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The energies and widths of DNN quasi-bound states with isospin I = 1/2 are evaluated in
two methods, the fixed center approximation to the Faddeev equation and the variational method
approach to the effective one-channel Hamiltonian. The DN interactions are constructed so that
they dynamically generate the Λc(2595) (I = 0, Jπ = 1/2−) resonance state. We find that the
system is bound by about 250 MeV from the DNN threshold,

√
s ∼ 3500 MeV. Its width including

both the mesonic decay and the D absorption, is estimated to be about 20-40 MeV. The I = 0 DN
pair in the DNN system is found to form a cluster that is similar to the Λc(2595).

I. INTRODUCTION

The interaction of mesons with nuclei and the prop-
erty of mesonic bound states are one of the most impor-
tant topics in the nuclear-hadron physics [1–6]. Bound
states of pions and K− have been investigated for long
and have revealed the roles of strong interactions in the
hadron-nucleus bound states. A step forward in the ex-
perimental observation of the most deeply bound pio-
nic states was given using the (d,3He) reaction [7], and
also, although less clearly, using the coherent radiative
π− capture [8] in Ref. [9]. The deeply bound kaon atoms
had been studied theoretically using the optical poten-
tials [10–14]. Because of the large imaginary part, the
width of the bound states is larger than the energy sepa-
ration between the levels [5, 15], so that the experimental
observation is not feasible (see also Refs. [16, 17]).

The simplest of the many-body kaonic nuclear system
is the K̄NN , which has had much attention theoretically.
Because the Λ(1405) resonance is interpreted as a quasi-
bound state of the K̄N system in the πΣ continuum [18–
25], one expects a quasi-bound K̄NN system driven by
the attractive K̄N interaction in the isospin I = 0 chan-
nel. Various approaches have resulted in a rather general
consensus that the quasi-bound state is obtained above
the πΣN threshold and the width is larger than the bind-
ing [26–37]. Thus, the experimental identification of this
system would be difficult.

What we report here is the analogous state of the
K̄NN , substituting the K̄ by a D meson. The DN inter-
action in I = 0 is predicted to be attractive in the vector
meson exchange picture, and thus to dynamically gener-
ate the JP = 1/2− excited state, Λc(2595) [38–41]. The
Λc(2595) resonance is rather narrow (Γ < 1.9 MeV), in
contrast to the analogous Λ(1405) with apparent widths
of the order of 30-60 MeV [23–25]. While the large
width of the Λ(1405) is responsible for the large width of
the K̄NN state, the analogous state DNN , where the

Λc(2595) plays the role of the Λ(1405) in the K̄NN state,
has much better chances to survive as a long lived and
observable state.

The interaction of the D mesons with nuclei has been
addressed in Refs. [39, 41, 42] and the possibility of mak-
ing bound atomic states of D mesons in nuclei has been
considered in Ref. [43]. The interaction of DN is attrac-
tive both in isospin I = 0 and I = 1, but much weaker
for I = 1. Although this leads to a weakly attractive
D+p interaction, the Coulomb repulsion becomes impor-
tant for heavier nuclei. As a consequence, the D will
be only weakly bound in heavy nuclei and the probabil-
ity to see these bound states is not excessively promising
[43]. However, few-body systems like DNN are less af-
fected by the Coulomb repulsion particularly for the total
isospin Itot = 1/2.

With this in mind we tackle the DNN system from
two different approaches. The first one is using the fixed
center approximation (FCA) to the Faddeev equations,
as done in Refs. [34–36] for the K̄NN system. The
second one is using the variational method as done in
Refs. [29, 30]. In order to gain confidence that the state
found is narrow, we have also evaluated the width of the
state coming from the absorption of the D by a pair of
nucleons going to the ΛcN system in the FCA, analogous
to the absorption of K̄ by a pair of nucleons as consid-
ered in Refs. [11, 30, 44]. In the variational approach,
we extract typical size of the quasi-bound state from the
obtained wave function.

The paper is organized as follows. In Sec. II, we briefly
introduce the coupled-channel approach for the DN scat-
tering and derive the corresponding DN potential. These
provide the basis of the three-body calculations in later
sections. The FCA to the Faddeev equations is formu-
lated in Sec. III, together with the evaluation of the
two-nucleon absorption. The variational approach to the
same DNN system is discussed in Sec. IV. The numer-
ical results of the three-body calculations are shown in
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Sec. V. The discussion for the obtained results are given
in Sec. VI. The conclusions of this study are drawn in
the last section.

II. DN SCATTERING AND INTERACTION

We consider the two-body DN scattering based on the
model in Ref. [39]. This is a coupled-channel approach to
the s-wave meson-baryon scattering in the vector-meson
exchange picture. The negative parity Λc(2595) reso-
nance is dynamically generated as a quasi-bound state of
the DN system in the I = 0 channel, just like the Λ(1405)
resonance in the strangeness sector [19–25]. In Sec. II A,
we derive the DN two-body scattering amplitude which
will be used in the FCA calculation. An effective single-
channel potential is constructed so as to reproduce the
equivalent scattering amplitude in section II B. This will
be the basic input in the variational calculation. We work
in the isospin symmetric limit, which is sufficient for the
required precision of the present study.

A. Coupled-channel model for the DN scattering

We consider seven (eight) coupled channels in the
isospin I = 0 (I = 1) sector, DN , πΣc, ηΛc, KΞc, KΞ′

c,
DsΛ, and η′Λc (DN , πΛc, πΣc, ηΣc, KΞc, KΞ′

c, DsΣ,
and η′Σc). In Ref. [39], the coupled-channel interaction
is given by the Weinberg-Tomozawa term

v
(I)
ij (W ) = −

κC
(I)
ij

4f2
(2W −Mi−Mj)

√

Mi + Ei

2Mi

√

Mj + Ej

2Mj
,

where W is the total energy, f is the meson decay con-
stant, Mi and Ei are the mass and energy of the baryon in

channel i, respectively, and C
(I)
ij is the group theoretical

coupling strength for isospin I. The reduction factor κ is
introduced to take into account the mass difference of the
exchanged meson, which we set κ = 1 (κ = κc = 1/4) for
the uds (charm) flavor exchange process [39]. The scat-
tering amplitude tij is obtained from the matrix equation

t(I) = ((v(I))−1 − g(I))−1, (1)

where the diagonal loop function is given in dimensional
regularization as

g
(I)
i (W ; ai(µ))

=
1

(4π)2

{

ai(µ) + ln
M2

i

µ2
+

m2
i − M2

i + W 2

2W 2
ln

m2
i

M2
i

+
q̄i

W
[ln(W 2 − (M2

i − m2
i ) + 2W q̄i)

+ ln(W 2 + (M2
i − m2

i ) + 2W q̄i)

− ln(−W 2 + (M2
i − m2

i ) + 2W q̄i)

− ln(−W 2 − (M2
i − m2

i ) + 2W q̄i)]
}

,
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FIG. 1. (Color online) S-wave DN scattering amplitude in
the coupled-channel model (1) (Left: I = 0 channel, Right:
I = 1 channel). Vertical dotted lines represent the threshold
energies of πΣc and DN channels.

where q̄i is the magnitude of the three-momentum in the
center-of-mass frame. We choose the subtraction con-
stants at µ = 1 GeV as

aDN = − 2.056, ai = −2.06 (i 6= DN), (2)

for both the I = 0 and I = 1 states, so that the Λc(2595)
resonance is dynamically generated at the observed en-
ergy. By choosing the isospin symmetric subtraction con-
stants (2), a resonance state is also generated in I = 1
at ∼ 2760 MeV. The diagonal components of the s-wave
scattering amplitudes in the DN channel, which are com-
plex above the πYc (Yc = Λc, Σc) threshold, are shown
in Fig. 1. The resonant nature of the amplitudes can be
seen in both channels.

