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Abstract. The ρρN and ρρ∆ three-body systems have been studied within the framework of the fixed
center approximation of Faddeev equation. The ρρ interaction in isospin I = 0, spin S = 2 is strongly
attractive, and so are the Nρ, ∆ρ interactions. This leads to bound states of both ρρN and ρρ∆. We find
peaks of the modulus squared of the scattering matrix around 2227 MeV for ρρN , and 2372 MeV for ρρ∆.
Yet, the strength of the peak for the ρρN amplitude is much smaller than for ρρ∆, weakening the case
for a ρρN bound state, or a dominant ρρN component. A discussion is made on how these states can be
searched for in present programs looking for multimeson final states in different reactions.

PACS. 14.20.Gk Baryon resonances (S=C=B=0) – 21.45.-v Few-body systems

1 Introduction

While it has been always accepted that the meson baryon
cloud on top of three constituent quarks plays some role
in baryon observables, like form factors and static proper-
ties, it is becoming gradually more broadly accepted that
in some cases this meson baryon cloud can even account
for the largest part of the wave function, as far as one is
concerned with physical processes taking place at small
or intermediate energies. The use of effective theories that
provide interaction Lagrangians in terms of the observable
degrees of freedom, mesons and baryons [1], has allowed
to study systems made out of mesons and baryons, and
in some cases the interaction is so strong that one gets
bound states or resonances of that system. The systematic
use of chiral Lagrangians [1,2,3,4] and unitary techniques
in coupled channels has lead to the so called chiral uni-
tary approach which has been rather successful describing
JP = 1/2− low lying baryonic resonances [5] or the low
lying JP = 3/2− states [6,7]. Extensions have been done
for the interaction of vector mesons with baryons, both
for the octet of baryons [8] as for the decuplet [9].

Systems of two mesons and one baryon have also started
to be studied. Faddeev calculations of these systems have
found that the low lying JP = 1/2+ baryonic states, up to
the Roper which is a very complicated object [10], can be
reproduced as bound states or resonances of two mesons
and one baryon in coupled channels [11,12].

States of larger spin have also been investigated, in-
volving vector mesons and eventually the decuplet of baryons.
For instance in Ref. [13] an explanation was given for the
∆(5/2−)(1930) as a ρ∆ bound state. States of large spin

with positive parity have also been investigated as bound
states or resonances of two mesons and one baryon. For in-
stance in Ref. [14] a plausible explanation was found for a
∆(1/2+) state around 1750 MeV, which is highly problem-
atic in quark models [15], in terms of the πρ∆ system. It
is interesting to pursue this search, looking for states with
higher spin which are also difficult to obtain with quark
models, and which can be easier accommodated by means
of meson baryon components. In this paper we go along
this line and study systems made out of two ρ mesons and
a N or ∆.

In order to evaluate the amplitudes for the interaction
of these three body systems we take advantage of the fact
that the ρρ interaction in I = 0 and spin S = 2 is huge
and leads to the bound state of the f2(1270) resonance,
which decays into ππ as found in Ref. [16]. The system is
so bound and packed because of the short range of the in-
teraction that the presence of an extra baryon should not
alter very much this strongly bound ρρ system. This is
an ideal situation to apply the Fixed Center Approxima-
tion (FCA) to the Faddeev equations [17,18,19,20], which
certainly simplifies the technical work. Since we are not in-
terested in a precise determination of the energies, and un-
certainties of even 50 MeV are acceptable, the tool should
be more than sufficient to state the existence of bound
states of these systems and their approximate energy. We
are reassured in this task by recent works dealing with
analogous three hadron systems, for instance the KK̄N
system in Ref. [21], where one could compare the results
of the FCA with those of more elaborate Faddeev calcula-
tions [12] or variational calculations [22]. Also a study of
the K̄NN system in Ref. [23] leads to similar results as
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those obtained with variational methods using the same
elementary amplitude for the K̄N interaction [24].

