV2
− ~q)~ǫ2

i

(PV1
+ q)2 −m2

1

i

q2 −m2

i

(PV1
− q)2 −m2

3

i

(P 0
B1

+ P 0
V1

+ q0)− EB1
(~q) + iǫ

MB1

EB1
(q)

~σ(~PV1
+ ~q)~σ(−~PV2

− ~q)

{α1(D + F ) + β1(D − F )} {α2(D + F ) + β2(D − F )} 1

4f2
(32)

While the (a) diagram of Fig. 5 gives an equal contribution to spin 1/2 and 3/2, the diagrams
of Figs. 5 (b), (c) and (d) only contribute to spin 1/2. This is because the operator ~σ~ǫ only couples
to spin 1/2. This is done explicitly in Appendix B, where we show that the matrix element of ~σ~ǫ
is

√
3 δJ,1/2. Intuitively we can see that only J=1/2 is allowed by looking at the intermediate PB

state, necessarily in s-wave because of the ~σ~ǫ coupling, hence the total spin J is the spin carried
by the nucleon, J=1/2.

+ + +

(a) (b) (c) (d)

FIG. 5: Diagrams of the vector-baryon interaction mediated by pseudoscalars channels.

Using the vertex of Eq. (31) in the expression of the Box given by Eq. (32), we can evaluate the
diagram b of Fig. 5, and obtain

− itCP
Box = gCV1

gCV2
{α1(D + F ) + β1(D − F )} {α2(D + F ) + β2(D − F )} 1

4f2

∫

d3q

(2π)3
~q 2 MB1

EB1
(q)

1

ω2(q)

1

ω3(q)

1

P 0
V2

+ ω2(q) + ω3(q)

1

P 0
V2

− ω2(q)− ω3(q) + iǫ

1

P 0
B1

+ P 0
V1

− ω2(q)−EB1
(q) + iǫ

1

P 0
B1

+ P 0
V1

− P 0
V2
(q)− ω3(q)−EB1

(q) + iǫ

(

Λ2

Λ2 + ~q2

)2

{

(ω2(q) + ω3(q))(P
0
B1

− ω2(q)− EB1
(q)− ω3(q) + P 0

V1
)− ω3(q)P

0
V2

}

(33)
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In the same way, for the evaluation of the diagram c in Fig. (5), we substitute the term of the
outgoing vector by the contact term. Hence the result is the same as in Eq. 33 changing ω3 → ω1

and P 0
V2

→ P 0
V1
, and one gets

− itPC
Box = gCV1

gCV2
{α1(D + F ) + β1(D − F )} {α2(D + F ) + β2(D − F )} 1

4f2

∫

d3q

(2π)3
~q 2 MB1

EB1
(q)

1

ω2(q)

1

ω1(q)

1

P 0
V1

+ ω2(q) + ω1(q)

1

P 0
V1

− ω2(q)− ω1(q) + iǫ

1

P 0
B1

+ P 0
V2

− ω2(q)−EB1
(q) + iǫ

1

P 0
B1

+ P 0
V2

− P 0
V1

− ω1(q)− EB1
(q) + iǫ

(

Λ2

Λ2 + ~q2

)2

{

(ω2(q) + ω1(q))(P
0
B1

− ω2(q)− EB1
(q)− ω1(q) + P 0

V2
)− ω1(q)P

0
V1

}

(34)

Finally, the last diagram has two contact terms, as shown in Fig.5 (d), and the expression of
the t-matrix in this case is given by

− itCC
Box = gCV1

gCV2
{α1(D + F ) + β1(D − F )} {α2(D + F ) + β2(D − F )} 1

4f2

3

∫

d3q

(2π)3
MB1

EB1
(q)

1

2ω2(q)

1

P 0
B1

+ P 0
V1

− ω2(q)− EB1
(q) + iǫ

(

Λ2

Λ2 + ~q2

)2

(35)

These diagrams should be included in the potential in order to evaluate the scattering matrix.

Ṽ = V + VBox + (V CP
Box + V PC

Box + V CC
Box)δJ,1/2 (36)

The presence of the terms V CP
Box, V

PC
Box and V CC

Box breaks the degeneracy in total spin J, that one
has with the terms V and VBox.

