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Abstract

We extend the Fixed Center Approximation (FCA) to the Faddeev Equations for the K̄NN system with
S = 0, including the charge exchange mechanisms in the K̄ rescattering which have been ignored in former
works within the FCA. We obtain similar results to those found before, but the binding is reduced by 6
MeV. At the same time we also evaluate the explicit contribution the πNΣ intermediate state in the three
body system and find that it produces and additional small decrease in the binding of about 3 MeV. The
system appears bound by about 35 MeV and the width omitting two body absorption, is about 50 MeV.
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I. INTRODUCTION

In this work we present a derivation of the Fixed Center Approximation to the Faddeev equations
for the K̄NN system for the case when the NN system has total spin S = 0. The case for S = 1
was done in [1] for K−d at threshold and extended to values below threshold to find a quasibound
state in [2]. An earlier version for S = 0, 1 was done in [3] but ignored charge exchange processes
in the multiple scattering of the kaons. The improved results of [2] for S = 1 provided a binding
of about 12 MeV smaller than ignoring the charge exchange processes and was worth being taken
into consideration. The resulting binding was 9 MeV with a width of 30 MeV. Yet, a formula like
the one of [1] for the case of S = 0 was never derived and one is left with some worry about what
could be the effects of charge exchange processes in this latter case. This is the purpose of the
present paper, where a simple derivation is presented and the new results are shown.

The study of the bound K̄NN system has been the center of much attention recently [4–11].
Earlier calculations on this system were already done in the 60’s [12] and more recently in [13],
yet, the works of [4–10] improved considerably on these earlier works. Two different methods have
been used in those papers. Those of Refs. [4–6, 9] use Faddeev equations, in the formulation of
Alt-Grassberger-Sandhas (AGS) [14], using a separable interaction for the potentials with energy
independent strength, and form factors depending on the three momenta. They include as coupled
channels NπΣ and NNK̄, the basic ones in the study of the K̄N interaction in chiral unitary
theories at low energies [15–25]. On the other hand the works of [7, 8] use a variational method
to obtain the binding energy and width, by means of an effective potential [26] that leads to the
strongly energy dependent K̄N amplitudes of the chiral unitary approach. This includes the πΣ
channel integrated into the effective K̄N potential, but do not include the NπΣ channel explicitly
into the three body system. In Table IV of [6] one finds that there are 11 MeV difference considering
just one channel K̄N or the two channels K̄N and πΣ, both in the evaluation of the K̄N amplitude
and in the K̄NN − πΣN system, finding more binding in the case of two channels. One should
note that this is not to be compared with the approach of [7, 8] where the K̄N amplitude is always
calculated with K̄N , πΣ and other coupled channels. One may argue that the consideration of πΣ
in the two body system would account for most of the πΣ influence in the three body problem, a
conjecture made by Schick and Gibson [27] which was substantiated numerically in the work of Ref.
[28]. But this was only done at threshold of K̄N , so testing this at lower energies is worthwhile
and we shall face this problem here too.

The two Faddeev approaches [4, 5] lead to binding energies higher than the variational approach,
50-70 MeV versus around 20 MeV binding respectively. The use of an energy independent kernel
in the AGS equations is partly responsible for the extra binding of these approaches with respect
to the chiral calculations. The chiral potential is energy dependent, proportional to the sum of
the two external meson energies in K̄N → K̄N , and, as a consequence, one obtains a smaller
K̄N → K̄N amplitude at K̄N energies below threshold, resulting in a smaller binding for the
K̄NN system [8]. This is also corroborated in the approach of [4, 9] when the energy dependence
of the Weinberg-Tomozawa chiral potential is taken into account in [10]. Further discussions along
this issue can be found in section 5 of [2].