It is worth comparing the I = 0 DN -πΣc system with
the corresponding K̄N -πΣ system. Both the systems
have a quasi-bound state. Neglecting the small effect
of the normalization factor, we can write the coupling
strength for the DN case as

vij ∼





3
√

3
2 κc

√

3
2 κc 4





2W − Mi − Mj

4f2
,

where the channels are assigned as DN (i = 1) and πΣc

(i = 2). This is the same form with the K̄N -πΣ case,
except for the factor κc = 1/4 in the off-diagonal chan-
nel. The diagonal interaction is proportional to the me-
son energy W − Mi, which is reduced to the meson mass
at threshold. Thus, there are three differences from the
strangeness sector: 1) heavy mass of D meson, which
enhances the strength of the DN interaction by the en-
ergy factor W − Mi; 2) large reduced mass of the sys-
tem, which suppresses the kinetic energy in the charm
sector; 3) weak transition coupling DN → πΣc, which
suppresses the decay of the quasi-bound state into the
πΣc state. These facts explain the reason why the DN
quasi-bound state is generated with larger binding energy
and narrower width than those of the K̄N quasi-bound
state. In addition, 1) and 2) also enhance the attractive
interaction in the I = 1 channel. As a consequence, we
obtain a resonance state also in I = 1 at ∼ 2760 MeV,
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as far as choosing the isospin symmetric subtraction con-
stants (2).

B. Effective single-channel DN potential

Now we construct an effective single-channel potential,
which will be used in the variational calculation of the
DNN system. We utilize the method in Ref. [45], first
constructing a single-channel framework which is equiva-
lent to Eq. (1) and then translating the result into a local
and energy-dependent potential in coordinate space.

The effective interaction veff is constructed to repro-
duce the original amplitude t11, given by the DN single-
channel scattering equation (we suppress the isospin in-
dex in this section)

t11 =[(veff)−1 − g1]−1. (3)

It is shown that the veff is given by the sum of the bare
interaction in channel 1 (v11) and the term with coupled-
channel effects as [45]

veff =v11 +

N
∑

m=2

v1mgmvm1 +

N
∑

m,l=2

v1mgmt
(N−1)
ml glvl1,

(4)

where t
(N−1)
ml = [(v(N−1))]−1 − g(N−1)]−1 is the (N −

1) × (N − 1) matrix of the coupled-channel amplitude
without the DN channel. In this way, Eq. (3) gives the
equivalent amplitude with the 11 component in Eq. (1).
veff is complex above the πYc threshold, because of the
imaginary part of the loop function of the πYc channel in
Eq. (4).

We then translate veff into the local potential in co-
ordinate space. Adopting a single gaussian form for the
spatial distribution, the two-body potential can be writ-
ten as

vDN (r; W ) =
MN

2π3/2a3
sω̃(W )

× [veff(W ) + ∆v(W )] exp[−(r/as)2],
(5)

where as = 0.4 fm is the range parameter of the po-
tential and ω̃(W ) is the reduced energy of the DN sys-
tem. The energy-dependent correction term ∆v(W ) is
introduced to compensate the deviation from the lo-
cal potential approximation. This complex and energy-
dependent potential reproduces the scattering amplitude
t11 when the Schrödinger equation with this potential
is self-consistently solved. The strength of the potential
vDN (r; W ) at r = 0 is shown in Fig. 2. One finds that the
real part (imaginary part) is larger (smaller) than that
of the K̄N potential [45], which demonstrate the differ-
ences of the interaction kernel discussed in the previous
section.
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FIG. 2. (Color online) Strength of the effective potential
vDN (r, W ) at r = 0 by Eq. (5) (Left: I = 0 channel, Right:
I = 1 channel). The range parameter is chosen to be as = 0.4
fm. Vertical dotted lines represent the threshold energies of
πΣc and DN channels.

III. THE FIXED CENTER APPROXIMATION

FOR THE DNN SYSTEM

The fixed center approximation (FCA) to the Faddeev
equations has been used with success in several problems.
It is advantageous that the two-body absorption process
of the three-body system can be calculated as discussed
in Sec. III B. One assumes that a pair of particles remains
relatively unaffected by the interaction of the third par-
ticle with this pair. This usually happens when the third
particle is lighter than the constituents of the pair, and
also if the cluster is tightly bound. The method has been
used with success in the study of K− scattering with
the deuteron in Refs. [46–49] (see a review in Ref. [50]
for comparison with full Faddeev calculations). More re-
cently it has been applied to systems of two mesons and
a baryon in Ref. [51], where the NK̄K system is investi-
gated. The results obtained are in good agreement with
more accurate results obtained with variational calcula-
tions in Ref. [52], or the Faddeev equations in coupled
channels [53, 54]. The puzzle of the ∆5/2+ (2000) is also
addressed with this technique, assuming this resonance to
be mostly built up from πρ∆ in Ref. [55]. Closer dynami-
cally to the problem under consideration is the work [56],
where the NDK, K̄DN and NDD̄ systems are studied
with this method.

In the present case, where we want to study the
DNN system, we have also the precedent of the work of
Refs. [34, 36], where the K̄NN system was studied within
this approximation and found to provide results in qual-
itative agreement with those of the variational calcula-
tions [29, 30]. The condition that the interacting particle
(D meson) is lighter than those of the two-body cluster
(nucleon) is not fulfilled in this case. This certainly in-
troduces larger uncertainties than in other cases studied
but we still expect that one can get good results at a
qualitative level. Actually, the real difficulty of the FCA
occurs when one applies it to studying possible resonant
three body systems above the threshold of the three par-
ticles [57]. In the present case, we look for deeply bound
states of the DNN system and we are safer. However, in
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tI

+ 

tI
Pex

G

FIG. 3. Diagrammatic illustration of the three-body equa-
tion (6).

order to be more certain about the results, we have also
performed calculations using a variational method. The
differences found in the two approaches can give us an
idea of the uncertainties, and the features shared by the
two approaches can be considered more reliable.

A. The formalism for the FCA in the DNN system

In the FCA to the Faddeev equations for the DNN
three body system, one takes the NN as a cluster and
D scatters from that cluster. We consider the DNN
system with total isospin Itot = 1/2 and with the total
spin-parity JP = 0− and JP = 1−. In this approach, all
the two-body pairs are in s wave.

First we make the evaluation for the case of JP = 0−,
which corresponds to the spin (isospin) of the NN pair
as SNN = 0 (INN = 1). To have total isospin Itot = 1/2,
the dominant component of the DN system is I = 0,
where the Λ(2595) resonance appears.

The T matrix for the three-body DNN scattering is
labeled by the DN isospins in the entrance channel I
and the exit channel I ′, TI,I′ . We denote the two-body

(s-wave) DN scattering amplitudes by t(0) for I = 0 and
t(1) for I = 1. Then the T matrix satisfies

TI,I′ = t(I)δI,I′ + t(I)GI,I′′G0TI′′,I′Pex, (6)

which is diagrammatically represented in Fig. 3. In
Eq. (6), G0 is the meson exchange propagator [34, 58]

G0 =

∫

d3q

(2π)3
FNN (q)

1

q02 − ~q 2 − m2
D + iǫ

, (7)

where FNN (q) is the form factor, representing momen-
tum distribution of the NN system. Pex is the isospin
exchange factor, which depends on the total isospin of the
nucleon, INN , in the final state, Pex = (−1)INN +1 = 1
for J = 0, and = −1 for J = 1.

Here we concentrate on the isospin factors in the DNN
scattering amplitudes. We define the isospin doublets,
N = (p, n), D = (D+, −D0) and consider the DNN
states with the total isospin Itot = 1/2. There are two
independent states with the total spin J = 0 and J = 1,
which can be decomposed into the DN isospin eigen-
states, as

|D(N1N2)INN =1〉J=0 =

√
3

2
|(DN1)0N2〉 +

1

2
|(DN1)1N2〉,

|D(N1N2)INN =0〉J=1 = −1

2
|(DN1)0N2〉 +

√
3

2
|(DN1)1N2〉.