The fact that we start with the ρρ system in S = 2 al-
lows us to get bound states of the two systems studied with
spins S = 3/2, 5/2 for the ρρN and S = 1/2, 3/2, 5/2, 7/2
for ρρ∆. Such high spin states are difficult to obtain with
the right energy in quark models, which make the struc-
ture suggested in this work a more plausible ansatz for
the nature of these states. This is the case of the two
∆(5/2+) around 1740 MeV and 2200 MeV, which have
been discussed in Ref. [14].

2 the interaction of vector meson and octet

baryon

In the Fixed Center Approximation (FCA), we shall need
the ρN interaction and the form factor of the f2(1270)
resonance. First we show the result of the ρN interac-
tion we used, which has been obtained in Ref. [8]. We use
the Bethe-Salpeter equation in coupled channels (ρN , ωN ,
φN , K∗Λ and K∗Σ), and the scattering matrix is given
in matrix form as

t = V + V Gt = [1− V G]−1V, (1)

where the kernel V and the meson-baryon two-body prop-
agator G are also given in Ref. [8]. In dimensional regu-
larization the propagator G is given by

Gi(s,mi,Mi) (2)

=
2Mi

(4π)2

{

ai(µ) + log
m2

i

µ2
+

M2
i −m2

i + s

2s
log

M2
i

m2
i

+
Qi(

√
s)√

s

[

log
(

s− (M2
i −m2

i ) + 2
√
sQi(

√
s)
)

+ log
(

s+ (M2
i −m2

i ) + 2
√
sQi(

√
s)
)

− log
(

−s+ (M2
i −m2

i ) + 2
√
sQi(

√
s)
)

− log
(

−s− (M2
i −m2

i ) + 2
√
sQi(

√
s)
)]

}

,

which is identical to that in Ref. [8], although written in
a different form. The magnitudes mi and Mi denote the
masses of the two propagating particles. In the present
case they are vector mesons and octet baryons, respec-
tively. The parameters µ and ai are fitted with the exper-
imental data of vector meson-baryon scattering. Here we
shall use the values µ = 630 MeV and ai(µ) = −2.0, which
have been found in Ref. [8] to lead to a good description of
a few vector baryon resonances (note that µ and ai(µ) are
not independent parameters and there is only one degree
of freedom).

Under the approximation of neglecting the three-momentum
of the vector meson versus its mass, as done in Ref. [8] and
followed here, the potential V is given by

Vij = − 1

4f2
π

Cij(k
0 + k

′0)ǫ · ǫ′, (3)

where fπ = 93MeV is the pion decay constant, ǫ, ǫ′ the
polarization vectors of the initial and final vector and k0,
k

′0 the energies of the initial and final vector mesons. The
coefficients Cij are given in Ref. [8] for the different transi-
tions between the coupled channels. This potential stems
from the exchange of a vector meson between the external
vectors and the baryon, involving a three vector vertex
which is provided by the local hidden gauge Lagrangian
[25].

For the ρρ system we do not need the interaction but
only the wave function. It is obtained using the interaction
of Ref. [25] with a four-vector contact term and diagrams
with vector exchange in the t and u channel involving two
three-vector vertices [16], constructing the wave function
following the approach of Ref. [26].

Since the vector mesons, particularly the ρ and the
K∗, are rather broad, one has to take into account their
widths. To do this, we follow Ref. [8] and replace the G
function appearing in Eq. (2) by

G̃(s,m,M) =
1

Nm

∫ (m+2Γm)2

(m−2Γm)2
dm̃2 × (4)

×
(

− 1

π

)

Im
1

m̃2 −m2 + imΓ̃ (m̃)
G(s, m̃,M) ,

where the normalization factor Nm is

Nm =

∫ (m+2Γm)2

(m−2Γm)2
dm̃2

(

− 1

π

)

Im
1

m̃2 −m2 + imΓ̃ (m̃)
,

(5)

and the “width function” Γ̃ (m̃) is defined to be

Γ̃ (m̃) = Γ0
m2

m̃2

q3off
q3on

Θ(m̃−m1 −m2) , (6)

where Γ0 is the decay width of the vector meson, and
m1, m2 are the masses of the two pseudoscalar mesons, to
which the vector mesons decay. For the ρ meson, they are
m1 = m2 = mπ, and

qoff =
λ1/2(m̃2,m2

π,m
2
π)

2m̃
, qon =

λ1/2(M2
ρ ,m

2
π,m

2
π)

2Mρ
,

(7)
For K∗ mesons, they are m1 = mπ and m2 = mK , and

qoff =
λ1/2(m̃2,m2

K ,m2
π)

2m̃
, qon =

λ1/2(M2
K∗ ,m2

K ,m2
π)

2MK∗

,

(8)
where λ is the Källen function.

