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Abstract We report on four Σ’s and three Λ’s, in the 1500 - 1800 MeV region, as two

meson - one baryon S-wave (1/2)+ resonances found by solving the Faddeev equations

in the coupled channel approach, which can be associated to the existing S = -1,

JP = 1/2+ low lying baryon resonances. On the other hand we also report on a new,

hidden strangeness N∗ state, mostly made of KK̄N , with mass around 1920 MeV,

which we think could be responsible for the peak seen in the γp → K+Λ around this

energy. Finally we address a very novel topic in which we show how few body systems

of several ρ mesons can be produced, with their spins aligned up to J=6, and how

these states found theoretically can be associated to several known mesons with spins

J=2,3,4,5,6.

Keywords few body systems · exotic systems

1 Introduction

Our understanding of baryon resonances is undergoing continuous change. From the

classical picture of the baryons made out of three constituent quarks, passing through
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attempts to represent some of them in terms of pentaquarks, to the more recent de-

scription of some of them in terms of meson baryon molecules. In this sense, the low

lying JP = 1/2− resonances, Λ(1405), Λ(1670) . . ., can be represented as dynamically

generated states from the meson baryon interaction and are relatively well understood

within the unitary chiral models [1,2,3,4,5,6,7,8]. The low lying JP = 1/2+ domain

remains far less understood, both experimentally and theoretically. For instance, quark

models seem to face difficulties in reproducing properties of the resonances in this sec-

tor [9]. The neat reproduction of the low lying 1/2− states in the S-wave meson-baryon

interaction, using chiral dynamics, suggests that the addition of a pseudoscalar meson

in S-wave could lead to an important component of the structure of the 1/2+ res-

onances. Chiral dynamics has been used earlier in the context of the three nucleon

problems, e.g., in [10]. We present in this talk the study done in [11] of two meson -

one baryon systems where chiral dynamics is applied to solve the Faddeev equations.

As shall be described below, our calculations for the total S = -1 reveal peaks in the

πK̄N system and its coupled channels which we identify with the resonances Σ(1770),

Σ(1660), Σ(1620), Σ(1560), Λ(1810) and Λ(1600).

2 The formalism for three body systems

We start by taking all combinations of a pseudoscalar meson of the 0− SU(3) octet

and a baryon of the 1/2+ octet which couple to S = −1 with any charge. For

some quantum numbers, the interaction of this two body system is strongly attrac-

tive and responsible for the generation of the two Λ(1405) states [5] and other S

= -1 resonances. We shall assume that this two body system formed by K̄N and

coupled channels remains highly correlated when a third particle is added, in the

present case a pion. Altogether, we get twenty-two coupled channels for the net charge

zero configuration: π0K−p, π0K̄0n, π0π0Σ0, π0π+Σ−, π0π−Σ+, π0π0Λ, π0ηΣ0,

π0ηΛ, π0K+Ξ−, π0K0Ξ0, π+K−n, π+π0Σ−, π+π−Σ0, π+π−Λ, π+ηΣ−, π+K0Ξ−,

π−K̄0p, π−π0Σ+, π−π+Σ0, π−π+Λ, π−ηΣ+, π−K+Ξ0. We assume the correlated

pair to have a certain invariant mass,
√
s23, and the three body T -matrix is evaluated

as a function of this mass and the total energy of the three body system. At the end we

look for the value of |T |2 as a function of these two variables and find peaks at certain

values of these two variables, which indicate the mass of the resonances and how a pair

of particles is correlated.

The input required to solve the Faddeev equations, i.e., the two body t-matrices

for the meson-meson and meson-baryon interactions has been calculated by taking

the lowest order chiral Lagrangian following [12,2,13,14] and using the dimensional

regularization of the loops as done in [3,13], where a good reproduction of scatter-

ing amplitudes and resonance properties was found. Instead, a cut off could also be

used to regularize the loops as shown in [2,3]. Improvements introducing higher order

Lagrangians have been done recently, including a theoretical error analysis [15] which

allows one to see that the results with the lowest order Lagrangian fit perfectly within

the theoretical allowed bands.

A shared feature of the recent unitary chiral dynamical calculations is the on-shell

factorization of the potential and the t-matrix in the Bethe-Salpeter equation [12,2,3,

4,6,7,8], which is justified by the use of the N/D method and dispersion relations [16,

3]. Alternatively, one can see that the off-shell contributions can be reabsorbed into
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renormalization of the lower order terms [12,2]. We develop here a similar approach

for the Faddeev equations.