The D exchange matrix is given in terms of the isospin
recombination factors.

|(DN1)0N2〉 =
1

2
|(DN2)0N1〉 +

√
3

2
|(DN2)1N1〉,

|(DN1)1N2〉 =

√
3

2
|(DN2)0N1〉 − 1

2
|(DN2)1N1〉.

Thus the transition matrix G is given by

G =







1

2

√
3

2√
3

2
−1

2






.

The three-body amplitude TI,I′ is obtained by solving
Eq. (6):

T =

[

1 − 1

2
(t(0) − t(1))G0Pex − t(0)t(1)G2

0

]−1

×
(

t(0) + 1
2 t(1)G0t(0)Pex

√
3

2 t(0)t(1)G0Pex√
3

2 t(0)t(1)G0Pex t(1) − 1
2 t(0)G0t(1)Pex

)

.

In calculating the T matrix for the scatterings in the J =
0 and J = 1 channels, we take the linear combinations,
with a factor 2 for the choice of the first nucleon, as

T (J = 0) = 2
(√

3
2

1
2

)

(

T00 T01

T10 T11

)(
√

3
2
1
2

)

,

T (J = 1) = 2
(

− 1
2

√
3

2

)

(

T00 T01

T10 T11

)(− 1
2√
3

2

)

.

Substituting the T matrix and replacing Pex by +1 for
J = 0, INN = 1 scattering and −1 for J = 1, INN = 0,
we obtain

T (J = 0) =

(

3

2
t(0) +

1

2
t(1) + 2t(0)t(1)G0

)

×
[

1 − 1

2
(t(0) − t(1))G0 − t(0)t(1)G2

0

]−1

,

(8)

T (J = 1) =

(

1

2
t(0) +

3

2
t(1) + 2t(0)t(1)G0

)

×
[

1 +
1

2
(t(0) − t(1))G0 − t(0)t(1)G2

0

]−1

.

(9)

These results coincide with those derived in the charge
basis [35, 36] (see Appendix B).

We can see that Eq. (7) contains the folding of the D
intermediate propagator with the form factor of the NN
system. The variable q0 in Eq. (7) is the energy carried
by the D, which is given by

q0 =
s + m2

D − (2MN )2

2
√

s
,

with
√

s for the rest energy of the DNN system. Eq.
(7) requires the NN form factor. For INN = 0 one could
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take the deuteron form factor, but the attraction of the D
on the nucleons will make the NN system more compact,
like in the case of the K̄NN system. Yet, there are limits
on how much one can contract this system because of
the strong NN repulsion at short distances. In order to
estimate the NN size one can rely upon the results of
Ref. [30] in the study of the K̄NN system, where the
NN repulsion at short distance was explicitly taken into
account. In practical terms we use the same expression
for the form factor as for the deuteron [59]

F (q) =

∫ ∞

0

d3p

11
∑

j=1

Cj

~p2 + m2
j

11
∑

i=1

Ci

(~p − ~q)2 + m2
i

, (10)

but with the parameters mi rescaled such as to give an
average separation of the nucleons of RNN ≃ 2 fm [30].
They are shown in Fig. 4. The validity of this NN form
factor will be examined by the result of the variational
calculation, where the average distance of the NN pair
in the DNN system will be optimized in the three-body
dynamics.

We need the argument s1 of the DN amplitude,
t(

√
s1). To evaluate it we adopt a common procedure of

dividing the binding energy into the three particles pro-
portionally to their masses. The energy of the nucleon
and the D meson are given by

EN = MN

√
s

2MN + mD
, ED = mD

√
s

2MN + mD
,

so the total energy of the two-body system can be calcu-
lated as

s1 = (pD + pN1
)2 = s

( MN + mD

2MN + mD

)2

− ~p 2
N2

. (11)

The approximate value of ~p2
N2

can be obtained by assum-
ing

~p 2
N2

2MN
≃ BN2

; BN2
= MN − MN

√
s

2MN + mD
, (12)

which provides a rough estimate for bound systems with
the strong interaction.

B. Evaluation of the D(NN) Absorption

As we shall see in Sec. V, we obtain a DNN bound
system with a very small width. This is related to the
small width of the Λc(2598) state which is generated in
DN interaction in I = 0. Yet, this calculation only takes
into account the decay channel DN → πΣc for which
there is little phase space and DN → πΛc channel which
comes from the subdominant DN I = 1 component in
the DNN system. Now we allow the D to be absorbed by
two nucleons, in analogy to the K̄NN → ΛN considered
in Refs. [11, 44]. Here the channel will be DNN → NΛc

whose absorption process is shown diagrammatically in

0 500 1000 1500 2000
q [MeV]

0

0.2

0.4

0.6

0.8

F(
q)

F(q)
F(q)reduced

FIG. 4. Form factor of the deuteron, and the one correspond-
ing to an NN system with a reduced radius from Ref. [30].

N

N Λc(2286)

N

x

y
D

D

NΛc

x

y

D

D

N N

+

FIG. 5. Diagrammatic representation of the D(NN) absorp-
tion.

Fig. 5 (other mechanisms and decay channels will be dis-
cussed in the end of this section). We calculate only the
first diagram in Fig. 5. The second one gives an identical
contribution and they sum incoherently: there is no in-
terference since the NΛc and ΛcN are orthogonal states.
Hence, the total width will be twice the one obtained
from just one diagram.

The S-matrix for the diagram is given by

S =

∫

d4x

∫

d4y(−i)tDN→DN

× 1√
2ωD

ϕD(~x)e−iωDx0

eiE′

N1
x0

e−iEN1
x0

ϕ∗
N ′

1
(~x)ϕN1

(~x)

×
∫

d4q

(2π)4
e−iq(y−x) i

q2 − m2
D + iǫ

×Vy~σ~q eiEΛc
y0

e−iEN2
y0

ϕ∗
Λc

(~y)ϕN2
(~y),

where Vy is the Yukawa vertex. We take the same cou-
pling as K−p → Λ since in the D and Λc the c quark plays
the role of the s quark in the K̄ and Λ. In Ref. [60], the
Vy is given as

Vy = − 1√
3

3F + D

2f
,
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with D = 0.795, F = 0.465 [61]. We perform the x0, y0

integrations, and make a change of the spatial variables
as

~x = ~R − ~r

2
, ~y = ~R +

~r

2
.

Then we can write

ϕN1
(~x)ϕN2

(~y) =
1√
V

ei ~P . ~Rϕ(~r),

where ϕ(~r) is the wave function of the NN system. N ′
1

and Λc will be outgoing plane waves. Let us also assume
that the D is a plane wave with a certain momentum.
The final formula that we shall use is independent of this
momentum, as we shall see. Thus,

ϕD(~x) =
1√
V

ei~pD .~x,

and then, using these new functions, the S-matrix is writ-
ten as follows

S =
1

V 2

∫

d3q

(2π)3

1√
2ωD

tDN→DN
1

q2 − m2
D + iǫ

×Vy~σ~q ϕ̃(~q − ~pΛc
+

~P

2
)(2π)4δ4(pi − pf ) (13)

≡ −iT
1√
2ωD

1

V 2
(2π)4δ4(pi − pf ),

where ϕ̃(~q) is the Fourier transform of the wave function
ϕ(~r) normalized to 1, and pi and pf are the initial and
final momentum, respectively. The NN wave function in
momentum space is defined as

ϕ̃(~q) =

∫

d3qei ~q ~xϕ(~x),

and has a maximum value for ~q = 0. If we take the NN

system at rest, ~P = 0, the wave function ϕ̃(~q) in Eq. (13)
will peak at ~q − ~pΛc

= 0. This allows us to approximate
the D propagator in Eq. (13) as

1

q2 − m2
D

→ 1

(q0)2 − ~p 2
Λc

− m2
D

, (14)

where q0 = EΛc
− EN2

and pΛc
≈

λ1/2(M2
NND, M2

N , M2
Λc

)/2MNND. We do not need
to specify the tDN→DN amplitude since it will be
accounted for at the end of the formalism.

