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The properties of strange mesons (K, K̄ and K̄∗) in dense matter are studied using a
unitary approach in coupled channels for meson-baryon scattering. The kaon-nucleon inter-
action incorporates s- and p-wave contributions within a chiral model whereas the interaction
of K̄∗ with nucleons is obtained in the framework of the local hidden gauge formalism. The
in-medium solution for the scattering amplitude accounts for Pauli blocking effects, mean-
field binding on baryons, and meson self-energies. We obtain the K, K̄ and K̄∗ (off-shell)
spectral functions in the nuclear medium and study their behaviour at finite density, temper-
ature and momentum. We also analyze the energy weighted sum rules of the kaon propagator
as a quality test of model calculations. We finally estimate the transparency ratio of the
γA → K+K∗−A′ reaction, which we propose as a feasible scenario at present facilities to
detect in-medium modifications of the K̄∗ meson.

§1. Introduction

Strangeness in hot and dense matter is a matter of extensive analysis in con-
nection to heavy-ion collisions from SIS1) to FAIR2) energies at GSI. In particular,
the interaction of strange pseudoscalar mesons (K and K̄) with matter is a topic
of high interest. Whereas the interaction of K̄N is repulsive at threshold, the phe-
nomenology of antikaonic atoms3) shows that the K̄ feels an attractive potential at
low densities. This attraction is a consequence of the modified s-wave Λ(1405) reso-
nance in the medium due to Pauli blocking effects4) together with the self-consistent
consideration of the K̄ self-energy5) and the inclusion of self-energies of the mesons
and baryons in the intermediate states.6) Attraction of the order of -50 MeV at nor-
mal nuclear matter density, ρ0 = 0.17 fm−3, is obtained in unitarizated theories in
coupled channels based on chiral dynamics6) and meson-exchange models.7), 8) More-
over, the knowledge of higher-partial waves beyond s-wave9), 10), 11) becomes essential
for relativistic heavy-ion experiments at beam energies below 2AGeV.1)

Curiously, no discussion has been made about the properties of the strange vector
mesons (K∗ and K̄∗) in the medium, although non-strange vector mesons have been
the focus of attention for years.12), 13), 14) Only recently the K̄∗N interaction in free
space has been addressed in15) using SU(6) spin-flavour symmetry, and in16) within
the hidden local gauge formalism for the interaction of vector mesons with baryons
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of the octet and the decuplet. Within this latter scheme, medium effects have been
implemented and analyzed very recently17) finding an spectacular enhancement of
the K̄∗ width in the medium, up to about five times the free value of about 50 MeV.

In this paper we review the properties of the strange (K, K̄ and K̄∗) mesons
in dense matter. We then analyze the first energy-weighted sum rules (EWSRs) for
kaons, which are a quality test of our model calculations. We finally estimate the
transparency ratio of the γA → K+K∗−A′ reaction, as a feasible scenario at present
facilities to detect in-medium properties of strange vector mesons.

§2. K and K̄ mesons in hot and dense matter

The kaon and antikaon self-energies in symmetric nuclear matter at finite tem-
perature are obtained from the s- and p-waves in-medium kaon-nucleon interaction
within a chiral unitary approach.11)

The s-wave amplitude of the K̄N originates, at tree level, from the Weinberg-
Tomozawa term of the chiral Lagrangian. Unitarization in coupled channels is im-
posed with on-shell amplitudes (T ) and a cutoff regularization. The Λ(1405) reso-
nance in the I = 0 channel is generated dynamically and we obtain a satisfactory
description of low-energy scattering observables. TheKN effective interaction is also
obtained by solving the Bethe-Salpeter equation with the same cutoff parameter.

The in-medium solution of the s-wave amplitude accounts for Pauli-blocking
effects, mean-field binding on the nucleons and hyperons via a σ−ω model, and the
dressing of the pion and kaon propagators. The self-energy is then obtained in a
self-consistent manner summing the transition amplitude T for the different isospins
over the nucleon Fermi distribution at a given temperature, n(~q, T ),

ΠK(K̄)N (q0, ~q, T ) =

∫

d3p

(2π)3
n(~p, T ) [T

(I=0)

K(K̄)N
(P0, ~P , T ) + 3T

(I=1)

K(K̄)N
(P0, ~P , T ) ],(2.1)

where P0 = q0 +EN (~p, T ) and ~P = ~q+ ~p are the total energy and momentum of the
kaon-nucleon pair in the nuclear matter rest frame, and (q0, ~q ) and (EN , ~p ) stand for
the energy and momentum of the kaon and nucleon, respectively, also in this frame.
In the case of K̄ meson the model also includes, in addition, a p-wave contribution to
the self-energy from hyperon-hole (Y h) excitations, where Y stands for Λ, Σ and Σ∗

components. For the K meson the p-wave self-energy results from Y N−1 excitations
in crossed kinematics. The spectral function depicted in the following results from
the imaginary part of the in-medium kaon propagator.