The full three-body T -matrix can be written as a sum of the auxiliary T -matrices

T 1, T 2 and T 3 [17]

T = T 1 + T 2 + T 3 (1)

where T i, i = 1, 2, 3, are the normal Faddeev partitions, which include all the pos-

sible interactions contributing to the three-body T -matrix with the particle i being a

spectator in the last interaction. The Faddeev partitions satisfy the equations

T i = tiδ3(k ′

i − ki) + tigijT j + tigikT k, (2)

where ki (k
′

i ) is the initial (final) momentum of the ith particle in the global center of

mass system, ti is the two-body t-matrix for the interaction of the pair (jk) and gij is

the three-body propagator or Green’s function, with j 6= k 6= i = 1, 2, 3

The first two terms of the diagrammatic expansion of the Faddeev equations, for the

case i=1, are represented diagrammatically in Fig.1, where the t-matrices are required
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Fig. 1 Diagrammatic representation of the terms (a) t1g12t2 (b) t1g(13)t3.

to be off-shell. However, the chiral amplitudes, which we use, can be split into an “on-

shell” part (obtained when the only propagating particle of the diagrams, labeled with

kint in Fig.1, is placed on-shell, meaning that q2 is replaced by m2 in the amplitudes),

which depends only on the c.m energy of the interacting pair, and an off-shell part

proportional to the inverse of the propagator of the off-shell particle. This term would

cancel the particle propagator, (q2 −m2), for example that of the 3rd particle in the

Fig.1a) resulting into a three body force (Fig.2a). In addition to this, three body forces

also stem directly from the chiral Lagrangians [18] (Fig.2b).

Fig. 2 The origin of the three body forces (a) due to cancellation of the propagator in Fig.1(a)
with the off-shell part of the chiral amplitude, (b) at the tree level.

We find that the sum of the off-shell parts of all the six tigijtj terms, together with

the contribution from Fig.2(b) cancels exactly when the SU(3) limit is considered.

Details of the analytical proof can be seen in the appendices of [19,20]. Hence, only the

on-shell part of the two body (chiral) t-matrices is needed in the evaluations. This is one

of the important findings of these works because one of the standing problems of the

Faddeev equations is that the use of different potentials which give rise to the same on
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shell scattering amplitudes give rise to different results when used to study three body

system with the Faddeev equations. The different, unphysical, off shell amplitudes of

the different potentials are responsible for it. The use of chiral dynamics in the context

of the Faddeev equations has then served to show that the results do not depend on

these unphysical amplitudes and only the on shell amplitudes are needed as input. In

this sense, since these amplitudes can be obtained from experiment, it is suggested

in [21] to use these experimental amplitudes, and sensible results are obtained in the

study of the ππN system and coupled channels.

The first term with a non trivial structure, from the point of view of the on-shell

factorization of the t-matrices in the Faddeev equations, is the one involving three

successive pair interactions, where a loop function of three particle propagators appears

for the first time. We show the diagrams with such a structure for the T 1 partition in

Fig.3(a-d).
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Fig. 3 Different diagrams involving three pair interactions corresponding to the T 1 partition.

The strategy followed in the former works is that the terms with two, three, and four

interactions are evaluated exactly. Then it is observed that the ratio of the four to three

body interaction terms is about the same as that of the three body to two body. Once

this is realized, the coupled integral equations are converted into algebraic equations,

which renders the technical work feasible in spite of the many coupled channels used.

There are two independent variables in the formalism
√
s,

√
s23, as a function of

which we plot the squared T ∗

R-matrix (T ∗

R =
∑

ij

(T ij
R

− tigijtj ) ), where T ij
R

sum all

terms with the first two interactions having i, j as spectators.

We now report on the four isospin I=1 states found in our study. In Fig.4, we

show a plot of the squared T ∗

R-matrix and its projection, for ππΣ → ππΣ in the total

isospin I = 1 configuration obtained by keeping the two pions in isospin Iπ = 2. We

see two peaks; one at
√
s = 1656 MeV with the full width at half maximum ∼ 30 MeV

and another at
√
s = 1630 MeV with Γ = 39 MeV. We identify the peak at

√
s =

1656 MeV with the well established Σ(1660 − i100/2) [22] as a resonance in the ππΣ

system, which is a new finding.

A detailed description of all the states that appear in this sector can be seen in

[11]. Here we summarize the results in Table 1.

In the S=0 sector we also find several resonances, which are summarized in Table

2. Since the talk is mostly about strangeness, we only want to pay attention to the N∗
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Fig. 4 Two Σ resonances in the ππΣ amplitude in I = 1, Iπ = 2 configuration.

Γ (PDG) Peak position Γ (this work)
(MeV) (this work, MeV) (MeV)

Isospin=1
Σ(1560) 10-100 1590 70
Σ(1620) 10-100 1630 39
Σ(1660) 40-200 1656 30
Σ(1770) 60-100 1790 24
Isospin=0
Λ(1600) 50-250 1568,1700 60-136
Λ(1810) 50-250 1740 20

Table 1 Σ and Λ states obtained from the interaction of two mesons and one baryon.

I(JP ) Theory PDG data
channels mass width name mass width

(MeV) (MeV) (MeV) (MeV)
1/2(1/2+) only ππN 1704 375 N∗(1710) 1680-1740 90-500

ππN , πKΣ, πKΛ, πηN ∼ no change ∼ no change
1/2(1/2+) only ππN 2100 250 N∗(2100) 1885-2270 80-400

ππN , πKΣ, πKΛ, πηN 2080 54
3/2(1/2+) ππN , πKΣ, πKΛ, πηN 2126 42 ∆(1910) 1870-2152 190-270
1/2(1/2+) Nππ, Nπη, NKK̄ 1924 20 N∗(?) ? ?