Defining of ~q −~pΛc
≡ ~q ′, the square of the total matrix

element is obtained as follow:

|T |2 = V 2
y ~p 2

Λc

(

1

(q0)2 − p2
Λc

− m2
D

)2

×
∣

∣

∣

∣

1

2π2

∫

q′2dq′ϕ̃(~q ′)tDN,DN (
√

s′)

∣

∣

∣

∣

2

, (15)

D

NN

NN
D

(a)

D

D D

D

NhN Λc
D

D

D

(b) (c)

N

N

N

FIG. 6. D(NN) absorption.

With this T matrix we evaluate the cross section for the
process of Fig. 5 (left) and we obtain

σabs =
1

2π

MNNMΛc
MN

M2
NND

pΛc

pD
|T |2.

It is interesting to relate this cross section to the imagi-
nary part of the forward D(NN) → D(NN) amplitude
from the diagram of Fig. 6 using the optical theorem.
We find

Im TD(NN) = −pD
√

s

MNN
σabs = − 1

2π

MΛc
MN

MNND
pΛc

|T |2.

The next step is to convert the absorption diagram
of the Fig. 6 (a) into a “many body” diagram of Fig.
6 (b) where the nucleon where the D is absorbed, the
only occupied state of the “many body” system, is con-
verted into a hole state in the many body terminology
[62]. Once this is done one observes that if we remove
the amplitude tDN in the expression of T , the expression
that we obtain for Im TD(NN) corresponds to the evalua-
tion of the imaginary part of the two-body loop function
g of a nucleon and a D meson [Fig. 6 (c)] but with a D
selfenergy insertion accounting for the (ΛcNh) excitation
of the D meson. We call this δg̃. The Feynman rules to
evaluate Im δg̃ and Im TD(NN) are identical, except that
tDN,DN is removed in the evaluation of Im δg̃. Hence we
obtain

iIm δg̃ = −i
1

2π

MΛc
MN

MNND
pΛc

|T̃ |2.

with |T̃ |2 is given by Eq. (15) removing tDN,DN . This
simplifies the expression since

1

2π2

∫

q′2dq′ϕ̃(~q ′) = lim
r→0

∫

d3q′

(2π)3
ei~q ′~rϕ̃(~q ′) (16)

=ϕ(r = 0).

Thus |T̃ |2 is given by

|T̃ |2 = V 2
y ~p 2

Λc

1

[(q0)2 − p2
Λc

− m2
D]2

|ϕ(0)|2.

Finally ~p 2
Λc

accompanying V 2
y in the former expression

requires a small correction. The factor comes from the
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FIG. 7. The meson-baryon loop function gDN in the DN
channel (solid line) and with the effect of the two-body ab-
sorption iIm δg̃ added (dashed line).

non relativistic ~σ~q form of the DNΛc vertex. If we take
instead the relativistic Yukawa vertex of the type γµγ5,
then we find the easy prescription to account for the rel-
ativistic correction,

V 2
y ~p 2

Λc
→ V 2

y

1

4m2
Λc

(MN + MΛc
)2~p 2

Λc
.

The next step is to reevaluate the tDN,DN amplitude
used as input in the fixed center formulas. As we men-
tioned, they were obtained using the method of Ref. [39]
with several coupled channels and the formula (1). We
redo the evaluation by replacing the loop function in the
DN channel as

gDN → gDN + i Im δg̃ (17)

to take into account the D absorption by two nucleons or,
analogously, the ΛcNh excitation of the D meson. When
doing this, the DN amplitude becomes complex below
the DN threshold and the narrow Λc(2598) resonance
acquires now a moderate width due to the D absorption
with a second nucleon. The second process of Fig. 5
(right) is accounted for when we consider the three-body
amplitude T in the FCA formula with the first D scat-
tering with the second nucleon.

For the estimation of the width we take the wave func-
tion

ϕ̃(r) =ae−αr, a =
1

2

(

α3

2π

)
1
2

,

ϕ̃(q) =
4πaα

(1
4 α2 − q2)2 + q2α2

,

with α ≃ 1.7fm−1, which corresponds to an NN object
of relative distance 2 fm.

Let us numerically investigate the effect of the absorp-
tion using the model described in Sec. II A. In Fig. 7,
we show the meson-baryon loop function gDN in the DN

2200 2300 2400 2500 2600 2700 2800 2900 3000

s
1

1/2
[MeV]

0

5

10

15

20

25

30

| t
 |

t
DN

t
DN

(with δ g)

FIG. 8. Modulus of the two-body amplitude DN → DN
(solid line) and with the effect of the two-body absorption
iIm δg̃ added (dashed line).

channel together with the two-body absorption contribu-
tion to the imaginary part, iIm δg̃. We can see that the
imaginary part of the total g function is no longer zero
below the DN threshold due to D absorption. In Fig. 8,
we show the modulus of the two-body amplitude |t| for
the DN channel for I = 0 using gDN and gDN + iIm δg̃
of Eq. (17). As we can see, the inclusion of the absorp-
tion mechanism induces an increase in the width of the
peak of Λc(2595) in |t| which will have repercussion in
the width of the DNN system.

For a narrow resonance, we can approximate the am-
plitude around the resonance energy by a Breit-Wigner
form

t(
√

s1) ≃ g2

√
s1 − MR + i Γ

2

.

This leads to the expression of the coupling of the reso-
nance to the DN scattering state as

g2 =
1

2
Γ|t(MR)|.

Inspection of Fig. 8, together with the values of Γ(no
absorption)= 3 MeV and Γ(absorption)= 15 MeV, show
that the value of the coupling g2 barely changes from
the introduction of iIm δg̃, but of course the reso-
nance has become wider. Indeed g2(no absorption)/
g2(absorption)≃ 6/5.

The absorption diagram that we have considered is
not the only one, but it is the most relevant. On the
same footing we should consider the diagrams where the
Yukawa coupling produces Σc or even Σ∗

c(2520). The
analogy with the kaons made before, and the values of
these couplings that can be seen in Ref. [61], together
with the dynamical factor p3 of the cross section, make
the contribution of these terms of the order of 5% of the
Λc production and we neglect them. Analogously we can
also have DN → π(η)Λc(Σc) in the first hadron line of
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the absorption diagram and exchange a pion or an eta.
These diagrams are further suppressed because they re-
quire the exchange of a heavy vector in the DN → π(η)Yc

amplitude in the extension of the hidden gauge approach
that we use. They are penalized by the factor κ2

c , which,
even considering that the pion (eta) propagators have
bigger strength than the D one, renders these diagrams
at the level of 10%.