One finds that the contact term, or Kroll-Ruderman in the nomenclature of Ref. [25], is more
important than the pseudoscalar exchange, around 1.5-2.5 times bigger depending on the cases,
and has opposite sign. In Ref. [25] only this term was used but not the pseudoscalar exchange
term. As a consequence, the corrections due to the VB and PB mixing only affect the J=1/2 case
in the work of Ref. [25]. As we find here, the corrections from the mixing due to the pseudoscalar
exchange term in J=3/2 are relatively small, justifying its neglect in Ref. [25]. On the other hand
for J=1/2, only the contact term is used in Ref. [25] and the destructive interference with the
pseudoscalar exchange term is missed. This could justify why the effects due to the mixing in the
scattering amplitudes of PB found in Ref. [25] are bigger than those found here for the VB case.

There are other possible couplings in the approach, like the consideration of the tensor coupling
for the VBB vertex used in Ref. [24], which was found to have minor effects in the present context
in Ref. [38]. Other couplings concerning vectors have also been exploited, like using the anomalous
coupling of VVP. This was done in Ref. [17] and found to provide negligible corrections in the
problem of ∆ρ interaction. One exception where this term turned out to be relatively important
was in the study of the η′N interaction and its mixing with the VB channels. Indeed, the con-
sideration of the anomalous η′K∗K̄∗ in Ref. [39] was found relatively relevant, but only because
the η′PV normal coupling of Eq. (3) is zero when the η′ is considered as a SU(3) singlet in a first
approximation.
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V. RESULTS

The use of the Bethe-Salpeter equation, generates the following scattering matrices for the
different states, shown in Figs. 6, 7, 8 and 9. We present the results of |Tii|2 as a function of

√
s.

We consider interesting the comparison of the scattering matrix obtained using only the potential
of the vector interaction, and the new results of the Bethe-Salpeter equation with the combined
potential. In all the figures, we present both results, the first one as a dashed line and the last one
with a solid line. The most striking feature in all the figures when including the intermediate PB
states is, as expected, an increase in the width of the resonances. However, in some cases we also
observe a shift of the peak for J=1/2 of some resonances. This is the case for the resonances seen
for JP = 1/2− in the ρN and K∗Λ channels in Fig. 6.

FIG. 6: |T |2 for the S=0, I=1/2 states. Dashed lines correspond to tree level only and solid lines are
calculated including the box diagram potential. Vertical dashed lines indicate the channel threshold.

In Fig. 6 we see two peaks for the state of S = 0 and I = 1/2, one around 1700 MeV, in channels

12



ρN and K∗Λ, and another peak near 1980 MeV, which appears in all the channels except for ρN .
We can see that the mixing of the PB channels affects differently the two spins, JP = 1/2− and
3/2−, as a consequence of the extra mechanisms contributing to the JP = 1/2− case discussed in
the previous section. The effect of the box diagram on the JP = 3/2− sector is small, however
the PB-VB mixing mechanism are more important in the JP = 1/2− sector. The most important
feature is a shift of the peak around 1700 MeV, which appears now around 1650 MeV. This breaking
of the degeneracy is most welcome since this allows us to associate the 1/2− peak found at 1650
MeV with the N∗(1650)(1/2−) while the peak for 3/2− at 1700 MeV can be naturally associated
to the N∗(1700)(3/2−). We shall discuss the other peak in the next section.

FIG. 7: |T |2 for the S=-1, I=0 states. Dashed lines correspond to tree level only and solid lines are calculated
including the box diagram potential. Vertical dashed lines indicate the channel threshold.

Fig. 7 shows the results for S = −1, with I = 0. The left column corresponds to JP = 1/2−

and the right column to JP = 3/2−. We can find three peaks for these quantum numbers. The
first one around 1780 MeV appears in the channels K̄∗N , ωΛ, ρΣ and φΛ, but not for the channel
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K∗Ξ. The second peak appears only in the ρΣ channel around 1900 MeV. The third peak is near
2150 MeV, an is only visible in the K∗Ξ channel. Once again we see the different effects of the
PB-VB mixing in JP = 1/2− and 3/2−. The effects are again small in JP = 3/2− but they are
sizable for JP = 1/2−. Indeed, the peak around 1780 MeV is shifted to lower energies and becomes
considerably broader. This fact is also most welcome since it provides an explanation on why the
width of the 1/2− state is bigger than the corresponding state with 3/2−, which is supported by
experiment, although the masses of the particles in this high energy region are not well determined.
We will come to this issue in the next section. We also observe that the second peak around 1900
MeV is shifted to lower energies and widened for JP = 1/2−. The third peak is also widened for
1/2− but there is not much change in its position.