In principle, since one has coupled channels to the ρN ,
ωN , φN , K∗Λ and K∗Σ, the three body system should
contain ρωN , ρφN etc. states, in particular the ρωN state
is close in energy to the ρρN and could play a role. The
strategy of considering all coupling channels to evaluate
the most important amplitude and then neglect the less
important channels in the three body system has been fol-
lowed in similar systems, like the K̄NN , where the K̄N
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amplitude is evaluated within the K̄N and πΣ coupling
channels, but the πΣN channels are ignored in the three
body system (beyond what is implicitly accounted for in
the K̄N amplitude) [24]. In Ref. [23] it was, however,
shown that the explicit consideration of the πΣN chan-
nel in the three body system led to minor changes, once
the effect of the πΣ channel was incorporated in the K̄N
amplitude. In the present case there are strong reasons
to neglect the ρωN , ωωN channels as explicit channels in
the three body system. Indeed, the ωN amplitude at ener-
gies close to the ρN threshold is negligible [8] and the ωω
channel couples very weakly to ρρ through the f2(1270)
resonance [27] (the ρω channel appears in I = 1 and is
only relevant at energies around 1600 MeV [27]).

3 N-f2(1270) interaction

The essence of the FCA is that from the three body system
one has reasons to consider that two particles are strongly
bound making a cluster and the third particle interacts
moderately with the components of the cluster such as
not to modify its wave function. Then one ignores the
coupled channel dynamics and considers the interaction of
the third particle with the cluster, including all multiple
scattering steps with the components of the cluster.

The formalism to evaluate the interaction for the Nρρ
system is similar to the one used in Refs. [28,29,14], and
we shall follow the same procedures and study the case
of N − (ρρ)f2(1270), in particular [14,29] where one deals
with different particles. For the Nρρ system, we will con-
sider that two of the ρ mesons are clusterized forming
an f2(1270) resonance, given the strong binding of the
f2(1270) system. This allows us to use the fixed center
approximation (FCA) to the Faddeev equations.

The FCA to Faddeev equations is depicted diagram-
matically in Fig. 1. The external particle, the nucleon
in this case, interacts successively with the other two ρ
mesons which form the ρρ cluster. The FCA equations
are written in terms of two partition functions T1 and T2,
which sum up to the total scattering matrix

T1 = t1 + t1G0T2 ,

T2 = t2 + t2G0T1 ,

TNf2(1270) = T1 + T2 , (9)

where TNf2(1270) is the total scattering amplitude we are
looking for; Ti accounts for all the diagrams starting with
the interaction of the external particle with particle i of
the compound system; ti represents the Nρ unitarized
scattering amplitude of a proton with any of the ρ in the
I = 0 ρρ system; G0 is the loop function for the particle
N propagating inside the compound system which will be
discussed later on (see Eq. (24)). The schematic represen-
tation is depicted in Fig. 1. Fig. 1a) represents the single-
scattering contribution and Fig. 1b) the double-scattering.
The contributions of Fig. 1a) and b) are the two first con-
tributions of the Faddeev equations.
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+

+

. . .++
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1 2

2

x x’

(p’)1 (p’)1

A

A

A

B

B

B

B

A

a) b)

Fig. 1. Diagrammatic representation of the fixed center ap-
proximation to the Faddeev equations for the interaction of a
particle A with a particle B made of a cluster of two particles
b1 and b2. Diagrams a) and b) represent the single and double
scattering contributions respectively. In addition to these dia-
grams there are the equivalent ones where the external particle
scatters first with the second particle in the clusters.

