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Theoretical studies within the chiral unitary approach, and recent experiments, have provided
evidence of the existence of two isoscalar states in the region of the Λ(1405). In this paper we use
the same chiral approach to generate energy levels in a finite box. In a second step, assuming that
these energies correspond to lattice QCD results, we devise the best strategy of analysis to obtain
the two states in the infinite volume case, with sufficient precision to distinguish them. We find
out that by using energy levels obtained with asymmetric boxes and/or with a moving frame, with
reasonable errors in the energies, one has a successful scheme to get the two Λ(1405) poles.

I. INTRODUCTION

The history of the Λ(1405) as a composite state of
meson baryon, dynamically generated from the meson
baryon interaction, is rather long, starting from the works
of Refs. [1, 2]. Early works using the cloudy bag model
also reached similar conclusions [3]. The advent of chiral
unitary theory, combining chiral dynamics and unitarity
in coupled channels, brought new light onto this issue and
the Λ(1405) was one of the cleanest examples of states
dynamically generated within this approach [4–6]. Hints
that there could be two states rather than one had also
been reported using the cloudy bag model [7] and the chi-
ral unitary approach [8–10]. A qualitative step forward
was done in Ref. [11], where two different versions of the
approach were used, the two poles remained, and their
origin was investigated. It was found that in an SU(3)
symmetric theory there were two degenerate octets and
a singlet of dynamically generated resonances, but with
the breaking of SU(3) the degeneracy was removed, one
octet with isospin I = 0 moved to become the Λ(1670)
and the other one moved close to the singlet, producing
two poles close by in the region of the Λ(1405). One of
the poles appears at energies around 1420 MeV, couples
mostly to K̄N and has a small width of around 30 MeV.
The other pole is around 1395 MeV, couples mostly to
πΣ and is much wider, around 120 or 250 MeV depend-
ing on the model. After the work of Ref. [11], all further
works on the chiral unitary approach have corroborated
the two poles, with remarkable agreement for the pole at
higher energy and larger variations for the pole at lower
energies [12–19].

Suggestions of experiments to confirm this finding were
made, and it was shown that one should not expect to
see two peaks in the cross sections, but rather differ-
ent shapes in different reactions. In this sense, a sug-
gestion was made to look for the Λ(1405) peak in the
K−p → γπΣ reaction [20], where the γ would be ra-
diated from the initial state, making the K−p system

lose energy and go below threshold and then excite the
high energy state of the Λ(1405), to which it couples
most strongly. This reaction was not made, although
it is planned for JPARC [21], but a similar one, where
the photon was substituted by a pion, was implemented
in Ref. [22] studying the K−p → π0π0Σ0 reaction at
pK = 514 MeV/c - 750 MeV/c. A neat and narrow
peak was seen at

√
s = 1420 MeV, which was analyzed in

Ref. [23] and interpreted in terms of the high energy pole
of the Λ(1405). More recently it was noticed that old data
on the K−d → πΣ n reaction from Ref. [24] produced
a peak in the πΣ spectrum around

√
s = 1420 MeV,

with also a small width. These data were well repro-
duced in Ref. [25] within the chiral unitary approach and
multiple scattering, and once again it was shown that it
gave support to the existence of the second pole of the
Λ(1405). It was shown there that the reaction proceeded
with kaons in flight but not for stopped kaons, because
the background from single scattering was too large in
this latter case, obscuring the signal of the resonance that
stems from double scattering. Even then, it was shown
in Ref. [26] that kaons from the DAFNE facility, coming
from the decay of the φ, would also be suited to search for
this resonance if neutrons were measured in coincidence
in order to reduce the background. Results on the he-
licity amplitudes of the Λ(1405) are also consistent with
the two pole scenario [27]. The search for reactions where
the Λ(1405) is produced has continued, showing that, as
predicted, different reactions have different shapes. In
this sense there have been recent photoproduction exper-
iments [28, 29] and proton induced experiments [30, 31]
where the shapes are indeed different and the peaks ap-
pear at lower energies, around 1405 MeV, as the nominal
mass. There are also theoretical studies for these reac-
tions where the peaks appear around these energies, and
the larger contribution of the lower energy state that cou-
ples mostly to πΣ is mostly responsible for it [32–36].

In as much as chiral dynamics is a good representa-
tion of QCD at low energies, the predictions of the chiral
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unitary approach on the Λ(1405) stand on firm ground.
Yet, it would also be very interesting to have these pre-
dictions confirmed with lattice QCD simulations. In this
sense, the determination of hadron spectra is one of the
challenging tasks of Lattice QCD and many efforts are
being devoted to this problem [37–55], some of them in
particular to the search of the Λ(1405) [56–61]. A re-
view on the Λ(1405) and attempts to see it from different
points of view is given in Ref. [62]. In some works the
“avoided level crossing” is usually taken as a signal of a
resonance, but this criteria has been shown insufficient
for resonances with a large width [63–65]. Sometimes,
the lattice spectra at finite volumes is directly associated
to the energies of the states in infinite volume invoking a
weak volume dependence of the results, as done recently
searching for the Λ(1405) resonance [66]. A more accu-
rate method consists on the use of Lüscher’s approach,
for resonances with one decay channel. The method al-
low us to reproduce the phase shifts for the decay chan-
nel from the discrete energy levels in the box [67, 68].
This method has been recently simplified and improved
in Ref. [65] by keeping the full relativistic two body prop-
agator (Lüscher’s approach keeps the imaginary part of
this propagator exactly but makes approximations for
the real part) and extending the method to two or more
coupled channels. The method has also been applied in
Ref. [69] to obtain finite volume results from the Jülich
model for meson baryon interaction, including spectra
for the Λ(1405) with finite volume, and in Ref. [70], to
study the interaction of the DK and ηDs system where
the Ds∗0(2317) resonance is dynamically generated from
the interaction of these particles [71–74]. The case of the
κ resonance in the Kπ channel is also addressed along
the lines of Ref. [65] in Ref. [75]. A first attempt to get
phase shifts and the position of the Λ(1405) from pseudo
lattice data is done in Ref. [76], where a different method
is suggested and a qualitative study is made on how it
could work.