Yet, in most cases the widths are systematically larger than the binding energy, of the order of
70-100 MeV, which makes the observation of these states problematic. A discussion on experimental
work claiming to have found a K̄NN bound state is made in section 5 of [2], together with the
theoretical work that shows that the experimental peaks observed correspond to conventional
mechanisms that have nothing to do with a new bound state.

The approach of [3] follows the chiral unitary approach for the K̄N amplitudes, which provide
the most important source of the binding of the three body system. However, rather than looking
for the binding, searching for poles in the complex plane or looking for the energy that minimizes
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the expectation value of the Hamiltonian as the other approaches do, one looks for peaks in the
scattering matrices as a function of the energy of the three body system. These amplitudes could
in principle be used as input for final state interaction when evaluating cross sections in reactions
where eventually this K̄NN state is formed.

II. FIXED CENTER FORMALISM FOR THE K̄(NN) SYSTEM WITH S = 0

We rely upon the results of [29–31] which prove that only on shell two body amplitudes are
needed to study the three body system. By this we mean the part of the analytical amplitudes
obtained setting q2 = m2 for the external particles, even if the particles are below threshold.

Like in the other works, we also assume that the two body interactions proceed in L=0. Ac-
cording to all the works, the main component of the wave function corresponds to having a K̄N in
I=0 (coupling strongly to the Λ(1405) and hence the total isospin will be I=1/2. The spin of the
system for L=0 is provided by the two nucleons and all the works find that the most bound case
corresponds to S = 0. Since the S = 1 case was studied in [2], here we concentrate in the S = 0
case. Since in our case SNN corresponds to the total spin of the K̄NN system we shall refer to S
in what follows.

In the FCA the K̄NN system is addressed by studying the interaction of a K̄ with a NN
cluster. The scattering matrix for this system is evaluated as a function of the total energy of
the K̄NN system and one looks for peaks in |T |2. In a second step one allows explicitly the
intermediate πΣN state in the three body system. A discussion of different approaches along the
FCA line is done in [32], where it is shown that some works do not take into account explicitly
the charge exchange K−p → K̄0n reactions and antisymmetry of the nucleons, but it is explicitly
done in Ref. [1]. In [3] charge exchange in the K̄ multiple scattering was also ignored, but in [2] it
was taken into account for the S = 1 case, and a quasibound state was found with about 9 MeV
binding and a width of about 30 MeV.

Technically we follow closely the formalism of [33], where the FCA has been considered, using
chiral amplitudes, in order to study theoretically the possibility of forming multi-ρ states with large
spin.

The NN interaction is of long range and very strong. It binds the deuteron in spin S = 1 and
I = 0, with L = 0 to a very good approximation. It nearly binds the pp system also. The binding
of the pp system is so close that a little help from an extra interaction, the strongly attractive K̄N
interaction, is enough to also bind this system and we shall assume that this is the case here for
pp or in general for two nucleons in S = 0, I = 1, L = 0.

The strategy followed in [3] is to assume as a starting point that the NN cluster has a wave
function like the one of the deuteron (we omit the d-wave). Later on one releases this assumption
and assumes that the NN system is further compressed in the K̄NN system. For this we rely upon
the information on the NN radius in the K̄NN molecule obtained in [8], where the NN interaction
is taken into account including short range repulsion that precludes unreasonable compression. The
r.m.s radius found is of the order of 2.2 fm, slightly above one half the value of the deuteron r.m.s
radius of 3.98 fm (NN distance).

III. CALCULATION OF THE THREE BODY AMPLITUDE

In order to evaluate the amplitude for the K̄NN with S = 0, we follow the following strategy.
1) We evaluate first the K−pp → K−pp amplitude considering charge exchange processes in the

rescattering of the kaons. The amplitude will contains total isospin I = 1/2 and I = 3/2. Since
we only want the I = 1/2, we evaluate the scattering amplitude for I = 3/2 in addition, taking
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the K̄0pp → K̄0pp amplitude, and from a linear combination of the two we obtain the I = 1/2
amplitude. We have found that this strategy leads to a far simpler derivation than other methods
that we have also tried.