Since there are two ρ mesons in the present case, we
have T1 = T2, and thus we have the following equations:

T1 = t1 + t1G0T1 ,

TNf2(1270) = 2T1 . (10)

3.1 Wave function of f2(1270)

We assume that the two ρ mesons are bound forming the
f2(1270), whose wave function and the corresponding form
factor have been discussed in Refs. [28,29]. It has been
shown that the use of a separable potential in momentum
space of the type

V = vθ(Λ− q)θ(Λ − q′), (11)

where Λ is the cutoff used in the theory for the scattering
of two ρ mesons as in Ref. [16], and q, q′ are the modulus
of the momenta, leads to the same on shell prescription for
the scattering matrix as is used in the chiral unitary ap-
proach. This allows to calculate form factors consistently
with the findings of the chiral unitary approach for the
resonances which are dynamically generated [30,26]. Ac-
cording to these references, we use the following form fac-
tor

Ff2(q) =
1

N

∫

p<Λ
|p−q|<Λ

d3p × (12)

× 1

Mf2 − 2ωρ(p)

1

Mf2 − 2ωρ(p− q)
,

where the normalization factor N is

N =

∫

p<Λ

d3p
1

(Mf2 − 2ωρ(p))
2 . (13)
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Fig. 2. Form factor of the f2(1270) resonance with Λ =
875MeV .

Here Mf2 is the mass of the bound state f2(1270); ωρ(p)
is the energy of the internal ρ meson of f2(1270). In Fig. 2
we show this form factor F (q) as a function of q, where
the cutoff parameter Λ is chosen to be 875 MeV.

3.2 Single and Double Scattering Contribution

We write the amplitude t1 entering Eq. (10) in terms of

the I = 3/2 and I = 1/2 unitarized amplitudes (t
(I=3/2)
Nρ ,

t
(I=1/2)
Nρ ) . For this we consider a cluster of two ρ mesons
in isospin I = 0, the constituents of which we call mesons
1 and 2. The nucleon will be labeled with number 3. The
two ρ mesons forming the f2 are in an I = 0 state

|ρρ〉I=0 = − 1√
3
|ρ+ρ− + ρ−ρ+ + ρ0ρ0〉 (14)

=
1√
3

(

|(1,−1)〉+ |(−1, 1)〉 − |(0, 0)〉
)

where the kets in the last member of the equation indicate

the Iz components of the 1 and 2 particles, |(I(1)z , I
(2)
z )〉.

We take the nucleon in the state |(I(3)z )〉

|p〉 =
∣

∣

∣

∣

(
1

2
)

〉

. (15)

The scattering amplitude t1 in terms of the two-body
isospin amplitudes is given by

t1 + t2 = 〈N(ρρ)f2 |t(s)|N(ρρ)f2〉 (16)

=

(〈

1

2

∣

∣

∣

∣

⊗ 1√
3
(〈(+1,−1) + (−1,+1)− (0, 0)|)

)

×(t31 + t32)×
(∣

∣

∣

∣

1

2

〉

⊗ 1√
3
(|(+1,−1) + (−1,+1)− (0, 0)〉)

)

=
1

3

(

2t
I=3/2
31 (s1) + t

I=1/2
31 (s1)

)

+
1

3

(

2t
I=3/2
32 (s2) + t

I=1/2
32 (s2)

)

where the notation followed in the last term for the states
is 〈(ItotalItotalz , Ikz )|tij |〉, where Itotal means the total isospin

of the ij system and k 6= i, j (the spectator ρ). This leads,
in terms of the I = 3/2 and I = 1/2 unitarized ampli-

tudes (t
(I=3/2)
Nρ , t

(I=1/2)
Nρ ), to the following amplitude for

the single scattering contribution:

t1 =
1

3

(

2t
(I=3/2)
Nρ (s′) + t

(I=1/2)
Nρ (s′)

)

, (17)

where s′ is the invariant mass of the external particle
N and the first/second particle inside the bound state
f2(1270):

s′ = s1 = s2 =
1

2

(

s+ 2m2
ρ +M2

N −M2
f2

)

. (18)

Now the S-matrix for the single scattering term is
given by

S
(1)
1 = −it1

1

V2

1
√

2ωp1

1
√

2ωp′

1

√

MN

EN (k)