In the work of Ref. [65], the inverse problem of getting
phase shifts and resonances from lattice results using two
channels was addressed, paying special attention to the
evaluation of errors and the precision needed on the lat-
tice results to obtain phase shifts and resonance proper-
ties with a desired accuracy. Further work along these
lines is done in Ref. [75]. The main problem encountered
is that the levels obtained from the box of a certain size
range do not cover all the desired energy region that one
would like to investigate. Several suggestions are given in
order to produce extra levels, like using twisted bound-
ary conditions or asymmetric boxes [65]. These are, how-
ever, not free of problems since it is unclear whether a full
twisting can be done in actual QCD simulations including
sea quarks, and the asymmetric boxes have the problem
of the possible mixing of different partial waves. Another
alternative is to evaluate levels for a system in a moving
frame as done in Ref. [54], but this also poses problems
of mixing in principle. The generalization of Lüscher’s
approach to the moving frame is done in Refs. [77–81],

and it provides a convenient framework for lattice calcu-
lations since new levels can be obtained without enlarging
the size of the box, with an economy in computational
time. It is then quite convenient to carry out simulations
using effective theories in a finite volume, preparing the
grounds for future lattice calculations, trying to find an
optimal strategy on which configurations to evaluate in
order to obtain the desired observables in the infinite vol-
ume case.

The case of extracting the Λ(1405) parameters is spe-
cially challenging, particularly because two resonance
must be found which are not too far from each other,
which means that extra precision will be demanded of
the lattice results. Furthermore, the two poles are not to
be seen in the πΣ phase shifts, since, as mentioned before,
different amplitudes give different weight to the two poles
and the πΣ phase shifts provide insufficient information.
The other reason is that the chiral unitary approach tells
us that the two states couple strongly to K̄N and πΣ, so
the use of the two channels in the analysis is mandatory
and the use of one channel as in the Lüscher approach
is bound to produce incorrect results. In view of this
we face the problem using the two channels explicitly in
the analysis and produce amplitudes in the coupled chan-
nels from where we can extract the pole positions in the
complex plane by means of an analytical continuation of
these amplitudes. Even then, the problem is subtle be-
cause using standard periodic boundary conditions, and
a wide range of lattice volumes, there is a gap of energies
in the levels of the box precisely for the energies where
one finds the poles. Because of this problem one is then
forced to use either asymmetric boxes or discretization in
the moving frame in order to find eigenvalues of the box
in the desired region. In the present paper we face all
these problems and come out with some strategies that
we find better suited to determine the position of the two
Λ(1405) poles.

II. FORMALISM

In the chiral unitary approach the scattering matrix in
coupled channels is given by the Bethe-Salpeter equation
in its factorized form

T = [1 − V G]−1V = [V −1 − G]−1, (1)

where V is the matrix for the transition potentials be-
tween the channels and G is a diagonal matrix with the
ith element, Gi, given by the loop function of two prop-
agators, a pseudoscalar meson and a baryon, which is
defined as

Gi = i2Mi

∫
d4p

(2π)4

1

(P − p)2 − M2
i + iǫ

1

p2 − m2
i + iǫ

,

(2)
where mi and Mi are the masses of the meson and the
baryon, respectively, and P is the four-momentum of the
global meson-baryon system.
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The loop function in Eq. (2) needs to be regularized
and this can be accomplished either with dimensional
regularization or with a three-momentum cutoff. The
equivalence of both methods was shown in Refs. [8, 84].
In dimensional regularization the integral of Eq. (2) is
evaluated and gives for meson-baryon systems [8, 83]

GD
i (s, mi, Mi) =

2Mi

(4π)2

{
ai(µ) + log

m2
i

µ2

+
M2

i − m2
i + s

2s
log

M2
i

m2
i

+
Qi(

√
s)√

s

[
log

(
s − (M2

i − m2
i ) + 2

√
sQi(

√
s)

)

+ log
(
s + (M2

i − m2
i ) + 2

√
sQi(

√
s)

)

− log
(
−s + (M2

i − m2
i ) + 2

√
sQi(

√
s)

)

− log
(
−s − (M2

i − m2
i ) + 2

√
sQi(

√
s)

) ]}
, (3)

where s = E2, with E being the energy of the system in
the center of mass frame, Qi being the on shell momen-
tum of the particles in the channel i, µ a regularization
scale and ai(µ) being a subtraction constant (note that
there is only one degree of freedom, not two independent
parameters).

In other works one uses regularization with a cutoff in
three momentum, once the p0 integration is analytically
performed [85], and one gets

Gi =

∫

|~p|<pmax

d3~p

(2π)3

2Mi

2ω1(~p) ω2(~p)

ω1(~p) + ω2(~p)

E2 − (ω1(~p) + ω2(~p))2 + iǫ
,

ω1,2(~p) =
√

m2
1,2 + ~p 2 , (4)

with m1, m2 corresponding to mi and Mi of Eq. (2).
When one wants to obtain the energy levels in the fi-

nite box, instead of integrating over the energy states of
the continuum, with p being a continuous variable as in
Eq. (4), one must sum over the discrete momenta allowed
in a finite box of side L with periodic boundary condi-

tions. We then have to replace G by G̃ = diag (G̃1, G̃2)
(in two channels), where

G̃i =
2Mi

L3

|~p|<pmax∑

~p

1

2ω1(~p) ω2(~p)

ω1(~p) + ω2(~p)

E2 − (ω1(~p) + ω2(~p))2
,

~p =
2π

L
~n, ~n ∈ Z

3 (5)

This is the procedure followed in Ref. [65]. The
eigenenergies of the box correspond to energies that pro-
duce poles in the T matrix, Eq. (1), which correspond to

zeros of the determinant of 1 − V G̃,

det(1 − V G̃) = 0 . (6)

For the case of two coupled channels Eq. (6) can be writ-
ten as

det(1 − V G̃) = 1 − V11G̃1 − V22G̃2

+ (V11V22 − V 2
12)G̃1G̃2

= 0 . (7)