IV. VARIATIONAL CALCULATION OF THE

DNN SYSTEM

Here we calculate the energy of the DNN system with
a variational approach formulated for K̄NN system in
Refs. [29, 30]. As in the case of the FCA, we consider
the DNN system with total isospin I = 1/2 and the
total spin-parity either JP = 0− or JP = 1−. The trial
wave function for the JP = 0− state is prepared with two
components:

| ΨJ=0 〉 = (N 0)−1[| Φ0
+ 〉 + C0| Φ0

− 〉],

where N 0 is a normalization constant and C0 is a mixing
coefficient. In the main component | Φ0

+ 〉, two nucleons
are combined into spin SNN = 0 and isospin INN = 1
so all the two-body subsystems can be in s wave. We
also allow a mixture of the | Φ0

− 〉 component where both
spin and isospin are set to be zero, so the orbital angular
momentum between two nucleons is odd. The JP = 1−

state is studied in a similar way as

| ΨJ=1 〉 = (N 1)−1[| Φ1
+ 〉 + C1| Φ1

− 〉],

where | Φ1
+ 〉 (| Φ1

− 〉) denotes SNN = 1 and INN = 0
(SNN = 1 and INN = 1) component. Note that only the

main component of | ΦJ=0,1
+ 〉 is taken into account in the

FCA calculation. The wave functions are expanded in
terms of gaussians in coordinate space, and we minimize
the total energy of the system with the Hamiltonian given
below. Detailed explanation of the variational method
can be found in Ref. [30].

We consider the following Hamiltonian in this study:

Ĥ = T̂ + V̂NN + Re V̂DN − T̂c.m., (18)

where T̂ is the total kinetic energy, V̂DN is the DN poten-
tial term which is the sum of the contributions from two
nucleons, and T̂c.m. is the energy of the center-of-mass
motion. For the NN potential V̂NN , we use three mod-
els: HN1R which is constructed from Hasegawa-Nagata
No.1 potential [63], the Minnesota force [64], and the
gaussian-fitted version of the Argonne v18 potential [65].
The characteristic features of these NN potentials are
summarized in Appendix A. For later convenience, we

define the following matrix elements

Ekin =〈 Ψ |T̂ − T̂c.m.| Ψ 〉,
V (NN) =〈 Ψ |V̂NN | Ψ 〉,
V (DN) =〈 Ψ |Re V̂DN | Ψ 〉,

Tnuc =〈 Ψ |T̂N − T̂c.m.,N | Ψ 〉,
ENN =Tnuc + V (NN),

where T̂N and T̂c.m.,N are nucleonic parts of the kinetic
term and center-of-mass energy, respectively.

We take the real part of the DN potential for the en-
ergy variation, and the imaginary part will be used to
estimate the mesonic decay width. The energy depen-
dence of the interaction was treated self-consistently in
the study of K̄NN system [30]. While the K̄N amplitude
is well calibrated by experimental data such as total cross
sections and πΣ mass distributions, the DN amplitude
is only constrained by the mass of the quasi-bound state
Λc(2595) = Λ∗

c . In addition, the self-consistent treat-
ment requires some assumption on the energy fraction of
the DN pair in the three-body system, which cannot be
determined unambiguously. In this study, therefore, we
refrain from the self-consistent treatment of the energy of
the DN subsystem and set the strength of the potential
at the energy of Λ∗

c resonance:

Re vDN (r = 0; W = MΛ∗

c
) =

{

−1336 MeV (I = 0)

−343 MeV (I = 1)
,

(19)

with MΛ∗

c
= 2597.1 MeV. In this case, the MΛ∗

c
in I = 0

channel is correctly reproduced, while the I = 1 reso-
nance disappears, because the strength of the DN po-
tential (5) reduces at the lower energy region as seen in
Fig. 2.

It is useful to introduce one- and two-body densities in
order to extract the spatial structure of the DNN bound
state. We first define the one-body densities as

ρN (r) =〈 Ψ |
∑

i=1,2

δ3(|ri − RG| − r)| Ψ 〉,

ρD(r) =〈 Ψ |δ3(|rD − RG| − r)| Ψ 〉,
ρT (r) =ρN (r) + ρD(r),

where RG is the center-of-mass coordinate of the three-
body system. The one-body densities represent the prob-
ability of finding N , D, or any of them at distance r from
the center of mass of the system. We also define the two-
body correlation densities as

ρNN(x) =〈 Ψ |δ3(|r1 − r2| − x)| Ψ 〉,
ρDN (x) =〈 Ψ |

∑

i=1,2

δ3(|rD − ri| − x)| Ψ 〉,

which stand for the probabilities of finding NN or DN
pair at relative distance x. The root-mean-square radius
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FIG. 9. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 0 with reduced size of the NN
radius.

of particle X ,
√

〈r2〉X , and relative distance of particles
X and Y , RXY , are given as the second moment of the
one-body and two-body densities, respectively:

〈r2〉X =

∫

d3
r r

2ρX(r),

R2
XY =

∫

d3
x x

2ρXY (x).

In this setup, since the imaginary part of the DN po-
tential is not included, the Λ∗

c appears as a stable bound
state. Thus, in the variational approach, the DNN
three-body bound state can be found in the energy region
below the Λ∗

cN threshold
√

s ∼ 3536 MeV. If the three-
body (quasi-)bound state exists above the Λ∗

cN thresh-
old, variational calculation will find the Λ∗

cN two-body
scattering state as the ground state of the three-body
system.

A three-body bound state above the πΛcN threshold√
s ∼ 3363 MeV has a mesonic decay width. The three-

body decay width can be estimated by the matrix ele-
ment of the imaginary part of the DN potential as

ΓπYcN = − 2〈 Ψ |Im V̂DN | Ψ 〉,

where | Ψ 〉 is the obtained wave function of the ground
state. As seen in Fig. 2, the imaginary part of the DN
potential is much smaller than the real part. This may
justify the perturbative treatment of the imaginary part,
which ignores the dispersive effect on the energy of the
DNN system from the imaginary part.

V. RESULTS

A. Quasi-bound states in the FCA approach

We first study the quasi-bound state found in the FCA
calculation. In Figs. 9 and 10 we show the results for |T |2
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FIG. 10. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 1 with reduced size of the NN
radius
.
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FIG. 11. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 0 (with δG̃) with reduced NN
radius.

as functions of the total energy
√

s assuming the NN
system to have reduced size. Both for INN = 0, INN =
1(J = 1, J = 0), we obtain a neat peak. The resonance
energy for J = 0 is about 3486 MeV and the width is
extremely small. In the case of J = 1 we have a smaller
binding and the energy is about 3500 MeV, with a width
of around 9 MeV. We should note that the binding is
similar for both the spin channels. The position of the
peak in this approximation is, in a rough estimate, given
by the position of the pole of the Λc(2595). This gives
the value of s1 and through Eqs. (11), (12) the value of
s.

However, one should note the different strength of |T |2
in these two cases, but a direct comparison cannot be
done because the strength of the resonance amplitude at
the peak is related to the width, which strongly depends
on the spin. A proper comparison is better done after the
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DN → DN
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FIG. 12. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 1 (with δG̃) with reduced NN
radius.

D absorption is included where the widths are similar.
Next we include the δg̃ to account for absorption and

plot |T |2 for the DNN system in Figs. 11 and 12 for
J = 0 (INN = 1) and J = 1 (INN = 0). The difference
of the peak position by the absorption effect is only a
few MeV (2-4 MeV) which is certainly within our uncer-
tainties. The novelty, which is welcome, is that |T |2 has
become now wider and acquires a width of about 20-25
MeV. We are now in a position to compare the strength
of these two amplitudes and we see that in the case of
J = 0 the strength of |T |2 at the peak is about a fac-
tor 15 larger than that for J = 1. This means that the
state that we find at J = 1 should be more difficult to
see, or alternatively we should see the small strength as
an indication that this state is more uncertain in our ap-
proximation, as should be the smaller shoulder that one
can see at higher energies for J = 1 in Fig. 12.

B. Quasi-bound states in the variational approach

Now we investigate the same system in the variational
approach. We first adopt HN1R potential for the nuclear
force. As a result of the variational calculation, we have
found that the total spin J = 1 system (INN = 0) is
unbound with respect to the Λ∗

cN threshold. A bound
state of spin J = 0 system (INN = 1) is found at

B ∼ 225 MeV,

measured from the DNN threshold (∼ 3745 MeV). This
corresponds to the total energy of the three-body system
as

MB ∼ 3520 MeV.