√

MN

EN (k′)
×

×(2π)4 δ(k +Kf2 − k′ −K ′
f2), (19)

where V is the volume of the box where we normalize
the states to unity. The superindex of S indicates single
scattering and the subindex that the interaction occurs
on particle 1 of the cluster. The final expression for the
S-matrix for the double scattering process is

S
(2)
1 = −i

√

MN

EN (k)

√

MN

EN (k′)

1
√

2ωp1

1
√

2ωp′

1

1
√

2ωp2

1
√

2ωp′

2

×
∫

d3q

(2π)3
Ff2(q)

MN

EN (q)
· 1

q0 − EN (q) + iǫ
t1t1

×(2π)4δ(k +Kf2 − k′ −K ′
f2)

1

V2
. (20)

The subindex indicates that the first interaction is in par-
ticle 1 of the cluster. In Eq. (20), we have also taken into
account that (k + k′)/2 = 0 on average.

3.3 General form of the S-matrix

The general form of S-matrix for the nucleon-f2(1270)
interaction can be written as

S1 = δfi − iTNf2(s)
1

V2

√

MN

E(k)

√

MN

E(k′)

1
√

2ωf2

1
√

2ωf2′

×(2π)4 δ(k +Kf2 − k′ −K ′
f2), (21)

where i and f indicate the initial and final states, respec-
tively. By comparing the summation of S(1) and S(2) with
the scattering matrix S in Eq. (21), the N − f2(1270) am-
plitude can be obtained as

TNf2(s) = 2 ·
√

2ωf2
√

2ωρ

√

2ωf ′

2
√

2ωρ′

(

t1 +
1

√

2ωρ

1
√

2ωρ′

t1

×
∫

d3q

(2π)3
Ff2(q)

MN

EN (q 2)
· 1

q0 − EN (q 2) + iǫ
t1

)

= 2 (t′1 + t′1G0(s)t
′
1) , (22)
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where

t′1 = t1

√

2ωf2(1270)

2ωρ

√

2ω′
f2(1270)

2ω′
ρ

≈ t1
Mf2

mρ
,

G0(s) =
1

√

2ωf2(1270)2ω
′
f2(1270)

∫

d3q

(2π)3
(23)

×Ff2(1270)(q)
MN

EN (q)

1

q0 − EN (q) + iǫ

≈ 1

2Mf2

∫

d3q

(2π)3
Ff2(1270)(q)

MN

EN (q)

1

q0 − EN (q) + iǫ
,

with EN (q) =
√

q 2 +M2
N . In the center of mass system

of the nucleon and the bound state of f2(1270), the energy
q0 carried by the nucleon is

q0 =
s+M2

N −M2
f2

2
√
s

.

If the whole series of the expansion of TNf2 in the fixed
center approximation is taken into account, the scattering
amplitude TNf2 can be deduced from Eq. (10) and we have

TNf2(s) =
2t′1

1−G0t′1
=

2

t′−1(s′)1 −G0(s)
. (24)

4 Consideration of the f2(1270) width

The consideration of the ρρ → ππ decay in L = 2 in
Ref. [16] gave rise to a width of the f2(1270), which has not
been taken into account in our previous analysis. To add
its contribution, we modify the scattering matrix TNf2(s)
to

TNf2(s) =
1

Nf2

∫ (mf2
+2Γf2

)2

(mf2
−2Γf2

)2
dm̃2 (25)

×
(

− 1

π

)

Im

[

1

m̃2 −m2
f2

+ im̃Γ1(m̃)

]

TNf2(s, m̃),

where the normalization factor Nf2 is

Nf2 =

∫ (mf2
+2Γf2

)2

(mf2
−2Γf2

)2
dm̃2 (26)

×
(

− 1

π

)

Im

[

1

m̃2 −m2
f2

+ im̃Γ1(m̃)

]

,

and Γ1(m̃) is proportional to the decay width of the f2,
Γf2(1270) = 157 MeV,

Γ1(m̃) = Γf2(1270)

(λ1/2(m̃2,m2
1,m

2
2)2mf2

λ1/2(m2
f2
,m2

1,m
2
2)2m̃

)5

, (27)

where the exponent in the momenta is now 2L+ 1 = 5.