The problem of the K̄N interaction with its coupled
channels and the Λ(1405) was addressed in Ref. [6] us-
ing the cut off method, but more recently it has been
addressed using dimensional regularization [8, 83]. For
this reason we will also use the dimensional regulariza-
tion method for the finite box, which was developed in
Ref. [70]. The change to be made is also very simple, the
G function of dimensional regularization of Eq. (3) has
to be substituted by

G̃(E) = GD(E) + lim
pmax→∞

[
1

L3

pmax∑

~pi

I(pi)

−
∫

p<pmax

d3p

(2π)3
I(p)

]
(8)

where I(p) is given by

I(p) =
2Mi

2ω1(~p) ω2(~p)

ω1(~p) + ω2(~p)

E2 − (ω1(~p) + ω2(~p))2 + iǫ
. (9)

We will also consider the case where the meson-baryon

system moves with a fourmomentum P = (P 0, ~P ) in the
box. In this case we still have to define the integrals and
the sums in the CM frame, where pmax is defined, but
the momenta of the two particles must be discretized in
the box, where the system moves with momentum P . We
follow the approach of Refs. [81, 82] and use the boost
transformation from the moving frame, with the variables
~p1,2, to the CM frame with the variables ~p ∗

1,2

~p ∗
1,2 = ~p1,2 +

[(
MI

P 0
− 1

)
~p1,2 · ~P

| ~P |2
−

p∗0
1,2

P 0

]
~P . (10)

where M2
I = P 2 = P 02 − ~P 2, the subindexes 1, 2, rep-

resent the meson, baryon particles and p∗0
1,2 are the CM

energies of the particles given by

p∗0
1,2 =

M2
I + m2

1,2 − m2
2,1

2MI

. (11)

Then we must do the substitution in Eq. (8) for the
evaluation of the energies in the box,

lim
pmax→∞

1

L3

pmax∑

~pi

I(pi) −→ 1

L3

|~p ∗|<pmax∑

~p

MI

P 0
I(p∗

i ),

~p =
2π

L
~n, ~n ∈ Z

3 (12)
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FIG. 1. Energy levels in a symmetric box of side length L.

with ~p ∗
i given in terms of ~pi by means of Eq. (10).

Since ~p1 and ~p2 = ~P −~p1 must both satisfy the periodic

boundary conditions, this forces ~P to be also discretized

and thus we can only use values of ~P such that

~P =
2π

L
~N, ~N ∈ Z

3 . (13)

III. RESULTS

A. Energy levels in the box

In this section we show the energy levels obtained from
the solution of Eq. (6) as a function of the side length of
the box, L, and for different physical cases: using peri-
odic boundary conditions in a: (1) symmetric box, (2)
asymmetric box and (3) symmetric box but in a moving
frame, i.e., with non-zero value for the total center of

mass momentum ~P (Eq. (13)).

1. periodic boundary conditions in a symmetric box

In Fig. 1 we show the first six energy levels related to
the system formed by the coupled channels K̄N , πΣ, ηΛ
and KΞ, which generate a double pole structure for the
Λ(1405) and a pole for the Λ(1670) [11]. These levels
are obtained by solving Eq. (6) using the chiral model of
Ref. [11] and imposing periodic boundary conditions in
a symmetric box of side length L (measured in units of
m−1

π ).
As can be seen in Fig. 1, the gap between the levels 0,

1 and especially between levels 1 and 2 is considerable,
giving rise to the presence of only two levels in the en-
ergy region of interest, i.e., the energy range in which the
two poles of the Λ(1405) are found (1390 − 1430 MeV).
This fact shows the difficulty that one can face to extract

1.5 2.0 2.5 3.0 3.5 4.0 4.5
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1500

1550

E
 (

M
e

V
)

L    = L    = L, L    = 0.5 L
L    = L    = L, L    = 1.0 L
L    = L    = L, L    = 1.5 L
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L    = L    = L, L    = 2.5 L

-1
!

0
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x
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x

y
y
y
y
y

z
z
z
z
z

FIG. 2. Energy levels in an asymmetric box of side length
Lx = Ly = L and Lz = zL, with z = 0.5 − 2.5 in steps of 0.5.

information about the poles of the Λ(1405) in an infinite
volume considering these energy levels as reference.

2. periodic boundary conditions in an asymmetric box

To see if we can obtain more energy levels in the region
of the Λ(1405), it is also possible to solve Eq. (6) but in
an asymmetric box. To do this we just need to substitute
L3 by LxLyLz and the momentum ~p of Eq. (12) by ~p =
(2π)(nx/Lx, ny/Ly, nz/Lz). In Fig. 2 we show the first
three energy levels determined in a box of side lengths
Lx = Ly = L and Lz = zL, and we vary z between 0.5L
and 2.5L. In this way, we get more energy levels in the
region of interest, which can provide different information
about the system and the poles of the Λ(1405).

3. periodic boundary conditions in a moving frame

Another method to try to get more energy levels
around the pole positions of the Λ(1405) and thus, dif-
ferent information about the dynamics of the system un-
der consideration, consists of imposing periodic boundary
conditions in a symmetric box of side length L but con-
sidering the system in a moving frame, i.e., with non zero

center of mass momentum ~P . In Fig. 3 we show the re-
sults found in this case for the first three levels obtained
and for different values of the vector ~N (see Eq. (13)). As

can be seen, the use of different values of ~P gives rise to a
splitting of the levels. In particular, the splitting of level
1 is precisely in the energy region of interest, 1390−1450
MeV. This is different from the case of the asymmetric
box, where level 2 is required in order to have energy
levels around 1420-1450 MeV, as can be seen in Fig. 2.
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FIG. 3. Energy levels in a symmetric box of side length L
with the system having a center of mass momentum given by
Eq. (13).

B. The inverse problem: getting the Λ(1405) poles

from the energy levels of the box

In the following we refer to the problem of determin-
ing the pole positions of the Λ(1405) in the infinite vol-
ume using the energy levels shown in Figs. 1, 2, 3 as if
they were provided to us by a lattice calculation. In our
formalism, we can simulate lattice-like data considering
points related to the energy levels of Figs. 1, 2, 3 and
assigning to them a typical error of ± 10 MeV. We call
the data generated in this form “synthetic” lattice data
and the problem of getting the poles of the Λ(1405) from
these data points “the inverse problem”.