FIG. 8: |T |2 for the S=-1, I=1 states. Dashed lines correspond to tree level only and solid lines are calculated
including the box diagram potential. Vertical dashed lines indicate the channel threshold.

Fig. 8 contains the results of |T |2 for the quantum numbers S=-1, I=1. The first peak appears
in 1830 MeV for the channels K̄∗N , ρΛ, ρΣ, ωΣ, φΣ, but not for K∗Ξ. With the only consideration
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of the vector-baryon channel there was a smooth peak around 2000 MeV, visible in the ρΣ and
K∗Ξ channels. What we observe here is that the introduction of the pseudoscalar-baryon channels
removes the peak in the ρΣ channel and shifts it to a larger energies around 2180 MeV in the K∗Ξ
one. Once again we see a stronger widening of the first peak for JP = 1/2− and a slight shift to
lower energies with respect to the peak for JP = 3/2−.

FIG. 9: |T |2 for the S=-2, I=1/2 states. Dashed lines correspond to tree level only and solid lines are
calculated including the box diagram potential. Vertical dashed lines indicate the channel threshold.

In Fig. 9 we include the results of S=-2, I=1/2. The results show two peaks very close to each
other, one around 2040 MeV and the other one close to 2080 MeV. After the introduction of the
PB-VB mixing we observe different features in JP = 1/2− and 3/2−. Indeed, the two peaks are
still visible for JP = 3/2− in the K̄∗Λ channels, but they separate in the other channels, where
only one of them appears in each case. The higher energy resonance shows up in the K̄∗Σ, ωΞ and
φΞ channels, and the lower energy resonance shows up only in the ρΞ channel. For JP = 1/2−

the broadening due to the PB-VB mixing removes the two peaks in the K̄∗Λ channel and only
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Couplings for JP = 1/2−

S I

0 1/2 1690+i24* 1976+i59

Channels gi |gi| gi |gi|
ρN 3.1-i1.0 3.2 -0.4-i0.4 0.6

ωN 0.1-i0.2 0.2 -1.0-i0.4 1.1

φN -0.1+i0.3 0.3 1.5+i0.4 1.5

K∗Λ 1.8-i1.3 2.2 2.1-i1.1 2.4

K∗Σ -0.4-i0.3 0.5 4.0+i0.0 4.0

S I

-1 0 1776+i39 1906+i34* 2163+i37

Channels gi |gi| gi |gi| gi |gi|
K̄∗N 3.7-i1.3 4.0 0.1 +i0.3 0.3 0.1 +i0.4 0.4

ωΛ 1.5-i0.1 1.5 0.4 +i0.2 0.4 -0.3 -i0.2 0.3

ρΣ -1.3-i0.2 1.3 3.6 -i0.9 3.7 0.0 -i0.1 0.1

φΛ -2.0-i0.2 2.0 -0.5 -i0.5 0.7 0.4 +i0.2 0.4

K∗Ξ 0.2-i0.0 0.2 0.3 +i0.2 0.4 3.4 -i0.5 3.5

S I

-1 1 1829* 2116*

Channels gi |gi| gi |gi|
K̄∗N 2.8 +i0.0 2.8 -0.2 +i 0.2 0.3

ρΛ -2.4 +i0.2 2.4 -0.3 +i 0.4 0.5

ρΣ -2.2 +i0.1 2.2 2.5 +i 0.0 2.5

ωΣ -1.3 +i0.1 1.3 -0.2 +i 0.2 0.3

K∗Ξ 0.2 +i0.1 0.2 2.1 -i 0.2 2.1

φΣ 1.8 -i0.2 1.8 0.2 -i 0.3 0.4

S I

-2 1/2 2047+i19* 2084*

Channels gi |gi| gi |gi|
K̄∗Λ -1.0-i0.2 1.0 -0.1-i0.4 0.5

K̄∗Σ -1.3+i0.2 1.3 2.9+i0.0 2.9

ρΞ 2.9-i0.1 2.9 0.0+i0.8 0.8

ωΞ 0.4-i0.3 0.5 1.5+i0.3 1.6

φΞ -0.6+i0.4 0.7 -2.1-i0.4 2.1

TABLE I: Couplings constants for the different channels of the resonances found with JP = 1/2−.