5 Extension to the case of the ∆ρρ system

We can follow the same procedures to study the case of
the ∆ρρ system. There are just a few points we need to
pay attention to:

1. We need now the ρ∆ interaction. This one is obtained
in a similar way to the ρN and is done in Ref. [9].
There the coupled channels ∆ρ and Σ∗K∗ are taken
into account, but the results are basically the same as
those obtained using the single channel∆ρ in Ref. [13].
Once again the interaction of ∆ρ → ∆ρ stems from
ρ exchange between the two external ρ and the ∆,
involving the three vector vertex of the local hidden
gauge approach [25].

2. We need to take into account the decay widths of de-
cuplet baryons. This is similar to what we have done
in Eq. (4). To do this, we follow Ref. [8], and replace

the G̃-function appearing in Eq. (4) by ˜̃G:

˜̃G(s,m,M) =
1

NM

∫ M+2ΓM

M−2ΓM

dM̃ (28)

×
(

− 1

π

)

Im
1

M̃ −M + i Γ̃
′(M̃)
2

G̃(s,m, M̃) ,

where the normalization factor NM is

NM =

∫ M+2ΓM

M−2ΓM

dM̃

(

− 1

π

)

Im
1

M̃ −M + i Γ̃
′(M̃)
2

,

(29)

and the “width function” Γ̃ ′(M̃) is defined to be

Γ̃ ′(M̃) = Γ0

(λ1/2(M̃2,M2
1 ,M

2
2 )2M

λ1/2(M2,M2
1 ,M

2
2 )2M̃

)3

Θ(M̃−M1−M2) ,

(30)
where Γ0 is the decay width of the decuplet baryon;M1

and M2 are the masses of the octet baryon and pseu-
doscalar meson to which the decuplet baryon decays.
Take the ∆ baryon as an example, they are M1 = MN

and M2 = mπ.
3. The amplitude for the single-scattering contribution is:

t1 =
1

3

(

3/2t
I=5/2
∆ρ + t

I=3/2
∆ρ + 1/2t

I=1/2
∆ρ

)

. (31)

Besides this, we also need to change the relevant masses,
etc. But all the procedures are similar and straightforward,
and so we shall not discuss it further.

6 Spin of the states

As to the spin of systems, it is easy to determine. The clus-
ter of ρρ is the f2(1270) which has J = S = 2. Then the
nucleon interacts with the ρ meson. At low energies, where
the three-momentum of the ρ meson can be neglected ver-
sus its mass, the ρN → ρN amplitude has the form Aǫ ·ǫ′,
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Fig. 3. Modulus squared of the unitarized N − ρ − ρ ampli-
tude with Λ = 875 MeV. The solid line denotes the case with
the f2(1270) decay width, and the dashed line is for the case
without the f2(1270) decay width.

with ǫ, ǫ′ the initial and final ρ polarization vectors [8].
With no extra nucleon spin dependence and L = 0, this in-
teraction leads to degenerate ρN states with spin 1/2 and
3/2. For the case of the ρ∆ → ρ∆ interaction, the same ar-
gument holds, but now the degenerate ρ∆ states will have
spins 1/2, 3/2 and 5/2. If we start from ρρ in S = 2, the fi-
nal spin states of the three body system, which will appear
degenerate in the approach will have JP = 3/2+, 5/2+ for
the ρρN and JP = 1/2+, 3/2+, 5/2+, 7/2+ for the ρρ∆.
The largest spin available would in principle be the most
difficult to accommodate in quark models, and be better
candidates for molecular states.

7 Results

7.1 Nρρ system

In Fig. 3, we show the results of |T |2 for the Nρρ system
with Λ = 875 MeV, which is suited to obtain the f2(1270)
resonance according to the work of Ref. [16]. We observe
a peak around 2227 MeV with a width of 100 MeV. The
peak does not have a standard Breit-Wigner form. The
sharp peak could be indicative of a cusp effect but the
threshold for Nf2(1270) is at 2210 MeV, about 17 MeV
below the peak in Fig. 3. In fact, a small cusp peak at
threshold is also visible in the figure at this energy. On the
other hand, when the convolution for the mass distribution
of the f2(1270) due to its width is considered, the peak
of the cusp disappears, but a peak in |T |2, slightly shifted
to higher energies, still remains with a similar or slightly
larger width.