To solve the inverse problem we consider a poten-
tial with the same energy dependence than the chiral
potential used to generate the energy levels shown in
Figs. 1, 2, 3. In its non-relativistic version, this potential
is given by [6]

Vij = − Cij

4f2
(Ei + Ej), (14)

with Cij coefficients depending on the channel consid-
ered, f being the pion decay constant and Ei (Ej) being
the center of mass energy of the meson in the initial (fi-
nal) state. Using that for a particular channel l

El =
E2 + m2

l − M2
l

2E
,

(15)

with ml and Ml being the masses of the meson and
baryon which constitute channel l, respectively, we can
write Eq. (14) as

Vij = − Cij

4f2

{
E +

1

2E

[
m2

i + m2
j − (M2

i + M2
j )

]}
(16)

Choosing a region of energies around a certain value of
E, E0, the inverse function of E can be expanded as a
function of E − E0 to a good extent. Particularizing E0

to the value given by the sum of the kaon and nucleon
masses, i.e., mK + MN , we can write the potential in
Eq. (16) as

Vij = aij + bij [E − (mK + MN)]. (17)

The value of the coefficients aij and bij can be obtained
comparing Eq. (17) with Eq. (16) and substituting 1/E
by its Taylor expansion around E0 = mK + MN .

To solve the inverse problem, we use the energy lev-
els obtained from Eq. (6) with the potential of Eq. (17)
but treat aij and bij as parameters which are determined
by fitting the corresponding solutions for the energy lev-
els to the “synthetic” lattice data considered. Since this
potential has the same energy dependence as the chiral
potential, the best fit we can perform will have as min-
imum value for the χ2 the result χ2

min = 0. However,
other possible potentials, giving rise to solutions com-
patible with the error assumed in the data points, can be
also found as an answer for the inverse problem. These
solutions can be obtained by generating random num-
bers for the parameters aij and bij close to those of the
minimum such that χ2 6 χ2

min + 1.

It is important to notice that the loop function G̃, used
in Eq. (6), needs to be regularized and, thus, depends on
a cut-off or a subtraction constant. Consequently, so do
the fitted parameters, but the T matrix obtained from
Eq. (1) and the observables related to it should be in-
dependent of this regularization parameter. This means
that the inverse method cannot depend on the cut-off
or subtraction constant assumed in the evaluation of the
G̃ function. For the case of one channel, it is possible
to show analytically this independence in the choice of
the cut-off or subtraction constant [65, 70], but if more
channels are involved it can only be seen numerically by
changing the cut-off or subtraction constant in a reason-
able physical range [65, 70].

In the next sections we show the results found for the
inverse problem. To accomplish this we have considered
different sets of points extracted from the energy levels
shown in Figs. 1, 2, 3 and fit them from the solution that
Eq. (6) produces with the potential of Eq. (17). To solve
Eq. (6) we have taken into account two coupled channels,
πΣ (which we named channel 1) and K̄N (or channel
2), which are the most relevant channels to describe the
properties of the Λ(1405). This implies, as can be seen
in Eq. (7), that we have to determine three potentials,
V11, V12 (V21 = V12) and V22 or equivalently 6 parameters
a11, a12, a22, b11, b12 and b22. Once the parameters and,
thus, the potentials, are known, we can use them to solve
Eq. (1) and determine the pole positions of the Λ(1405)
in an infinite volume.
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FIG. 4. (Color online) First two energy levels as function of
the box side length L, reconstructed from fits to the “syn-
thetic” data of Fig. 1 in a range of L between 1.5 m−1

π and
3.34 m−1

π using the potential of Eq. (17). The band corre-
sponds to different choices of parameters within errors.

1. periodic boundary conditions in a symmetric box

In Fig. 4 we show the results of the energy levels recon-
structed from the best fits to the “synthetic” lattice data
considered from Fig. 1. These data consist of 10 points
for levels 0 and 1 obtained in a symmetric box of side
length L, varying L in the range 1.5 m−1

π to 3.34 m−1
π ,

assigning an error of ± 10 MeV to the eigenenergies of
the box (from now on, we will always assume an error
of ± 10 for the different “synthetic” data that we will
use). The shadowed band in the figure corresponds to
the random choices of parameters satisfying the condi-
tion χ2 6 χ2

min + 1. Using the potentials obtained from
the fit and the loop function G in infinite volume, we
can solve Eq. (1) and calculate the two-body T matrix
in the unphysical sheet, which allows us to determine the
pole position of the Λ(1405) associated to the band of
solutions shown in Fig. 4. As a result we get a double
pole structure for the Λ(1405), with one pole in the re-
gion 1385-1433 MeV and half width between 93-137 MeV
(which we call pole 1) and another one in the energy re-
gion 1416-1427 MeV and half width in the range 11-20
MeV (which we call pole 2). If we compare these results
with the ones of the chiral model [11], 1390 − i66 MeV
and 1426 − i16 MeV, respectively, we find a big disper-
sion in the determination of the real part of the first pole
of the Λ(1405). This shows that the information which
one can extract from the “synthetic” data considered in
Fig. 4 is not sufficient to determine with more precision
the poles associated with the Λ(1405).

A way to delimit the poles of the Λ(1405) with more
precision from lattice data could consist in going to
higher volumes, since for large volumes the results in the
box should be very close to those of an infinite volume.
With this idea in mind, we can generate “synthetic” data
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FIG. 5. (Color online) Same as in Fig. 4 but for a range of L
between 1.5 m−1

π and 4.93 m−1

π .

points for the levels 0 and 1 of Fig. 1, but in a larger range
of L than that considered in Fig. 4. The data points, as
well as the results from the fits, are shown in Fig. 5.
Similarly, if we use now the potentials associated with
the band of solutions shown in Fig. 5 to solve Eq. (1)
and calculate the T matrix in the unphysical sheet, we
get again two poles in the complex energy plane associ-
ated with the Λ(1405): one in the region 1390-1433 MeV,
with half width between 70-100 MeV, and other at 1410-
1421 MeV with half width 17-30 MeV. Comparing them
with the previous results, we find that the consideration
of a bigger box has improved slightly the width associated
with the first pole of the Λ(1405), however, we continue
having a similar energy dispersion for the real part of the
pole.