a broad bump remains, while the two resonances are still visible in the same channels discussed
above but the resonances become wider. In the K̄∗Σ channel the first peak is also a bit shifted to
lower energies.

Using the results of the poles found in this work, we proceed to evaluate the couplings of the
different channels to the resonances studied. Those couplings can be found in Tables I and II, for
the resonances found in the scattering matrix. These couplings give us an idea of which are the
most important building blocks in each resonance.
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Couplings for JP = 3/2−

S I

0 1/2 1703+i4* 1979 +i56

Channels gi |gi| gi |gi|
ρN 2.1-i0.3 2.1 -0.4-i0.5 0.6

ωN 0.1-i0.1 0.1 -1.1-i0.4 1.2

φN -0.1+i0.1 0.1 1.5+i0.5 1.6

K∗Λ 1.5-i0.3 1.5 2.1-i1.0 2.4

K∗Σ -0.4-i0.0 0.4 4.0+i0.1 4.0

S I

-1 0 1786+i11 1916+i13* 2161+i17

Channels gi |gi| gi |gi| gi |gi|
K̄∗N 3.4-i0.3 3.4 0.1 +i0.3 0.4 0.2+i0.3 0.4

ωΛ 1.4-i0.0 1.4 0.5 +i0.2 0.5 -0.3-i0.2 0.4

ρΣ -1.3-i0.0 1.3 3.3 -i0.3 3.3 0.0-i0.1 0.1

φΛ -1.9-i0.0 1.9 -0.7 -i0.3 0.7 0.5+i0.2 0.5

K∗Ξ 0.2-i0.0 0.2 0.4 +i0.1 0.4 3.4-i0.5 3.4

S I

-1 1 1839* 2081*

Channels gi |gi| gi |gi|
K̄∗N 2.4 +i0.0 2.4 -0.2 -i 0.5 0.5

ρΛ -2.0 +i0.2 2.0 -0.4 +i 0.7 0.8

ρΣ -1.9 +i0.1 1.9 3.2 +i 0.0 3.2

ωΣ -1.1 +i0.1 1.1 -0.2 +i 0.4 0.4

K∗Ξ 0.2 +i0.1 0.2 2.7 -i 0.4 2.7

φΣ 1.5 -i0.2 1.5 0.3 -i 0.5 0.6

S I

-2 1/2 2044+i12* 2082+i5*

Channels gi |gi| gi |gi|
K̄∗Λ -1.0-i0.2 1.1 -0.3-i0.2 0.4

K̄∗Σ -1.3-i0.1 1.3 1.6-i0.4 1.7

ρΞ 2.9-i0.1 2.9 0.5+i0.1 0.6

ωΞ 0.4-i0.3 0.5 1.1-i0.1 1.1

φΞ -0.6+i0.4 0.7 -1.4-i0.2 1.5

TABLE II: Couplings constants for the different channels of the resonances found with JP = 3/2−.

VI. COMPARISON TO DATA

In Tables IV and V we show a summary of the results obtained and the tentative association to
known states of the PDG [28]. In Table IV we show the states for JP = 1/2− and in Table V for
JP = 3/2−. For comparison, the results of Ref. [23] without the mixing are displayed in Table III.