We also examine the Minnesota force and Av18 potential.
The results are summarized in Table I, together with the
contributions from the individual terms in Eq. (18).

TABLE I. Results of the energy compositions in the varia-
tional calculation for the ground state of the DNN system
with total isospin I = 1/2 (range parameter as = 0.4 fm).
Terms “bound” and “unbound” are defined with respect to
the Λ∗

cN threshold. All the numbers are given in MeV.

HN1R Minnesota Av18

J = 1 J = 0 J = 0 J = 0

unbound bound bound bound

B 208 225 251 209

MB 3537 3520 3494 3536

ΓπYcN - 26 38 22

Ekin 338 352 438 335

V (NN) 0 −2 19 −5

V (DN) −546 −575 −708 −540

Tnuc 113 126 162 117

ENN 113 124 181 113

P (Odd) 75.0 % 14.4 % 7.4 % 18.9 %

As seen in the Table I, the DNN system in the J = 0
channel is bound below the Λ∗

cN threshold (B ∼ 209
MeV) for all the NN potentials employed.1 A large ki-
netic energy of the deeply bound system is overcome by
the strong attraction of the DN potential, while the NN
potential adds a small correction. Comparing the results
with three different nuclear forces, we find that the bind-
ing energy is smaller when the NN potential has a harder
repulsive core (see Appendix A).

In the J = 1 channel, the ground state energy is ob-
tained slightly above the Λ∗

cN threshold. The fact that
the J = 1 channel is unbound is confirmed by changing
the parameter µ in the trial wave function, which controls
the size of the total system [30]. By increasing the sys-
tem size, the total energy gradually approaches the Λ∗

cN
threshold. This indicates that the lowest-energy state is
indeed a two-body scattering state of the Λ∗

cN channel.
A large fraction of the odd component in this channel
(∼ 75 %) is realized to enhance the INN = 1 compo-
nent which has larger fraction of the IDN = 0 than the
INN = 0 component. In fact, pure | (DN)I=0N 〉 state
can be decomposed into INN = 0 and INN = 1 compo-
nents with the ratio 1:3. Since the INN = 1 state is the
odd state in J = 1 (SNN = 1) channel, the 75 % fraction
of the odd component indicates that the DN pair forms
the Λ∗

c . We also examine the J = 1 channel with the
Minnesota force. Although the repulsive core is soft in
this case, no bound Λ∗

cN is found.
Using the imaginary part of the DN potential, we eval-

uate the mesonic decay width of the quasi-bound state in

1 Av18 case is almost at the Λ∗

c N threshold, but we confirm that

the wave function is localized as we will see in Sec. V C.
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TABLE II. Structure of the DNN ground state (range param-

eter as = 0.4 fm).
√

〈r2〉T ,
√

〈r2〉D and
√

〈r2〉N mean the
root-mean-square radius of the distribution of total system,
nucleons and D meson, respectively. RNN (RDN ) is the mean
distance between two nucleons (D meson and a nucleon) in
the DNN . RDN (I) is the mean distance of a DN component
with isospin I . All the numbers are given in fm.

HN1R Minnesota Av18

J = 1 J = 0 J = 0 J = 0
√

〈r2〉T 4.81 0.75 0.50 1.26
√

〈r2〉N 5.61 0.88 0.59 1.47
√

〈r2〉D 2.52 0.41 0.28 0.67

RNN 10.04 1.55 1.03 2.62

RDN 7.11 1.12 0.76 1.87

RDN (I = 0) 4.52 0.83 0.62 1.28

RDN (I = 1) 10.03 1.57 1.03 2.65

the J = 0 channel, ΓπYcN . The results are 20-40 MeV as
shown in Table I. This corresponds to the result of FCA
without the D absorption, where the width is less than
10 MeV. Note, however, that in the variational approach
we have evaluated the width perturbatively, while in the
FCA the evaluation is done nonperturbatively. In this
sense, ΓπYcN obtained in the variational approach can
only be regarded as an estimation of the mesonic decay
width.

C. Structure of the DNN quasi-bound state

To further investigate the structure of the DNN sys-
tems, we calculate the expectation values of various dis-
tances of the obtained wave function. The results of
the root-mean-square radii and the relative distances are
shown in Table II. Except for the Av18 case where the
wave function spreads due to the weaker binding, the
size of the DNN bound state in the J = 0 channel is
smaller than the K̄NN system, in which the NN and
K̄N distances are RNN ∼ 2.2 fm and RK̄N ∼ 1.9 fm. It
is, on the other hand, acceptable to use the reduced size
of Eq. (10) for the NN distribution in the FCA calcula-
tion, given the uncertainty that arises from the choice of
the NN interaction. The large relative distances in the
J = 1 channel also reflect the nature of the scattering
state in this channel.

In Fig. 13, we show the one-body densities of the nu-
cleon and D meson of the quasi-bound state with the
HN1R potential. It is clear that the D meson distributes
more compactly than the nucleons. This result indicates
a schematic picture where the D meson sits at the center
and nucleons circulates around it.

It is instructive to look at the DN correlation in more
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FIG. 13. (Color online) Top: One-body densities ρN (r) and
ρD(r) in the J = 0 channel with HN1R potential. Bottom:
the same plot of the densities multiplied by r2.

detail. In Fig. 14, we show the DN two-body correlation
density as well as its isospin decomposition. It is seen
that the I = 0 component distributes more compactly
than the I = 1 component, which reflects the strength of
the attraction in each channel [see Eq. (19)]. Moreover,
the I = 0 component is similar to the distribution of
the relative distance of the DN two-body bound state
ρΛ∗

c
(r). This indicates that the structure of the Λ∗

c is
maintained even in the three-body system. This feature
has also been found in the K̄NN system [30, 66].

As in the case of the K̄NN system, the survival of the
Λ∗

c in the three-body system opens the possibility of the
“Λ∗

c -hypernuclei”, in which the Λ∗
c is treated as an effec-

tive degrees of freedom [67, 68]. In fact, this picture is
more suitable in the charm sector, since the width of the
Λ∗

c is smaller than the Λ∗ so the effect of the imaginary
part in the calculation should be smaller. Note also that
the binding of the DN system is as large as 200 MeV,
while the binding of the Λ∗

cN is much smaller, especially
for the case of the realistic Av18 potential.

We have examined theoretical uncertainties in the con-
struction of the potential. The range parameter of the
DN potential as is introduced in Eq. (5) and chosen to be
0.4 fm. When we adopt as = 0.35 fm, the binding energy
changes by a few MeV, and the size changes less than 0.1
fm. The Minnesota potential has a parameter u which
controls the strength of the NN odd force [64]. The ef-
fect of the slight inclusion of the odd force (u = 0.95)
turns out to be very small, less than 1 MeV. We thus
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FIG. 14. (Color online) Top: Normalized DN two-body corre-
lation density ρDN(r) with isospin decomposition. The I = 0
DN bound state (Λ∗

c) correlation density is also shown for
comparison. Bottom: the same plot of the densities multi-
plied by r2.

conclude that these uncertainties are much smaller than
the dependence on the choice of the NN potential. The
variation of the values in Tables I and II can be regarded
as the theoretical uncertainties in the present calculation.

VI. DISCUSSION

A. Comparison of two approaches

We have presented the results of two approaches, the
Faddeev FCA calculation and the variational calculation.
In the total spin J = 0 channel, both approaches find
a quasi-bound state around 3500 MeV which is below
the Λ∗

cN threshold. The assumed NN distribution in
the FCA turns out to be similar with that found in the
variational calculation by minimizing the total energy. It
is therefore reasonable to conclude that these approaches
find the same quasi-bound state.