2) For the K−pp → K−pp we define three partition functions,
a) Tp, which contains all diagrams that begin with a K− collision with the first proton of the

pp system and finish with K−pp.

b) T
(p)
ex , which contains all the diagrams that begin with a K̄0p collision on a np system and

finish with K−pp.

c) T
(n)
ex , which contains all the diagrams that begin with a K̄0 collision on a neutron and finish

with K−pp.
These amplitudes fulfill a set of coupled equations that are easy to see diagrammatically by

looking at the diagrams of Fig. 1.
We have:

Tp = tp + tpG0Tp + texG0T (p)
ex

T (p)
ex = t

(p)
0 G0T (n)

ex

T (n)
ex = tex + texG0Tp + t

(n)
0 G0T (p)

ex (1)

where tp = tK−p,K−p, tex = tK−p,K̄0n, t
(p)
0 = tK̄0p,K̄0p, t

(n)
0 = tK̄0n,K̄0n and G0 is the function [3, 33]

G0 =

∫

d3q

(2π)3
FNN (q)

1

q02 − ~q 2 − m2
K̄

+ iǫ
. (2)

where FNN (q) is the form factor of the NN system. We can see that Eq. (2) contains the folding
of the K̄ intermediate propagator with the form factor of the NN system. The value of the q0 in
the total rest frame is given by

q0 =
s + m2

K̄
− (2MN )2

2
√

s
. (3)

The argument of the t(0), t(1) amplitudes is obtained following the steps of [3, 33] and is given by

s1 = m2
K̄

+ M2
N +

1

2
(s − m2

K̄
− 4M2

N ) . (4)

By taking into account that |K− >= −|1/2, 1/2 > in the isospin basis, we can write all the
former elementary amplitudes in terms of I = 0, 1 (t(0), t(1)) for the K̄N system, and we find

tp =
1

2
(t(0) + t(1))

tex =
1

2
(t(0) − t(1))

t
(p)
0 = t(1)

t
(n)
0 =

1

2
(t(0) + t(1)). (5)

Solving Eq. (1) we find
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FIG. 1: Diagrammatic representation of the partition functions for the K−pp → K−pp.

Tp =
tp(1 − t

(n)
0 G0t

(p)
0 G0) + t2

exG0t
(p)
0 G0

(1 − tpG0)(1 − t
(n)
0 G0t

(p)
0 G0) − t2

ext
(p)
0 G3

0

(6)

which in isospin basis can be simplified to

Tp =
1
2(t(0) + t(1)) − t(0)t(1)2

G2
0

(1 − G0t(1))(1 + 1
2 (t(1) − t(0))G0 − G2

0t(0)t(1))
(7)

The total K−pp → K−pp amplitude would be 2Tp accounting for the first interaction of the
K− with either of the protons.
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+
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FIG. 2: Diagrammatic representation of the partition function for I=3/2.

3) Now we take into account that in the basis of |Itot, I3,tot >

|K−pp >= −(
1√
3

|3/2, 1/2 > +

√

2

3
|1/2, 1/2 >) (8)

and thus

< 1/2|T |1/2 >=
3

2
(< K−pp|T |K−pp > −1

3
< 3/2|T |3/2 >) (9)

The < 3/2|T |3/2 > amplitude is particularly easy to obtain. In this case we take the K̄0pp →
K̄0pp transition and diagrammatically we have the mechanism of Fig. 2 for the only partition

function T
(3/2)
p .