For S=0, I=1/2 we find a state around 1658 MeV with JP = 1/2−. With fixed ρ mass the peak
has a pole associated but with a small imaginary part. Yet, the consideration of the convolution
the ρ mass and the pseudoscalar-baryon channels widens the structure considerably becoming an
approximate Breit-Wigner structure with a width of about 98 MeV. This width is compatible
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I, S Theory PDG data

pole position real axis

mass width name JP status mass width

1/2, 0 — 1696 92 N(1650) 1/2− ⋆ ⋆ ⋆⋆ 1645-1670 145-185

N(1700) 3/2− ⋆ ⋆ ⋆ 1650-1750 50-150

1977 + i53 1972 64 N(2080) 3/2− ⋆⋆ ≈ 2080 180-450

N(2090) 1/2− ⋆ ≈ 2090 100-400

0,−1 1784 + i4 1783 9 Λ(1690) 3/2− ⋆ ⋆ ⋆⋆ 1685-1695 50-70

Λ(1800) 1/2− ⋆ ⋆ ⋆ 1720-1850 200-400

1907 + i70 1900 54 Λ(2000) ?? ⋆ ≈ 2000 73-240

2158 + i13 2158 23

1,−1 — 1830 42 Σ(1750) 1/2− ⋆ ⋆ ⋆ 1730-1800 60-160

— 1987 240 Σ(1940) 3/2− ⋆ ⋆ ⋆ 1900-1950 150-300

Σ(2000) 1/2− ⋆ ≈ 2000 100-450

1/2,−2 2039 + i67 2039 64 Ξ(1950) ?? ⋆ ⋆ ⋆ 1950± 15 60± 20

2083 + i31 2077 29 Ξ(2120) ?? ⋆ ≈ 2120 25

TABLE III: The properties of the 9 dynamically generated resonances and their possible PDG counterparts.

S, I Theory PDG data

pole position real axis

MR + iΓ/2 mass width name JP status mass width

0, 1/2 1690 + i24∗ 1658 98 N(1650) 1/2− ⋆ ⋆ ⋆⋆ 1645-1670 145-185

1979 + i67 1973 85 N(2090) 1/2− ⋆ ≈ 2090 100-400

−1, 0 1776 + i39 1747 94 Λ(1800) 1/2− ⋆ ⋆ ⋆ 1720-1850 200-400

1906 + i34∗ 1890 93 Λ(2000) ?? ⋆ ≈ 2000 73-240

2163 + i37 2149 61

−1, 1 − 1829 84 Σ(1750) 1/2− ⋆ ⋆ ⋆ 1730-1800 60-160

− 2116 200-240 Σ(2000) 1/2− ⋆ ≈ 2000 100-450

−2, 1/2 2047 + i19∗ 2039 70 Ξ(1950) ?? ⋆ ⋆ ⋆ 1950± 15 60± 20

− 2084 53 Ξ(2120) ?? ⋆ ≈ 2120 25

TABLE IV: The properties of the nine dynamically generated resonances and their possible PDG counter-
parts for JP = 1/2−. The numbers with asterisk in the imaginary part of the pole position are obtained
without the convolution for the vector mass distribution of the ρ and K∗.

with the values of the N∗(1650) (1/2−) to which the peak obtained would be associated. A
similar behavior is seen for 3/2− and we find a state at 1705 MeV which can be associated to
the N∗(1700) (3/2−). In the case of the second peak, the mass found is around 1975 MeV both
for 1/2− and 3/2−, a bit smaller than the nominal experimental masses of the N∗(2080) (3/2−)
and N∗(2090) (1/2−) resonances cataloged in the PDG [28]. However, we should note that the
masses associated in the PDG are averages done there, but there is a large dispersion of the data
for the masses and our calculated results fit well within the experimental masses. The width is
also compatible with the experimental results within the large experimental range.

In the case of S=-1 and I=0, we found three peaks. A resonance found at 1786 MeV for 3/2−

could be associated to Λ(1690) with JP = 3/2− and the one at 1747 MeV with 1/2− could be
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S, I Theory PDG data