The nonstandard shape of the peak, but particularly
the small strength of |T |2 compared to the ρρ∆ case (see
Fig. 4), should warn us about identification of this peak
with a resonance. With such a small strength, other com-
ponents of the wave function as ρK∗Λ, etc., could play
some role. We can only take this signal as a weak indica-
tion of a possible state around this energy in which the
ρρN component might play a relevant role.
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Fig. 4. Modulus squared of the unitarized ∆ − ρ − ρ ampli-
tude with Λ = 875 MeV. The solid line denotes the case with
the f2(1270) decay width, and the dashed line is for the case
without the f2(1270) decay width.
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∆

ρ

ρ
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a

d

c

Fig. 5. Diagrammatic representation of the formation of a
resonance R made of a bound ∆ρρ and decaying into particles
c and d.

7.2 ∆ρρ system

In Fig. 4, we show the results of |T |2 for the ∆ρρ system
with Λ = 875 MeV. We observe a peak around 2372 MeV.
Two features can be observed in Fig. 4. The peak has now
an approximate Breit-Wigner shape and the strength of
|T |2 at the peak is about 200 times bigger than in Fig. 3
for the Nρρ state, although the peak is now narrower than
in Fig. 3. Yet, the integrated strength of the peak is still
about 40 times bigger. The large value of T in the ∆ρρ
case indicates that in a production of the resonance in
one reaction, the magnitude of the resonance excitation
would be large through the consideration of the interme-
diate ∆ρρ state and its coupling to the resonance (see
Fig. 5). The consideration of the width of the f2(1270) re-
duces the strength of the peak and increases the width of
the resonance. The width is still relatively small, about 25
MeV. In our approach, once the convolution for the width
of the f2(1270) is done, the main decay channel would
be ∆ππ. This is interesting to know from the experimen-
tal point of view. This kind of information is useful since
there is an increasing interest in looking at multimeson
final states from the experimental point of view, and de-
voted programs are carried out at Hall D of Jefferson Lab
[31], at COMPASS [32] and at LEPS in Spring8/Osaka,
where ∆ρ final states are being investigated [33].
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8 Discussion and conclusions

The region of energies around 2300-2400 MeV is poorly
known concerning N and ∆ resonances. Although several
resonances are compiled in the PDG [34], it seems clear
that there is room for many more. Concerning the N∗ res-
onance obtained with 3/2+, 5/2+, there is no candidate
in the states tabulated in the PDG. Our support for this
state was also weak. On the other hand, the ∆ state ob-
tained with 1/2+, 3/2+, 5/2+, 7/2+ around 2372 MeV
could find a counterpart in the ∆(2390)(7/2+) [34], which
has been observed in two independent experiments [35]
with a mass of 2350 ± 100 MeV and in Ref. [36] with a
mass of 2425± 60 MeV. It is also worth mentioning that
this state is not seen in the latest GWU analysis [37].

In any case the state claimed in both [35,36] has a
width of around 300 ± 100 MeV, which seems not com-
patible with the narrow width of about 25 MeV of the
state that we obtain. It is also worth recalling that masses
of N∗ and ∆∗ resonances in this energy range and with
these quantum numbers can be reached with quark mod-
els [38], hence maybe the narrow width is indicative of
another kind of state, mostly made from a bound ∆ρρ as
we have found. The two experiments done to claim the
∆(2390)(7/2+) are done with analysis of the πN → πN
reaction. As we have mentioned, the πN is not the ex-
pected decay channel of the resonance found, but mostly
∆ππ. A different kind of analysis would have to be done
to eventually find this resonance. The advent of programs
looking for multimeson final states [31,32,33] offers unique
opportunities to look for these states. The theoretical cal-
culations, indicating the most favorable decay channels,
can serve as a guideline for these experiments.
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