Hence

T (3/2)
p = t

(p)
0 + t

(p)
0 G0T (3/2)

p (10)

and the total T (3/2) amplitude will be 2T
(3/2)
p , accounting for the K̄0 interacting first also with the

second nucleon. We have

T (3/2)
p =

t
(p)
0

1 − G0t
(p)
0

=
t(1)

1 − G0t(1)
. (11)

We can now use Eq. (9) and find for the total amplitude (including the factor two for first
interaction with either proton)

T (1/2) = 3Tp − t(1)

1 − G0t(1)

=

3

2
t(0) +

1

2
t(1) − 1

2
t(1)(t(1) − t(0))G0 − 2t(0)t(1)2

G2
0

(1 − G0t(1))(1 + 1
2(t(1) − t(0))G0 − G2

0t(0)t(1))
(12)

which can be simplified dividing the numerator by (1 − G0t(1)) with the final result

T (1/2) =

3

2
t(0) +

1

2
t(1) + 2G0t(0)t(1)

1 + 1
2(t(1) − t(0))G0 − G2

0t(0)t(1)
. (13)

This equation improves over the one obtained in [3] although they coincide for first scattering term.
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x′
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p′

1
p′
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K̄

Σ

N1 N2

FIG. 3: Feynman diagram for the πΣN channel. The equivalent diagrams where the K̄ interacts first with
the second nucleon should be added.

IV. EXPLICIT CONSIDERATION OF THE πΣN CHANNEL IN THE THREE BODY

SYSTEM

The πΣ channel and other coupled channels are explicitly taken into account in the consideration
of the K̄N amplitude which we have used in the FCA approach. This means that we account for
the K̄N → πΣ transition, and an intermediate πΣN channel, but this πΣ state is again reconverted
to K̄N leaving the other N as a spectator. This is accounted for in the multiple scattering in the
K̄N → K̄N scattering matrix on one nucleon. However, we do not consider the possibility that
one has K̄N → πΣ and the π rescatters with the second nucleon. If we want to have a final K̄NN
system again, the π has to scatter later with the Σ to produce K̄N . One may consider multiple
scatterings of the π with the nucleons, but given the smallness of the πN amplitude compared
to the K̄N , any diagram having more than one rescattering of the pion with the nucleon will
be negligible. This means that to account for explicit πΣN state in the three body system it is
sufficient to consider the diagram of Fig. 3 (for K̄N scattering on nucleon 1).

The explicit expression for this contribution can be seen [3] (section IV). In particular it involves
the isospin combination in the K̄N, πΣ

tK̄N,πΣ =
1

4
tI=1
K̄N,πΣ +

3

4
tI=0
K̄N,πΣ ; S = 0 (14)

We note, in passing, that the combination found for S = 1 was

tK̄N,πΣ =
3

4
tI=1
K̄N,πΣ

+
1

4
tI=0
K̄N,πΣ

; S = 1 (15)

and the πN, πN amplitudes were also different. This justifies the different effects found for these
two cases, although the changes are small in both of them. Non-perturbatively we can add 2T πΣ of
[3] to Eq. (14). In as much as the term 3

2t(0) is the largest component of Eq. (13), if we add 2T πΣ

to 3
2t(0) in all terms in Eq. (13), we guarantee the correct results for the lowest order contribution

and account approximately for multiple scattering including the T πΣ contribution. We have seen
that the perturbative and non-perturbative results are very similar, but there is a difference of
about 2 MeV in the position of the peak (the non-perturbative case more bound).
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|T

|2

|T|
2
 (partial charge exchange omitted)

|T|
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 (with charge exchange)

|T|
2
 (charge exchange+the  π Σ Ν  channel)

FIG. 4: Modulus squared of the three-body scattering amplitude for singlet (S=0) with deuteron size for
NN . The solid line indicates the K̄NN system with partial omission of charge exchange [3], the dashed line
indicates the same system taking into account charge exchange diagrams and the dot-dashed line indicates
the result of the including the πΣN channel and charge exchange diagrams.