The spin J = 1 channel, on the other hand, has dif-
ferences in the two approaches. The lowest-energy state
obtained in the variational calculation is a Λ∗

cN scat-
tering state, while a narrow peak is found in the FCA
amplitude below the Λ∗

cN threshold, although the sig-
nal strength is not so significant as the J = 0 case. A
major reason of this discrepancy may be traced back to

the DN interaction in the isospin I = 1 channel. In the
original coupled-channel amplitude, there is an I = 1
quasi-bound state, which induces the bound state in the
FCA. As discussed in Sec. II B, however, the energy de-
pendence of the DN potential in the variational approach
is fixed at the energy of the Λ∗

c in the I = 0 channel. This
reduces the strength of the I = 1 amplitude, and the two-
body quasi-bound state is not generated in the effective
potential. Since the total spin J = 1 channel has larger
fraction of the I = 1 DN amplitude, this difference is
enhanced and results in different three-body results.

In fact, we may artificially adjust the condition (19) to
generate a quasi-bound state in the I = 1 channel in the
variational approach. By setting the strength of the DN
interaction at W ∼ 2766 MeV in the I = 1 channel, a
quasi-bound state is generated in the I = 1 DN channel.
In this case, the energy dependence of the DN interac-
tion is fixed at each isospin channel, and the strength of
the DN attraction is increased in the I = 1 channel. By
performing the three-body calculation, we find that the
binding energy in the J = 0 quasi-bound state are in-
creased by 10-50 MeV, depending on the NN interaction
employed. This is because of the increase of the attrac-
tion, and the binding energy appears to be closer to the
FCA result. In the J = 1 sector, only the Minnesota
potential supports a bound state with B = 214 MeV,
while no state is found below the Λ∗

cN threshold with
the other two NN interactions. Given the uncertainty in
the choice of the NN interaction, the present result does
not strongly support the existence of the quasi-bound
state in the J = 1 sector. In order to pin down the
J = 1 quasi-bound state, it is necessary to accumulate
the experimental information of the DN I = 1 scattering
amplitude, or the information on the negative parity Σ∗

c

resonance.
In addition, we should also remember that the two ap-

proaches employ different approximations. In the FCA,
the dynamics of the nucleons is not solved explicitly,
while the imaginary part of the DN potential is not taken
into account in the variational approach. In both cases,
explicit πYcN dynamics is approximated at different lev-
els (see the discussion in Ref. [36]), whereas its impor-
tance has been pointed out in the strangeness sector [31].
These effects can also be responsible for the difference of
the results in the two approaches.

B. Comparison with K̄NN results

It is instructive to compare the DNN quasi-bound
state with the corresponding K̄NN state in Ref. [30]. In
both cases, we obtain a quasi-bound state, but the DNN
system has a larger binding energy and a narrower width.
This is in parallel with the properties of the DN and K̄N
two-body quasi-bound states, and they are closely related
through the DN and K̄N interactions.

As discussed in Sec. II A, the D meson can be more
strongly bound in a nucleus than K̄ meson by two rea-
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TABLE III. Binding energies of the three-body bound state in
J = 0 channel measured from the three-body threshold with
different meson mass and different meson-nucleon potential.

m = m
K̄

m = mD

V = V
K̄

∼ 30 MeV ∼ 190 MeV

V = VD ∼ 40 MeV ∼ 230 MeV

sons. On one hand, the coupling itself is stronger, and on
the other hand, the heavier mass of the D meson is ad-
vantageous to increase the binding. So, we can consider
two hypothetical variants between the DNN system
(B ∼ 230 MeV) and K̄NN system (B ∼ 30 MeV)2; case
I: kinematics of the DNN system with the K̄N potential
(m = mD, V = VK̄), and case II: kinematics of the K̄NN
system with the DN potential (m = mK̄ , V = VD). The
result of the variational calculation shows that B ∼ 40
MeV for case I and B ∼ 190 MeV for case II. As summa-
rized in Table III, the suppression of the kinetic energy
by the heavy D mass is more important for the strong
binding of the DNN system. One should note that in
the present case, the strength of the two-body interac-
tion is fixed at the energy of the two-body quasi-bound
state. Since the DN two-body bound state locates 200
MeV below the DN threshold, the strength of the poten-
tial is reduced, as seen in Fig. 1. Thus, in the present
prescription, the attractive strength of the DN potential
is not very much different from the K̄N one, and the re-
sult of case I does not very much deviate from the K̄NN
quasi-bound state.

The narrow width of the DNN system is a consequence
of the narrow width of the Λ∗

c(2595). This is partly be-
cause of the small transition coupling which is suppressed
by the exchange of the heavy flavor, but the main reason
is the suppression of the phase space due to the large
binding energy. In this sense, the heaviness of the D
meson is essential to realize the deep and narrow DNN
quasi-bound state.

C. Possible experiments to produce the DNN state

The very narrow width of the DNN system is quali-
tatively different to the K̄NN one where the width was
so large as to make its experimental observation unfea-
sible. In the present case there is a clear situation and
there are no problems in principle for the observation of
the state. In the FCA calculation, we observe that the
two-nucleon absorption width is larger than the three-
body decay width. This indicates that the DNN quasi-
bound state can be more easily seen in the two-baryon

2 Here we also set the strength of the K̄N potential at the energy

of the Λ∗ for comparison with the DNN calculation.

final states such as ΛcN . The findings of the present
work should stimulate efforts to find suitable reactions
where this state could be found.

As a suggestion in this direction we can think of the
p̄ 3He → D̄0D0pn → D̄0[DNN ] reaction, which could
be done by FAIR at GSI. With a p̄ beam of 15 GeV/c
there is plenty of energy available for this reaction and
the momentum mismatch of the D0 with the spectator
nucleons of the 3He can be of the order of 550 MeV/c,
equivalent to an energy of 80 MeV for the D, small com-
pared with the scale of the binding (& 200 MeV). With
an estimate of σ ≃ 10 − 20 nb for p̄p → D̄0D0 produc-
tion [69, 70] one would expect several thousand events
per day for the background of the proposed reaction [71].
A narrow peak could be visible on top of this background
corresponding to the DNN bound state formation.

Another possibility is the high-energy π induced re-
action. An analogous reaction is π−d → D−D+np →
D−[DNN ] where the relevant elementary process is
π−N → D+D−N . Since the DN pair in the DNN
system is strongly clustering as the Λ∗

c , the reaction
π−d → D−Λ∗

cn → D−[DNN ] is also another candi-
date. The elementary reaction π−p → D−Λ∗

c is relevant
in this case. Such reactions may be realized in the high-
momentum beamline project at J-PARC.

A different strategy is to look for the formation of
the quasi-bound state in the heavy ion collisions. It
has been shown that the hadronic molecular states with
charm quark are abundantly produced at RHIC and
LHC [72, 73]. Although a deeply bound DNN state has
smaller production yield, it can also be produced via co-
alescence of the Λ∗

cN with much smaller binding. A peak
structure of the DNN state may be seen, for instance,
in the invariant mass spectrum of the Λcπ−p or Λcp final
state.

VII. CONCLUSIONS

We have studied the DNN system with I = 1/2 and
have found that the system is bound and rather stable,
with a width of about 20-40 MeV. We obtained a clear
signal of the quasi-bound state for the total spin J = 0
channel around 3500 MeV.

We have used two methods for the evaluation of the
quasi-bound state. The first one used the fixed center
approximation for the Faddeev equations and the second
one employs the variational approach with hadronic po-
tentials in coordinate space. The DN interaction was
constructed in the field theoretical method with channel
couplings and a unitary approach dynamically generates
the Λ∗

c(2595) resonance as a DN quasi-bound state.
In both cases, we have found a bound state with an

energy around 3500 MeV in the J = 0 channel. This cor-
responds to 250 MeV binding from the DNN threshold.
The J = 1 channel is more subtle, and the precise DN
amplitude in the I = 1 channel is important for a robust
prediction in this channel. The mesonic decay width of
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the quasi-bound state turned out to be less than 40 MeV.
In addition, the D absorption on two nucleons was eval-
uated in the FCA formalism using a novel method. Al-
though the absorption process adds several tens of MeV
to the width, the total width is still much smaller than
the binding energy. It is found that the DN pair in I = 0
channel in the DNN system resembles the wave function
of the Λc(2595) state in vacuum. Thus, the DNN state
found here can be interpreted as a quasi-bound state of
Λc(2595) and a nucleon.