pole position real axis

MR + iΓ/2 mass width name JP status mass width

0, 1/2 1703 + i4∗ 1705 103 N(1700) 3/2− ⋆ ⋆ ⋆ 1650-1750 50-150

1979 + i56 1975 72 N(2080) 3/2− ⋆⋆ ≈ 2080 180-450

−1, 0 1786 + i11 1785 19 Λ(1690) 3/2− ⋆ ⋆ ⋆⋆ 1685-1695 50-70

1916 + i13∗ 1914 59 Λ(2000) ?? ⋆ ≈ 2000 73-240

2161 + i17 2158 29

−1, 1 − 1839 58 Σ(1940) 3/2− ⋆ ⋆ ⋆ 1900-1950 150-300

− 2081 270

−2, 1/2 2044 + i12∗ 2040 53 Ξ(1950) ?? ⋆ ⋆ ⋆ 1950± 15 60± 20

2082 + i5∗ 2082 32 Ξ(2120) ?? ⋆ ≈ 2120 25

TABLE V: The properties of the nine dynamically generated resonances and their possible PDG counterparts
for JP = 3/2−. The numbers with asterisk in the imaginary part of the pole position are obtained without
the convolution for the vector mass distribution of the ρ and K∗.

associated to the Λ(1800) with JP = 1/2−. Once again, there is a large variation for the masses
in the different experiments reported in the PDG under the umbrella of the Λ(1800) and the mass
that we obtain fits well within these values. For the case of the Λ(1690) the dispersion of the
masses is much smaller, with the values around 1690 MeV, smaller than our calculated result. The
relatively small width of 40 MeV that we obtain is compatible to the experimental widths. For the
case of the Λ(1800) there is a large variation of the widths, with values as low as 40 or 100 MeV.
We also found a state at 1890 MeV for 1/2− and another at 1914 MeV for 3/2− and widths 93
MeV and 59 MeV respectively. They could be associated to the Λ(2000) which has an unknown
spin in PDG, but the mass and the width calculated are compatible with this state. A third state
is found with a mass around 2150 MeV. More concretely, there is the JP = 1/2− at 2149 MeV and
width 61 MeV and the JP = 3/2− partner at 2158 MeV with a smaller width of 29 MeV. We do
not find counterparts in the PDG, so these are predictions of the theory.

For S=-1 and I=1, we find two peaks. The first peak for 1/2− with mass 1829 MeV and width
84 MeV can be associated to the Σ(1750) (1/2−) and its partner of 3/2− at 1839 and width 58 MeV
can be associated to the Σ(1940) (3/2−). The widths are in good agreement with the experimental
results considering the dispersion of data for experiments collected under the same umbrella of this
resonance. The second peak has a mass of 2116 MeV and a width of about 200 MeV, and the only
state that could correspond to this resonance is Σ(2000) (1/2−) which has an experimental width
compatible with that result.

As one can see in Table III, the width provided in Ref. [23] for this state is bigger (240 MeV)
than the one reported here. This is a surprise since we should expect an increase of the width from
the inclusion of the PB decay channels. This is the only case where this happens. However, one
can understand the reason. In both cases the width is obtained from a visual inspection of |T |2
in the real axis. However, no background determination is done, so this should be taken only as
a rough estimate. Indeed, in Fig. 8, channel K∗Ξ in left panel, the shape obtained in both cases
does not resemble a Breit-Wigner and the association of a width to it has been qualitative. In
view of that, we have now put a width of 200-240 MeV which is compatible with the one quoted
in Ref. [23] if a similar error band would have been taken in Ref. [23].

Finally, for the case of S=-2 and I=1/2 we found two peaks. For this case it is not clear to
which states one can associate them since in this region the states cataloged in the PDG have no
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determined spin, but the states Ξ(1950) and Ξ(2120) could be associated to those peaks. Both the
masses and the widths for both states are compatible with the theoretical results. We should also
note that an experimental search devoted to the S=-2 sector is being conducted at Jefferson Lab
[40, 41].

VII. CONCLUSIONS

The interaction of vector mesons with the baryon octet using the hidden gauge formalism,
produces nine resonances dynamically generated, degenerate in JP = 1/2−, 3/2−, which can
be associated to states of the PDG. However the results show that the theoretical widths are
significantly smaller than the experimental ones. So, one could think that there is something else
involved in the vector meson - baryon octet interaction. Since, pseudoscalar mesons couple both,
to vectors and baryons, one can think that it is possible that the interaction is mediated not only
by a vector exchange but also by a pseudoscalar exchange.