V. RESULTS FOR THE K̄NN SYSTEM WITH S = 0

In Figs. 4 and 5 we show our results. In Fig. 4 we use the form factor of the deuteron for
the NN system and we show the results for |T |2 in three options: a) Partial omission of charge
exchange, using the expression obtained in [3]

T (pceo) =
2t

1 − G0t
; t =

1

4
t(1) +

3

4
t(0) (16)

By partial omission we mean that some charge exchange is accounted for when making the tran-
sition in the single scattering from K−pp to K̄0pn, the two components of the K̄(NN(I = 1))
wave function. However, charge exchange in double (in multiple) scattering in the diagonal tran-
sitions K−pp → K−pp would be neglected. This is unlike the K̄(NN(I = 0)) system where the
K−(pn − np)(I = 0) → K̄0nn transition in single scattering is not allowed; b) charge exchange
explicitly included, Eq. (13); c) explicit πΣN channel added to the amplitude of Eq. (13), as we
have described in the former section.

We can see from the figure that the consideration of charge exchange processes reduces the
binding in 4 MeV with respect to the results in [3]. This is smaller than the 12 MeV shift found in
[2] for the S = 1 case. Also, relatively, the change is more drastic in the S = 1 case since there was
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|T
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|T|^2 (partial charge exchange omitted)
|T|^2 (with charge exchange)
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(chage exchange+the  π Σ Ν channel )

FIG. 5: Modulus squared of the three-body scattering amplitude for singlet (S=0) with reduced NN size
from [8]. The solid line indicates the K̄NN system with partial omission of charge exchange , the dashed line
indicates the same system taking into account charge exchange diagram and the dot-dashed line indicates
the result of the including the πΣN channel and charge exchange diagrams.

a reduction of 12 MeV from 21 MeV, while here there is a reduction of 4 MeV over a total of 32
MeV binding. When we consider the explicit intermediate πΣN state we find an extra reduction
of 1 MeV in the binding.

The results are similar, but the differences more pronounced, when we redo the calculations
using the reduced NN radius of [8] (see [3] for details to implement the form factor with the
reduced radius). As we can see in Fig. 5, the binding goes now from about 44 MeV when partial
omission of charge exchange is considered, Eq. (16), to 38 MeV when it is explicitly considered,
and then to 35 MeV when the πΣN channel is explicitly taken into account. The latter case is our
final result, which provides 35 MeV binding for this system and a width of about 50 MeV.

It is interesting to see the origin of the peaks in Figs. 4, 5. For this purpose we show in Fig. 6
the modulus squared of the t(0), t(1), and 3

2t(0) + 1
2t(1) amplitudes. We see that the shape of Figs.

4, 5 is similar to the one of the t(0), which already provides a peak in the total amplitude of Eq.
(13) at the single scattering level. The multiple scattering is responsible for an extra binding of
about 25 MeV and 10 MeV increase in the width. Alternatively, we can view the K̄NN state as a
bound Λ(1405)N state as suggested in [34, 35]. In this case Fig. 6 could be interpreted as having
a non interacting Λ(1405)N state, where the Λ(1405) has been formed in the collision of the K̄
with one nucleon and the second one has been a spectator. Then, the results of Fig. 5, where the
K̄ has reinteracted with the two nucleons, could be interpreted as a system where the Λ(1405) has
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FIG. 6: Single scattering amplitude: Modulus squared of t(0), t(1), and 3
2 t(0) + 1

2 t(1). The argument is
√

s
for the three body system. The argument

√
s1 for the two body system is obtained through Eq. (4). The

upper x-axis scale is for
√

s1.

interacted with the second nucleon and a quasibound Λ(1405)N state is formed [35].