We could also try using different levels than those em-
ployed in Figs. 4 and 5 to see if we can get more reliable
information from them. In Fig. 6 we consider “synthetic”
data obtained from levels 1 and 2 of Fig. 1. We have
taken into account 5 points for level 1 in a range of L
between 1.5 m−1

π and 3.9 m−1
π and 4 points for level 2 for

values of L inside 2 m−1
π to 3.9 m−1

π . This is because for
level 2 the points for values of L below 2 m−1

π are influ-
enced by the ηΛ and KΞ channels and, thus, it is not
possible to fit them considering only the πΣ and K̄N
channels, as we do. We can use now the potentials asso-
ciated with the different fits shown in Fig. 6 to calculate
the pole positions of the Λ(1405) in infinite volume by
means of Eq. (1). In this case, we continue getting a
double pole structure for the Λ(1405), but this time one
pole is at (1375 − 1430) − i(70 − 85) MeV and the other
one is at (1412 − 1427) − i(21 − 34) MeV. The position of
the second pole remains basically the same as in the two
previous cases. However, the use of “synthetic” points
generated from levels 1 and 2 instead than from levels
0 and 1 has restricted more the imaginary part of the
first pole, although we continue getting a similar energy
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FIG. 6. (Color online) Fits to the levels 1 and 2 of Fig. 1
constructed from the potential of Eq. (17).
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FIG. 7. (Color online) Fits to the levels 0, 1 and 2 of Fig. 1
constructed from the potential of Eq. (17).

dispersion for the real part of the pole position.
Finally, we could consider all the energy levels present

in Fig. 1 below 1600 MeV to generate data points to check
if the consideration of more levels can restrict more the
energy region at which the pole positions of the Λ(1405)
are found. Following this idea, in Fig. 7 we consider a
set of 14 points extracted from levels 0, 1 and 2 of Fig. 1.
Similar to the previous results, the consideration of data
points associated to three energy levels puts a restriction
on the imaginary part of the first pole of the Λ(1405),
which in this case is in the range 54-68 MeV (closer to
the chiral solution, 66 MeV). However the dispersion on
the real part continues basically equal, 1400-1428 MeV.
For the second pole we get (1408 − 1425) − i(29 − 40)
MeV.

These results show that the information which can be
extracted from “synthetic” data constructed from the en-
ergy levels obtained in a symmetric box of volume L3 is
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FIG. 8. (Color online) Fits to the “synthetic” data extracted
from the energy levels 0, 1 and 2 of Fig. 2 in an asymmetric
box of side lengths Lx = Ly = L and Lz = zL. The data
points considered are generated from level 0 for z = 2.5, level
1 for z = 0.5 and z = 2.0 and level 2 for z = 2.0.

not enough to determine with precision the pole posi-
tions of the Λ(1405), a fact which is basically related to
the absence of energy levels, and thus information about
the dynamics of the system, in the region between 1400-
1500 MeV, as can be seen in Fig. 1.

2. periodic boundary conditions in an asymmetric box

We consider now the case of an asymmetric box of side
lengths Lx = Ly = L and Lz = zL to solve the inverse
problem. In this case, we generate a set of 20 data points
extracted from levels 0, 1 and 2 shown in Fig. 2. In
particular, we use 5 points for level 0 calculated with
z = 2.5, 10 points for level 1 (5 for the case z = 0.5 and
5 more for z = 2.0) and 5 points for level 2 obtained
with z = 2.0. In this way we ensure the presence of some
energy levels in the region of the Λ(1405), as can be seen
in Fig. 8.

The solution of the Bethe-Salpeter equation in an in-
finite volume, Eq. (1), using the potentials related to
the band of solutions plotted in Fig. 8 shows the pres-
ence of a double pole structure for the Λ(1405) with
pole positions at (1383 − 1407) − i(57 − 69) MeV and
(1425 − 1434) − i(25 − 35) MeV. Thus, using this new set
of data points, there is an improvement in the determi-
nation of the first pole of the Λ(1405), which is now quite
close to the chiral result (1390 − i66 MeV). However, the
second pole appears at higher energies as compared to
the case of a symmetric box and sometimes is far from
the chiral solution (1426 − i16 MeV), being even close to
the K̄N threshold.



8

1.75 1.80 1.85 1.90 1.95 2.00

L (m    )

1280

1310

1340

1370

1400

1430

1460
E

 (
M

e
V

)

-1
!

FIG. 9. (Color online) Fits to the “synthetic” data extracted
from the energy levels 0 and 1 of Fig. 3, which correspond to
the case of a symmetric box, but with the particles being in
a moving frame.

3. periodic boundary conditions in a moving frame

We can also study the information which can be ex-
tracted for the poles of the Λ(1405) using the levels ob-
tained when we consider the system in a symmetric box,
but in a moving frame, to generate “synthetic” lattice
data. In this case, we consider levels 0 and 1 of Fig. 3
determined for 5 different values of the center of mass
momentum (the ones shown in the legend of Fig. 3) and
two points in each of these curves. In particular, we take
points at L = 1.757 m−1

π and L = 2.014 m−1
π , obtaining

then 20 data points. The results are shown in Fig. 9.
From the solution of the best fits, we can use the poten-
tials obtained to solve Eq. (1), getting then two poles for
the Λ(1405): one at (1388 − 1418) − i(59 − 77) MeV and
other at (1412 − 1427) − i(16 − 34) MeV.

In Fig. 10 we show the results for the pole positions of
the Λ(1405) obtained from the different data set consid-
ered in this work. As can be seen in Fig. 10, out of the
different data sets considered to solve the inverse prob-
lem, the cases of an asymmetric box and of a symmetric
box but in a moving frame seem to be more suited to get
the two poles of the Λ(1405) with more precision.