We found a mechanism, the box diagram involving V → PP in two vertices, which is common to
JP = 1/2− and 3/2− and gives the same contribution in both cases. In addition to this mechanism,
there are other ones involving a contact term (vertex correction of the Kroll-Ruderman type) which
only contribute for JP = 1/2−, thus breaking the original degeneracy between these states. The
box diagram gives a relatively small contribution, but the terms involving the contact term are
more important, producing a widening of the resonance and some times a small shift to smaller
energies. In particular we found very rewarding that this splitting leads to a good phenomenological
result in the case of the N∗(1650)(1/2−) and N∗(1700)(3/2−), which are well reproduced both for
the masses and widths. The tendency to have a bigger width in the state of 1/2− than in the
partner with 3/2− is also observed in the low lying resonances. For higher mass resonances we
noted the difficulty to establish a clean correspondence with particles in the PDG given the large
fluctuation of results between different experiments.

The study of the scattering matrix reveals that in fact the widths of the resonances found
with this new potential, are bigger than the original ones, and are in a better agreement with the
experimental results found in the PDG. Also the couplings are studied, and although the real and
imaginary parts are somewhat different from the original ones, the moduli remain very similar for
most of the cases.

The formalism done here could be extended to the complementary problem of studying the
effect of the vector baryon channels in the resonances which are largely made of pseudoscalar-
baryon channels. The interplay of pseudoscalar-baryon, vector-baryon and γ-baryon channels is
emerging also as a new experimental line in different reactions, like the photoproduction of K∗Λ
close to threshold [42] and KΛ photoproduction close to the K∗Λ threshold [43]. The formalism
developed here should be very useful to tackle theoretically these works.
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Appendix A: Expression of the Box diagram integral

The integral of the box diagram contains a function which comes from the propagator of the
three mesons and the baryon of the loop. This expression is manipulated in order to cancel the
fallacious poles which appears when one integrate the zero component of the four-momentum using
the Cauchy’s Theorem. The sum of the residues terms leads to a long expression that is given below.

Den = (−2ω1 + iǫ)(−P 0
V − ω1 − ω2 + iǫ)(α − ω3 − ω1 + iǫ)

(β − ω1 + iǫ)(P 0
V − ω2 − ω1 + iǫ)(−2ω2 + iǫ)

(P 0
V + α− ω2 − ω3 + iǫ)(β + P 0

V − ω2 + iǫ)(−α − ω3 − ω1 + iǫ)

(−2ω3 + iǫ)(−α− P 0
V − ω3 − ω2 + iǫ)(β − α− ω3 + iǫ) (A1)

where

ωi =
√

|~q|2 +m2
i , α = P 0

B1
− P 0

B2
, β = P 0

B1
− EB(~q),

and

P 0
Bi

=
s+M2

Bi
−M2

Vi

2
√
s

, P 0
Vi

=
s+M2

Vi
−M2

Mi

2
√
s

, EB(~q) =
√

|~q|2 +M2
B .

Num = P 0
V
3
ω2(ω

2
1 + ω3(α − β + ω3) + ω1(−β + 2ω3))

−P 0
V
2
ω2((−2α − β + ω2)ω3(α− β + ω3) + ω2

1(−β + ω2 + 2ω3)

+ω1(β
2 − 2(α+ β)ω3 + 2ω2

3 + ω2(−β + 2ω3)))

−P 0
V ω2(ω

4
1 + ω3

1(−β + 2ω2 + 2ω3) + ω3(α− β + ω3)(−(α(α + 2β))

+ω2
2 + ω2

3 + 2ω2(α+ ω3)) + ω1(4ω2ω3(α− β + ω3)

+2ω3(α+ ω3)(α − β + ω3) + ω2
2(−β + 2ω3)) + ω2

1(ω
2
2 + 2ω3(α− β + ω3)

+ω2(−2β + 4ω3))) + (ω1 + ω2)((−β + ω2)ω3(α− β + ω3)(−α2 + ω2
2 + 2ω2ω3 + ω2

3)

+ω3
1(ω

2
2 + ω3(α− β + ω3) + ω2(−β + 2ω3)) + ω2

1(−β + ω2 + 2ω3)(ω
2
2

+ω3(α− β + ω3) + ω2(−β + 2ω3)) + ω1(ω
3
2(−β + 2ω3)