The evolution of the K̄ and K spectral functions with density and temperature
is depicted in Fig. 1. The K̄ spectral function (left) shows a strong mixing between
the quasi-particle peak and the Λ(1405)N−1 and Y (= Λ,Σ,Σ∗)N−1 excitations.
The effect of these p-wave Y N−1 subthreshold excitations is repulsive for the K̄
potential, compensating in part the attraction from the s-wave K̄N interaction.
Temperature and density softens the p-wave contributions to the spectral function at
the quasi-particle energy. Moreover, together with the s-wave, the p-wave self-energy
provides a low-energy tail which spreads the spectral function considerably. As for
the K spectral function (right), the K meson is described by a narrow quasi-particle
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Fig. 1. K̄ (left) andK (right) spectral functions for different densities, temperatures and momenta.

peak which dilutes with temperature and density as the phase space for KN states
increases. The s-wave repulsive self-energy translates into a shift of the K spectral
function to higher energies with increasing density and it is mildly compensated by
the attractive p-wave contributions.

2.1. Energy weighted sum rules for kaons

The EWSRs result from matching the Dyson form of the meson propagator with
its spectral Lehmann representation at low and high energies.18) The first EWSRs

in the high-energy limit, m
(∓)
0 , together with the zero energy EWSR, m−1, are

m−1 :

∫

∞

0
dω

1

ω
[SK̄(ω, ~q ; ρ, T ) + SK(ω, ~q ; ρ, T )] =

1

ω2
K̄
(~q ) +ΠK̄(0, ~q ; ρ, T )

(2.2)

m
(∓)
0 :

∫

∞

0
dω [SK̄(ω, ~q ; ρ, T )− SK(ω, ~q ; ρ, T )] = 0

∫

∞

0
dω ω [SK̄(ω, ~q ; ρ, T ) + SK(ω, ~q ; ρ, T )] = 1 . (2.3)

In Fig. 2 we show the sum rules for the antikaon propagator as a function
of the upper integral limit for ρ = ρ0, T = 0 MeV and q = 150 MeV/c. The
contributions from K̄ and K to the l.h.s. of the sum rule are depicted separately.
The K̄ and K spectral functions are also shown for reference in arbitrary units. Note
that saturation is progressively shifted to higher energies as we examine sum rules
involving higher order weights in energy.

The l.h.s. of the m−1 sum rule (upper panel) saturates satisfactorily a few
hundred MeV beyond the quasiparticle peak, following the behaviour of the K̄ and

K spectral functions. The m
(−)
0 sum rule shows that the areas subtended by the K

and K̄ spectral functions coincide (middle panel). The fullfilment of this sum rule
is, however, far from trivial because, although the K̄ and K spectral functions are
related by the retardation property, the actual calculation of the meson self-energies
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Fig. 2. m−1, m
(−)
0 and m

(+)
0 sum rules for the K and K̄ spectral functions at q = 150 MeV/c,

ρ = ρ0 and T = 0 MeV. The K̄ and K spectral functions are also displayed for reference.

is done exclusively for positive meson energies. Finally, the m
(+)
0 sum rule (lower

panel) saturates to one independently of the meson momentum, nuclear density or
temperature, thus posing a strong constraint on the accuracy of the calculations.
Moreover, those sum rules have been also tested satisfactorily for higher momenta
and temperature.18)