C. Phase shifts and Lüscher approach

So far, when solving the inverse problem, we have de-
termined the pole positions related to the Λ(1405) using
the two-body T matrix in infinite volume obtained from
the energy levels calculated in a finite volume. However,
we could also make use of the same scattering matrix to
obtain the phase shifts in infinite volume for the differ-
ent channels. To do this, we follow Ref. [85] in which
the T matrix is related to the inelasticity and the phase

1380 1390 1400 1410 1420 1430

Re ( E ) [MeV]

-200
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-50

0

Im
 (

 E
 )

 [
M

e
V

]

chiral model

Levels 0 and 1, 10 points L ~ 1.50-3.34

Levels 0 and 1, 10 points L ~ 1.50-4.93

Levels 1 and 2, 9 points L ~ 1.5-3.9

Levels 0, 1, and 2, 14 points L ~ 1.5-3.9

Levels 0 (L   = 2.5L), 1 (L   = 0.5L, 2L), 2 (L   = 2L)

Levels 0 and 1 [N=(0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0)]

z z z

FIG. 10. (Color online) Pole positions of the Λ(1405) recon-
structed from the different set of “synthetic” data generated
for the different cases considered in this work. The shaded
symbols corresponds to the positions obtained for the first
pole of the Λ(1405), while the empty symbols are related to
the second pole of the Λ(1405).

shifts1. Just as an illustrative example, we can use the
two coupled channel T matrices obtained from the band
of solutions shown in Fig. 4 and calculate the phase shift,
for example, for the πΣ channel. In Fig. 11 we show the
phase shift for the πΣ → πΣ transition in isospin 0 and
s-wave, δ0

0 , in the energy region 1331 to 1500 MeV, de-
termined within the chiral model (solid line) and using
the inverse method from the band of energies shown in
Fig. 4 (shaded area). As can be seen, the agreement be-
tween the theoretical curve and the solutions determined
using the fits to the “synthetic” data of Fig. 4 is good.
This is more remarkable having in mind the fact that the
data points considered in Fig. 4 reach up to a maximum
energy of around 1410 MeV. To determine the πΣ phase
shift with more precision from eigenenergies obtained in

1 Please note that in Ref. [85] coupled meson-meson systems are
studied while, in the present case, we analyzed coupled meson-
baryon systems. Thus, a different normalization shall be used in
the determination of the phase-shifts: instead of the scattering
matrix Tij for the transition between the channels i and j, a fac-

tor
√

2Mi2Mj shall be included (with Mi, Mj being the baryon

masses in the channels i, j), thus Tij →

√
2Mi2MjTij .
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FIG. 11. (Color online) s-wave phase shift for the πΣ channel
in isospin 0 determined from the chiral model (solid line),
using the band of solutions for the energy levels shown in
Fig. 4 (shaded area) and within the Lüscher formula (dots).

a finite volume more energy levels at higher energies than
1410 MeV would be required. However, the information
contained in the “synthetic” data of Fig. 4 about the dy-
namics of the system makes possible to get an overall
agreement with the theoretical πΣ phase shift for ener-
gies bigger than the one of the last data point considered
in Fig. 4.

One may wonder whether the use of the Lüscher for-
mula for the single πΣ channel can give rise to similar
phase shifts as those shown in Fig. 11 (solid line or shaded
area). As we have seen, the poles of the Λ(1405) come
as a consequence of the πΣ and K̄N coupled channel dy-
namics, but we have seen in the analogous case of the
s-wave I = 0 ππ scattering, that the σ(600) and f0(980)
resonances also require the analysis with the ππ and KK̄
channels, but at low energies the ππ phase shifts are very
accurately obtained from finite volume energy levels via
the Lüscher formula with just the ππ channel [65]. We
might think that this is the case here too, and it is gener-
ally accepted that the Lüscher formula can be used when
one has only one channel open. Assuming that this is
the case, we proceed as follows: As shown in Ref. [65],
for a one channel case and for the discrete eigenenergies
obtained in a finite volume, the scattering matrix in in-
finite volume can be written as

T (E) = [G̃(E) − G(E)]−1. (18)

As proved in Ref. [65], Eq. (18) is equivalent to Lüscher
formula. Using now Eq. (18), we can calculate the phase
shift for the πΣ channel for each of the eigenenergies
(“synthetic” data points) shown in Fig. 4 which fall above
the πΣ threshold. This means only the upper level since
the energies of the lower level are below the πΣ threshold.
The results obtained are shown as dots in Fig. 11. As can
be seen, the phase shift determined within the Lüscher

formula, Eq. (18), have a completely different behavior
than the theoretical result determined from the chiral
model (solid line) or those of the shaded area calculated
from the fits to the “synthetic” lattice data of Fig. 4.
This fact indicates that the πΣ and K̄N coupled channel
dynamics plays a very important role in the generation of
the Λ(1405) and, thus, in the determination of physical
observables like the phase shifts.

The reason for this failure is that the higher level of
Fig. 4 is mostly tied to the K̄N channel and, hence,
forcing it to provide information on πΣ leads to unre-
alistic results. This is an important result which could
not be anticipated and tells us that the straightforward
application of Lüscher formula to obtain phase shifts
can provide quite unrealistic results if applied in phys-
ical cases where two or more channels are very much
connected. The value of the present approach to make
prospective studies in different cases becomes apparent.
However, the discussion requires a closer look, as we
argue below.

IV. FURTHER DISCUSSIONS

The results obtained in the previous subsection could
be surprising to the light of a well known fact in cou-
pled channels studies where the effect of coupled chan-
nels that one would like to disregard in the analysis can
be reabsorbed by a redefinition of the potential in a cho-
sen channel. Imagine we have N channels and we want
to include the effect of (N − 1) channels redefining the
potential of channel 1. This is done in Refs. [86, 87] and
the effective potential for channel 1 is now given by

Veff = V11 +

N∑

m=2

V1 mGmVm 1

+

N∑

m, l=2

V1 mGmt
(N−1)
m l GlVl 1, (19)

where t
(N−1)
m l = [V (N−1)−1−G(N−1)]−1 is the (N−1)(N−

1) t matrix of the system of (N −1) channels, after remov-
ing channel 1. This means that it is possible to construct
an effective potential and work with just one channel,

but it involves Gm and t
(N−1)
m l for the channels not con-

sidered. This has obvious repercussions since for finite

volume Gm and t
(N−1)
m l would become G̃m and t̃

(N−1)
m l ,

respectively, which are volume dependent. Then Lüscher
approach is bound to have problems since it implicitly
relies upon volume independent potentials.