VI. DISCUSSION AND CONCLUSIONS

We have done a derivation of the FCA to the Faddeev equations for the case of the K̄NN system
with S = 0, complementing what was already done in [1] for the K−d at threshold, extended below
threshold in [2]. With this new formula we evaluate the K̄NN amplitude below the K̄NN threshold
and we find a clear peak of |T |2 at about 3334 MeV, reducing the former binding by about 6 MeV,
with a width of 50 MeV. This is a moderate change with respect to the one found in [3] ignoring
the charge exchange processes, and also smaller than the effect found in [2] for the S = 1, where
the charge exchange processes was found quite important, reducing the binding of the K̄NN with
S = 1 in about 12 MeV. We have also shown that the explicit consideration of the πNΣ state in
the three body system is rather moderate, and goes in the direction of decreasing the binding by
about 3 MeV. In summary, here and in [2] we have shown that the FCA to the Faddeev equations
is a good tool which provides reasonable values for the binding and width of the K̄NN system,
corroborating qualitatively findings done with other methods which are technically much more
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involved. We find a binding for the K̄NN system with S = 0 of 35 MeV with a width of 50
MeV. This should be compared to the about 20 MeV binding in [7, 8] and 16 MeV in a recent
paper [36] using the same input as in [7, 8]. Even with these differences, the binding obtained
here is substantially smaller than other values quoted in the literature which did not use the chiral
dynamical approach. As to what to attribute the difference with the results of [7, 8, 36], certainly
there are approximations done in the FCA. One of them, making a static picture of the two NN
and using Eq. (4), which relates the K̄N effective energy to the total energy, does not consider
recoil of the nucleon.

One can make some rough estimate of this effects as follows. Since s1 = (pK̄+pN1
)2 = (P −pN2

)2,
with P the total fourmomentum of the K̄NN system (P 2 = s), we would have

s1 = (
√

s − p0
N2

)2 − ~p 2
N2

(17)

and the first term of Eq. (17) would correspond to the expression of Eq. (4) that neglects recoil.
Continuing with the rough approximation we can think that

~p 2
N2

2MN
≃ BN ≃ MN (

2MN + mK̄ − √
s

2MN + mK̄

), (18)

with BN the binding energy of a single nucleon, where we have assumed the kinetic energy to be
of the order of the binding energy and the binding energy of each particle proportional to its mass
(this is also implicit in Eq. (4) (see [3, 33])). This correction results into a decrease of the binding
of the S = 0 state by about 8 MeV, bringing the results closer those of [7, 8, 36]. Incidentally, the
S = 1 state reported in [2] would reduce its binding by about 2-3 MeV.

On the other hand, the variational or Faddeev approaches also have intrinsic uncertainties tied
to the use of off-shell extrapolation of the amplitudes. To our knowledge there is only one work
where the effects of these off-shell extrapolations has been studied in the three body system. This
is the work of [31] (section V), which studies the KK̄φ system with Faddeev equations, and the
off-shell effects were shown to produce a shift of 40 MeV in the energy of the X(2175) resonance
(now called φ(2170)). One can make some guesses on what the effects could be in the present case.
The amount of 40 MeV over the excess energy of the φ(2170) over threshold of KK̄φ, 170 MeV,
is about 24 %. Thus, the same proportion applied to the binding of the K̄NN system found by
us gives 8 MeV. Alternatively, we can look at the differences between different approaches using
the same input to give us an idea of the possible effects. Inspection of the results of [7, 8, 10, 36]
tells us that the differences are of the order of 10 MeV. Thus, effects of the order of 10 MeV from
unphysical off-shell contributions are likely in the S = 0 case. On the other hand, the S = 1 case
of [2] could be a privileged one in this sense, since applying the same percentage as before to the 9
MeV binding found in [2], we find likely off-shell effects of the order of 2 MeV. The findings for the
S = 1 in [2], with the uncertainties estimated here could be in agreement with the results for this
case in [36], where the authors conclude that if there is a quasibound K−d state it must be bound
by less than about 11 MeV.

Within the uncertainties of the method, the simplicity of the present approach allows one to
get an insight on the problems, following the analytical expressions of the amplitudes. Ultimately,
improvements on all these works could be done within the approach of [29–31], which one must
encourage, which uses full Faddeev equations in coupled channels and relies upon the on-shell
t-matrices alone.
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