+ω2ω3(−2α2 − αβ + 3β2 + 2αω3 − 7βω3 + 4ω2
3) + ω2

2(β
2 + (α− 5β)ω3 + 5ω2

3)

+ω3(α
2(−α+ β)− (α2 + 2αβ − 2β2)ω3 + (α− 3β)ω2

3 + ω3
3))) (A2)

Appendix B: Matrix elements of the ~σ ~ǫ operator

Let us evaluate the matrix element
〈

1/2m′|~σ ~ǫ|JM
〉

(B1)

where

|JM >=
∑

m

C(1/2, 1, J ;m,M −m,M)|1/2,m > |~ǫM−m > (B2)

and, as usual,

~ǫµ =











− 1√
2
(~ǫ1 + i~ǫ2)

~ǫ3
1√
2
(~ǫ1 − i~ǫ2)

µ = 1, 0, − 1 (B3)
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Hence the matrix element can be written as

〈

1/2m′|~σ ~ǫ|JM
〉

=
∑

m

C(1/2, 1, J ;m,M −m,M)
〈

1/2m′|~σ~ǫM−m|1/2,m
〉

(B4)

=
∑

m

C(1/2, 1, J ;m,M −m,M)
〈

1/2m′|σM−m|1/2,m
〉

(B5)

Using the Wigner-Eckart theorem one obtains that

〈

1/2m′|σM−m|1/2,m
〉

=
√
3 C(1/2, 1, 1/2;m,M −m,m′) (B6)

from where we get that m′ ≡ M . Substituting this result in Eq. (B5) we obtain

∑

m

C(1/2, 1, J ;m,M −m,M)
√
3 C(1/2, 1, 1/2;m,M −m,M) =

√
3 δJ,1/2 (B7)

Hence, only J = 1/2 contributes and m′ = M .

Appendix C: Coefficients of the Baryon octet - pseudoscalar mesons interaction

The coefficients of the BBP interaction α and β which are related to the BBP vertex as

− itBBP =

{

α
(D + F )

2f
+ β

(D − F )

2f

}

σ~k (C1)

are given in Table VI.

Appendix D: Coefficients of the box integral

The box diagram generates an integral that we have analytically calculated in the general case
in Eq. (26). The expression has four coefficients (a, b, c and CV1

CV2
) which depend on every

channel and particles involved in the loop, the baryon B and the three pseudoscalar mesons (B1,
B2 and B3 ). The Tables VII, VIII, IX and X, contain those coefficients for each quantum number,
channel and loop.
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Coefficients for state S = 0, I = 1/2
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Coefficients for state S = −1, I = 1

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

K̄∗N ΣKπK 0 1 0 1

ΛKπK 1 1

4
-1 2
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NπKπ 1 0 0 1
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ΣKηK 0 1 0 3

2

ρΛ Σπππ 1 1 2 2

3

ΞKKK 1

4
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3
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4
-1 2

3
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Λπππ 1 1 2 2
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2
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ΞπKη 0 -1 2 1
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2
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NKKK 0 1 0 1

TABLE IX: Coefficients of the Box Integral for the S=-1, I=1 states.
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Coefficients for state S = −2, I = 1/2

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

K̄∗Λ ΞKπK 1

4
1 -1 1

ΣπKπ 1 1 2 1

4

ΞKηK 1

4
1 -1 1

ΛηKη 1 1 2 1

4

K̄∗Σ ΞKπK 1 0 0 11

12

ΣπKπ 1 1 -2 1

ΛπKπ 1 1 2 1

12

ΞKηK 1 0 0 1

4

ΣηKη 1 1 2 1

4

ΣπKη 1 -1 0 − 1

3

ΣηKπ 1 -1 0 − 1

3

ρΞ Ξπππ 0 1 0 4

ΛKKK 1

4
1 -1 1

ΣKKK 1 0 0 1
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ωΞ ΛKKK 1

4
1 -1 1

3

ΣKKK 1 0 0 1

4

φΣ ΛKKK 1

4
1 -1 2

3

ΣKKK 1 0 0 1

2

TABLE X: Coefficients of the Box Integral for the S=-2, I=1/2 states.
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