For the case of finite volume studies it is more practical
to state this fact in a different way. Let us start from
Eq. (1) that gives the T matrix in the infinite volume and
write the correspondent scattering matrix in the finite
volume, T̃ :
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T̃ = [V −1 − G̃]−1. (20)

Using Eqs. (1) and (20), we get

T̃ −1 = T −1 − δG = T −1[1 − T δG], (21)

where we have defined δG ≡ G̃ − G. Hence,

T̃ = [1 − T δG]−1T. (22)

One can note that this formula is like Eq. (1), or Eq. (20)
for T̃ , substituting V → T and G̃ → δG. Hence, the
condition to obtain the energy levels in the box, det(T̃ ) =
0, leads to the analogous secular equation of Eq. (7) in
terms of T and δG substituting V and G̃, respectively,

(1 − T11 δG11)(1 − T22δG2) − T 2
12δG1δG2 = 0, (23)

from where we derive for the eigenenergies of the eigen-
states of the box2

T11 = δG−1
1 − T 2

12 δG2

1 − T22δG2
. (24)

It is now interesting to note that if channel 2 is a closed
channel, like K̄N below threshold, then δG2 is volume
exponentially suppressed and in the large L limit we re-
cover Lüscher formula T11 = δG−1

1 .
It is also interesting to establish the connection of

δG with another function used in finite volume stud-
ies, F (d)(kL). Indeed δG is proportional to the function
F (d)(kL) used in Ref. [79], where it is shown in detail that
it is actually exponentially suppressed. The superindex
d in F (d)(kL) stands for the total momentum (in units of
2π/L) of the two particle system. In Ref. [79] it is also
shown that the use of moving frames and some particu-
lar combinations of them can help reducing the volume
dependence in the determination of binding energies of
systems.

For what respects us in the present case, we can already
appreciate in Fig. 11 that for higher energies, which are
reached in Fig. 4 for large volumes, the πΣ phase shift
determined with Lüscher formula starts converging to the
exact one. However, as can be seen in Eq. (24), the
divergence of T11 (where, in this case, 1 represents the
πΣ channel) from the Lüscher formula is tied not only to
the exponentially suppressed magnitude δG2, but also to
the magnitude of T12 (transition matrix between πΣ and
K̄N), and thus the actual accuracy of Lüscher formula to
derive the πΣ phase shift cannot be determined a priori
without knowledge of the underlying dynamics.

In view of this, let us investigate this issue further: if
the second term in Eq. (24) is suppressed at large L as
compared to the first one, the Lüscher term, how relevant

2 We are indebted to the referee for providing us this formula.

is it then in the determination of the scattering matrix
for the different cases considered here: symmetric box,
asymmetric box and the system in a moving frame? Can
we neglect it for some of these cases and work just with
the Lüscher formula to obtain the scattering matrix?

To answer these question let us first illustrate the sup-
pression at large L of the second term in Eq. (24). To do
this, we consider points in the energy region above the πΣ
threshold and close to the K̄N threshold for the different
cases and determine the contribution of each of the two
terms in Eq. (24). In particular, for the symmetric box,
we take the eigenenergies related to the level 1 shown in
Fig. 7. In case of an asymmetric box, we use the points
shown in Fig. 8 for the level 1 with z = 0.5 and for the
system in a moving frame the two points in Fig. 9 associ-

ated with the level 1 and the vector ~P = (2π/L)(2, 0, 0).
We then use the T11 matrix (i.e., πΣ T -matrix) obtained
for each case from the best fit to the energies shown in
Figs. 7, 8 and 9, respectively, calculated at the corre-
sponding eigenenergies. Next, for these eigenenergies, we
determine δG−1

1 and the difference δG−1
1 −T11, which cor-

responds to the second term in Eq. (24). In Figs. 12, 13,
and 14 we show the results obtained for the symmetric
box, asymmetric box and the system in a moving frame,
respectively. In these figures, the filled triangles represent
the modulus squared of the contribution arising from the
Lüscher approach, i.e., δG−1

1 , while the empty triangles
correspond to the contribution coming from the second
term in Eq. (24). As we can see, in case of a symmetric
box, the Lüscher term in Eq. (24) dominates over the
second one for L & 3.3m−1

π . For an asymmetric box,
this happens for L & 3.8m−1

π . In case of the system in
a moving frame, since the biggest value of L associated
to the points considered in Fig. 9 is L ∼ 2m−1

π , to check
if the second term of Eq. (24) is suppressed for bigger
values of L we have extended the calculation to higher
values of L by considering all the eigenenergies related to

the level 1 and ~P = (2π/L)(2, 0, 0) of Fig. 3. The results
are shown in Fig. 14 as a solid line for the Lüscher term
and as a dashed line for the second term in Eq. (24).
As can be seen, the value of L after which the second
term in Eq. (24) is negligible as compared to the first
one is L & 2.7m−1

π . This value of L is smaller than that
found in a symmetric and an asymmetric box. Thus, it
comes out that the use of a moving frame helps in reduc-
ing the volume dependence in the determination of phase
shifts via the one channel Luescher formula, as shown in
Ref. [79].

After showing the suppression with L which occurs for
the second term in Eq. (24), one may wonder why then
one would need to consider coupled channels to deter-
mine the poles of the Λ(1405) and why Lüscher approach
would fail. One reason is that the channel πΣ couples
strongly to the lower pole and more weakly to the higher
one, while the K̄N channel is the one that couples more
strongly to the upper pole. The K̄N → K̄N amplitude
bears stronger information on the upper pole than the
πΣ → πΣ one. This second pole is also close to the K̄N
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FIG. 12. Modulus squared of the contributions arising from
the first (filled triangles) and second (empty triangles) term
of Eq. (24) for the eigenenergies related to the level 1 of Fig. 7
(symmetric box) as a function of the side length of the box,
L.
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FIG. 13. Same as in Fig. 12, but for the level 1 of an asym-
metric box of dimension Lx = L, Ly = L and Lz = 0.5L (see
Fig. 8).