§3. K̄
∗ meson in nuclear medium

The K̄∗ self-energy in symmetric nuclear matter is obtained within the hidden
gauge formalism.17) There are two sources for the modification of the K̄∗ s-wave
self-energy in nuclear matter: a) the contribution associated to the decay mode
K̄π modified by the nuclear medium effects on the K̄ and π mesons, and b) the
contribution associated to the interaction of the K̄∗ with the nucleons in the medium,
which accounts for the direct quasi-elastic process K̄∗N → K̄∗N as well as other
absorption channels K̄∗N → ρY, ωY, φY, . . . with Y = Λ,Σ. In fact, this last term
comes from a unitarized coupled-channel process, similar to the K̄N case. Two
resonances are generated dynamically, Λ(1783) and Σ(1830), which can be identified
with the experimentally observed states JP = 1/2− Λ(1800) and the JP = 1/2−

PDG state Σ(1750), respectively.16)

The in-medium K̄∗ self-energy results from the sum of both contributions,

ΠK̄∗ = Π
(a)

K̄∗
+ Π

(b)

K̄∗
, where Π

(b)

K̄∗
is obtained similarly to K̄N by integrating the
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Fig. 3. Left: K̄∗ spectral function. Right: Transparency ratio for γA → K+K∗−A′

K̄∗N transition amplitude over the nucleon Fermi sea,

Π
(b)

K̄∗
(q0, ~q ) =

∫

d3p

(2π)3
n(~p )

[

T
(I=0)

K̄∗N
(P0, ~P ) + 3T

(I=1)

K̄∗N
(P0, ~P )

]

. (3.1)

The self-energy Π
(b)

K̄∗
(q0, ~q ) has to be determined self-consistently since it is obtained

from the in-medium amplitude TK̄∗N which contains the K̄∗N loop function and this

quantity itself is a function of ΠK̄∗ = Π
(a)

K̄∗
+Π

(b)

K̄∗
.

The K̄∗ meson spectral function, which results from the imaginary part of the
in-medium K̄∗ propagator, is displayed in l.h.s. of Fig. 3 as a function of the meson
energy q0, for zero momentum and different densities up to 1.5 ρ0. The dashed line
refers to the calculation in free space, where only the K̄π decay channel contributes,
while the other three lines correspond to fully self-consistent calculations, which also
incorporate the process K̄∗ → K̄π in the medium.

The structures present above the quasiparticle peak correspond to Λ(1783)N−1

and Σ(1830)N−1 excitations. Density effects result in a dilution and merging of those
resonant-hole states, together with a general broadening of the spectral function due
to the increase of collisional and absorption processes. Although the real part of the
optical potential is moderate, -50 MeV at ρ0, the interferences with the resonant-
hole modes push the K̄∗ quasiparticle peak to lower energies. However, including
the transitions to pseudoscalar-meson states, such as K̄∗N → K̄N , would make the
peak less prominent and difficult to disentangle from the other excitations. In any
case, what is clear from the present approach, is that the width of the K̄∗ increases
substantially in the medium, becoming at normal nuclear matter density five times
bigger than in free space.

3.1. Transparency ratio for γA → K+K∗−A′

In order to test experimentally the K̄∗ self-energy, we can study the nuclear
transparency ratio by comparing the cross sections of the photoproduction reaction
γA → K+K∗−A′ in different nuclei, and tracing them to the in medium K∗− width.
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The normalized nuclear transparency ratio is defined as

TA =
T̃A

T̃12C

,with T̃A =
σγA→K+ K∗− A′

AσγN→K+ K∗− N

. (3.2)

The quantity T̃A is the ratio of the nuclear K∗−-photoproduction cross section di-
vided by A times the same quantity on a free nucleon. It describes the loss of flux of
K∗− mesons in the nucleus and is related to the absorptive part of the K∗−-nucleus
optical potential and, thus, to the K∗− width in the nuclear medium. We evaluate
the ratio between the nuclear cross sections in heavy nuclei and a light one (12C),
TA, so that other nuclear effects not related to the absorption of the K∗− cancel.

The results for different nuclei can be seen in the r.h.s of Fig. 3, where the
transparency ratio has been plotted for two different energies in the center of mass
reference system

√
s = 3 GeV and 3.5 GeV, which are equivalent to energies of the

photon in the lab frame of 4.3 GeV and 6 GeV respectively. We observe a very
strong attenuation of the K̄∗ survival probability due to the decay or absorption
channels K̄∗ → K̄π and K̄∗N → K̄∗N, ρY, ωY, φY, . . . with increasing nuclear-mass
number A. This is due to the larger path that the K̄∗ has to follow before it leaves
the nucleus, having then more chances to decay or get absorbed.
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