The small width of the DNN quasi-bound state is
advantageous for the experimental identification. The
search for the DNN quasi-bound state can be done by
p̄ induced reaction at FAIR, π− induced reaction at J-
PARC, and relativistic heavy ion collisions at RHIC and
LHC.
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Appendix A: NN interactions

Here we summarize the properties of the NN poten-
tials used in this study with variational calculation. We
have examined three kinds of NN interactions. Because
we work in the isospin symmetric limit, the Coulomb in-
teraction is not included in all cases.

Hasegawa-Nagata No.1 potential [63] has a three-range
gaussian form with no odd force. The repulsive core is
as high as 1 GeV. Because the potential was originally
introduced for the RGM study, when applied to the two-
nucleon systems, the attraction is too strong to generate
a bound state in 1S0 channel and to overestimate the
deuteron binding energy. In this study, we have reduced
the strength of the long-range term (middle-range term)
by factor 0.25 (0.95) and call it HN1R potential. The
HN1R potential has no bound state in 1S0 channel and
reproduces the NN phase shift data, as shown below.

Minnesota force [64] is expressed by the sum of two
gaussians, with relatively soft repulsive core. The pa-
rameters were chosen so as to reproduce the scattering
lengths and the effective ranges of the NN scattering.
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FIG. 15. (Color online) Coordinate space NN potentials in
the 1S0 channel.

As a consequence, the deuteron is bound only with the
s-wave component, so the tensor force is considered to
be renormalized in the central part. We set the parame-
ter u = 1 so that there is no odd force, unless otherwise
stated.

Argonne v18 potential [65] is one of the realistic nuclear
forces with strong repulsive core. As in Ref. [30], we used
the gaussian-fitted version of the potential with central,
spin-spin, and L2 terms. Since the description of the
deuteron requires the d-wave mixing which is beyond the
present model wave function, we only consider the S = 0
channel with the Av18 potential.

In Fig. 15, we show the spatial form of the potentials in
the 1S0 channel. The phase shifts of the NN scattering
in the 1S0 channel are shown in Fig. 16 in comparison
with experimental data.

Appendix B: Derivation of the three-body

amplitude in the charge basis

In this Appendix, we derive Eqs. (8) and (9) in the
approach of Ref. [36] by applying the following strat-
egy. We evaluate first the D0pp → D0pp amplitude
considering charge exchange processes in the rescatter-
ing of the D meson. The amplitude will contains total
isospin Itot = 1/2 and Itot = 3/2. Since we only want
the Itot = 1/2, we evaluate the scattering amplitude for
Itot = 3/2 in addition, taking the D+pp → D+pp ampli-
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FIG. 16. (Color online) NN phase shifts in the 1S0 channel
calculated by the NN potentials.

tude, and from a linear combination of the two we obtain
the Itot = 1/2 amplitude. This strategy was found most
practical in Ref. [36].

For the D0pp → D0pp we define three components of
the three-body scattering amplitude;

a) Tp, which are called partition functions, which con-
tains all diagrams that begin with a D0 collision with the
first proton of the pp system and finish with D0pp,

b) T
(p)
ex , which contains all the diagrams that begin

with a D+p collision on a np system and finish with D0pp,
and

c) T
(n)
ex , which contains all the diagrams that begin

with a D+n collision on a np system and finish with
D0pp.

These amplitudes fulfill a set of coupled equations

Tp = tp + tpG0Tp + texG0T (p)
ex

T (p)
ex = t

(p)
0 G0T (n)

ex

T (n)
ex = tex + texG0Tp + t

(n)
0 G0T (p)

ex (B1)

where the two-body amplitudes are given as tp =

tD0p,D0p, tex = tD0p,D+n, t
(p)
0 = tD+p,D+p, and t

(n)
0 =

tD+n,D+n. The set of equations (B1) are diagrammati-
cally represented in Fig. 17.

By taking into account the phase convention |D0〉 =
−|1/2, −1/2〉 in the isospin basis, we can write all the
former elementary amplitudes in terms of I = 0, 1
(t(0), t(1)) for the DN system, and we find

tp =
1

2
(t(0) + t(1))

tex =
1

2
(t(0) − t(1))

t
(p)
0 = t(1)

t
(n)
0 =

1

2
(t(0) + t(1)). (B2)

Eliminating T
(p)
ex and T

(n)
ex in Eq. (B1) we obtain

Tp =
tp(1 − t

(n)
0 G0t

(p)
0 G0) + t2

exG0t
(p)
0 G0

(1 − tpG0)(1 − t
(n)
0 G0t

(p)
0 G0) − t2

ext
(p)
0 G3

0

(B3)
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FIG. 17. Diagrammatic representations of the partition func-
tions for the D0pp → D0pp.

which in isospin basis can be simplified to

Tp =
1
2 (t(0) + t(1)) − t(0)t(1)2

G2
0

(1 − G0t(1))(1 + 1
2 (t(1) − t(0))G0 − G2

0t(0)t(1))

The total D0pp → D0pp amplitude would be 2Tp ac-
counting for the first interaction of the D0 with either of
the protons.

Now we take into account that in the basis of
|Itot, I3,tot〉

|D0pp〉 = −(
1√
3

|3/2, 1/2〉 +

√

2

3
|1/2, 1/2〉) (B4)

and thus

〈1/2|T |1/2〉 =
3

2
(〈D0pp|T |D0pp〉 − 1

3
〈3/2|T |3/2〉) (B5)

The 〈3/2|T |3/2〉 amplitude is particularly easy to obtain.
In this case we take the D+pp → D+pp transition and
diagrammatically we have the mechanism of Fig. 18 for

the only partition function T
(3/2)
p .

Hence

T (3/2)
p = t

(p)
0 + t

(p)
0 G0T (3/2)

p (B6)

and the total T (3/2) amplitude will be 2T
(3/2)
p , accounting

for the D+ interacting first also with the second nucleon.
We have

T (3/2)
p =

t
(p)
0

1 − G0t
(p)
0

=
t(1)

1 − G0t(1)
. (B7)
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FIG. 18. Diagrammatic representation of the partition func-
tion for I=3/2.

We can now use Eq. (B5) and find for the total amplitude
(including the factor two for first interaction with either
proton)

T (1/2) = 3Tp − t(1)

1 − G0t(1)

=

3

2
t(0) +

1

2
t(1) − 1

2
t(1)(t(1) − t(0))G0 − 2t(0)t(1)2

G2
0

(1 − G0t(1))(1 + 1
2 (t(1) − t(0))G0 − G2

0t(0)t(1))

which can be simplified dividing the numerator by (1 −
G0t(1)) with the final result

T (1/2) =

3

2
t(0) +

1

2
t(1) + 2G0t(0)t(1)

1 + 1
2 (t(1) − t(0))G0 − G2

0t(0)t(1)
.

This corresponds to Eq. (8).

The case of SNN = 1 (INN = 0), that we also study
here, can be done in a similar way, but this was done in
[48] for K−d at rest and in [35] for the K−d interaction
below threshold. We quote here the formula that was
obtained in [35] which we use here too.

TD0d =

1

2
t(0) +

3

2
t(1) + 2G0t(0)t(1)

1 − 1
2 (t(1) − t(0))G0 − G2

0t(0)t(1)
.

This corresponds to Eq. (9).
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