1.5 2.0 2.5 3.0 3.5 4.0

L (m    )

 

2

4

6

8

10

12

14

16

18

M
o

d
u

lu
s
 s

q
u

a
re

d
 (

 1
0

  
  

M
e

V
  

  
) Luescher, First term in Eq. (24)

Second term in Eq. (24)
Luescher, First term in Eq. (24)
Second term in Eq. (24)

-2

-1
!

Moving Frame, Level 1,

N = (2,0,0)

-3

FIG. 14. Same as in Fig. 12 but for the level 1 of a system
in a moving frame with ~P = (2π/L)(2, 0, 0) (see Fig. 9). The
solid and dashed lines are obtained using the eigenenergies
shown in Fig. 3 for the same level and ~P .

threshold where the second term of Eq. (24) will be im-
portant. We can see in practice the problems that we face
in the realistic situation where the information is taken
from the levels considered. Let us go back to the results
shown in Figs. 12, 13, 14. There, we have shown a sup-
pression with L for the second term in Eq. (24) with re-
spect to the Lüscher contribution to the scattering matrix
for a certain energy level. However, it should be empha-
sized that the energy levels in the box start converging to
some particular energy for large values of L . For exam-
ple, the level 0 in Fig. 7 starts from an energy of around
1280 MeV at L = 1.5 m−1

π and converges as L increases
to the threshold of the πΣ channel. Similarly, the energy
level 1 begins at an energy value close to 1370 MeV and
as L increases it stabilizes to an energy of around 1400
MeV, while the second level seems to converge to an en-
ergy around 1435 MeV, i.e., the K̄N threshold. Thus, by
using a particular energy level in a range of L one can
not determine the scattering matrix for the system at in-
finite volume at any energy. To do this, we need to use
different energy levels covering different energy regions.
For example, using the levels shown in Fig. 7, the scat-
tering matrix in infinite volume can be determined at an
energy of 1330 MeV using the level 0 at L ∼ 4m−1

π , but
to obtain it at higher energies we need to shift to level 1,
which starts at an energy of 1370 MeV at a much smaller
value of L, L = 1.5m−1

π . It would be interesting now to
know what happens to the first and the second term in
Eq. (24) when several energy levels, covering different en-
ergy ranges, are considered to determine the scattering
matrix at infinite volume. We show the results obtained
for the three cases studied, symmetric box, asymmetric
box, and moving frame in Figs. 15, 16, 17, using the
eigenenergies of Figs. 7, 8, 9, respectively, which are
above the πΣ threshold (1331 MeV), up to a maximum
energy of 1500 MeV (above the K̄N threshold). In these
figures, the solid line corresponds to the modulus squared
of the πΣ amplitude in infinite volume obtained from the
best fit to the energies shown in Figs. 7, 8, 9. The circles
correspond to the same quantity but for the respective
eigenenergies which fall in the energy range 1331-1500
MeV. The filled and empty triangles represent the mod-
ulus squared of the first and second terms in Eq. (24),
respectively, at the particular eigenenergies. As one can
see in these figures, there are large oscillations, and for
a certain energy the Lüscher term can be negligible as
compared to the second one in Eq. (24), but for the next
energy the situation can be completely reversed. Thus,
the fact that one needs to use different energy levels to
determine the scattering matrix in infinite volume below
and above the different thresholds makes it necessary to
consider the contribution arising from the second term in
Eq. (24).

Once more, the exercise presented in this subsection
reveals the relevance of the two channels in this particular
problem and makes manifest the power of using effective
theories at finite volumes as a prospective tool for further
QCD lattice calculations.
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FIG. 15. Contributions arising from the first and second terms
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shown in Fig. 7. The circles correspond to the same quan-
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for the contribution of the second term in Eq. (24).
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FIG. 16. Same as in Fig. 15 but for an asymmetric box
(eigenenergies taken from Fig. 8).
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FIG. 17. Same as in Fig. 15 but for a moving frame (eigenen-
ergies taken from Fig. 9).

V. CONCLUSIONS

We have made a study of the K̄N interaction with
its coupled channels in a finite box and found the levels
obtained as a function of the box size. We have done this
for standard periodic conditions and symmetric boxes,
for asymmetric boxes and for symmetric boxes but with
the particles in a moving frame. The aim of the work
has been to solve the inverse problem in which, assuming
that the levels in the box would correspond to “QCD
lattice results” we want to determine the pole positions
in the complex plane for the two Λ(1405) states provided
by the chiral unitary approach and supported by several
experiments.

We found that the problem is not trivial, and even
the use of a large number of energies of the box corre-
sponding to different levels and volumes with standard
periodic conditions cannot provide the mass and width
of the states with the accuracy of the chiral unitary ap-
proach and present experiments. For this reason we in-
vestigated other possible strategies and found that the
use of asymmetric boxes and levels coming from the par-
ticles in moving frames helped considerably to narrow
down the uncertainties in the determination of the mass
and width of these resonances. The choices of levels and
energies made for this analysis should be a guiding tool
for future QCD lattice evaluations, showing the num-
ber of levels needed, the errors that should be demanded
in the determination of the energies of the box and the
type of asymmetric boxes or total momenta of the pair
of particles in the moving frames. Having this informa-
tion before hand is of tremendous value given the time
consuming runs of actual QCD lattice runs.

Our analysis has also another important conclusion.
Lüscher approach with one channel is universally ac-
cepted as an accurate tool to get phase shifts for energies
where only one channel is open. In the present case we
found that, since the πΣ and K̄N channels are not much
separated in energy and are very entangled, the use of
Lüscher approach to get the πΣ phase shifts from lat-
tice energy levels leads to erroneous results, unless large
volumes are used. But one cannot anticipate how large
should L be to get a certain accuracy in the phase shifts.
This should give us a warning for other cases and makes
the finite volume studies within the chiral unitary ap-
proach very valuable as a prospective tool to be used for
each individual case.

We also found, in agreement with previous analytical
studies, that the moving frames provide more accurate
results for a given volume, via one channel analysis, than
the one at rest.
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