Table 2 N∗ and ∆ states obtained from the interaction of two mesons and one baryon.

state around 1920 MeV, which is mostly NKK̄. This state was first predicted in [23]

using variational methods and corroborated in [21] using coupled channels Faddeev

equations. As in [23], we find that the KK̄ pair is built mostly around the f0(980), but

it also has a similar strength around the a0(980), both of which appear basically as a

KK̄ molecule in the chiral unitary approach.

This state is very interesting and it has been suggested in [24] that it could be

responsible for the peak around 1920 MeV of the γp → K+Λ reaction [25,26,27]. It

was suggested that the spin of the resonance could be found performing polarization

measurements which are the state of the art presently.

In case the JP = 1/2+ assignment was correct, an easy test can be carried out

to rule out the 3/2+ state. The experiment consists in performing the γp → K+Λ
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reaction with a circularly polarized photon with helicity 1, thus Sz = 1 with the z-axis

defined along the photon direction, together with a polarized proton of the target with

Sz = 1/2 along the same direction. With this set up, the total spin has Stot
z = 3/2.

Since Lz is zero with that choice of the z direction, then Jtot
z = 3/2 and J must be

equal or bigger than 3/2. Should the resonant state be JP = 1/2+, the peak signal

would disappear for this polarization selection, while it would remain if the resonance

was a JP = 3/2+ state. Thus, the disappearance of the signal with this polarization

set up would rule out the JP = 3/2+ assignment.

Such type of polarization set ups have been done and are common in facilities like

ELSA at Bonn, MAMI B at Mainz or CEBAF at Jefferson Lab, where spin-3/2 and 1/2

cross sections, which play a crucial role in the GDH sum rule, see e.g. Ref. [28], were

measured in the two-pion photoproduction [29,30] reaction. The theoretical analysis of

[31] shows indeed that the separation of the amplitudes in the spin channels provides

information on the resonances excited in the reaction.

In [24] it was also shown that the presence of this resonance would lead to an

enhanced KK̄ invariant mass distribution close to the KK̄ threshold, and also it would

produce an enhanced cross section in the γp → K+K−p close to threshold of the

reaction. These features are now being tested at Spring8/Osaka [32].

3 Multirho states

To finalize this selection of topics, we would like to address a recent study that finds

some unexpected few body systems. These are states with several bound ρ mesons, up

to six. In the PDG [22] there are intriguing mesons with large spin, of the ρ and f0
type, whose quantum numbers match systems made with 3, 4, 5 and 6 ρ mesons with

their spins aligned. These are the ρ3(1690) (3
−−), f4(2050) (4

++), ρ5(2350) (5
−−) and

f6(2510) (6++) resonances. The idea of having these states as multirho states stems

from the findings of [33] where the ρρ interaction was studied using a unitary coupled

channel approach with the input from the hidden gauge Lagrangians [34,35,36,37].

In the work [33] it was found that the interaction of two ρ(770) mesons in isospin

I = 0 and spin S = 2 was strong enough to bind the ρρ system into the f2(1270)

(JPC = 2++) resonance. The nature of this resonance as a ρ(770)ρ(770) molecule

has passed the tests of radiative decay into γγ [38], the decay of J/Ψ into ω(φ) and

f2(1270) (together with other resonances generated in [39]) [40], and J/Ψ into γ and

f2(1270) (and the other resonances of [39]) [41].

The realization of this strong attraction in J=2, suggest that other ρ mesons could

cluster, always with their spin aligned such that all pairs would have J=2. This is

what has been done in [42]. One studies the interaction of a ρ with the f2(1270), using

the fixed center approximation to the Faddeev equations, and the scattering matrix

leads to a clear bump that we associate to the ρ3(1690) (3
−−). After this, one studies

the interaction of two f2(1270), where the input is the scattering amplitude of ρ with

the f2(1270), studied before. A peak is also found in the scattering matrix, which we

associate to the f4(2050) (4++). Further iterations including every time one extra ρ

allow us to find also peaks in amplitudes that we associate to the ρ5(2350) (5
−−) and

f6(2510) (6++) states. The agreement found with experiment, at the cost of no free

parameters, is excellent, as one can see in Fig. 5.

It would be interesting to apply these ideas to other systems where one of the ρ

mesons is replaced by a K∗ in order to see if one obtains the several high spin K∗
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Fig. 5 Masses of the dynamically generated states as a function of the number of constituent
ρ(770) mesons, nρ. Only single scattering contribution (dotted line); full model (solid line);
experimental values from the PDG[22], (circles).

stated of [22]. Work along this direction has just appeared [43] and the predictions are

equally successful.

4 Summary

We conclude the discussion by emphasizing that all the low lying 1/2+ Σ and Λ

resonances in the PDG [22], up to the 1800 MeV energy region, get dynamically

generated as two meson-one baryon states in these calculations. In addition, we predict

the quantum numbers of the Σ(1560) and also find evidence for a 1/2+ Σ resonance

at ∼ 1620 MeV.

On the other hand we also reported on a hidden strangeness three body system,

which leads to a new N∗ state with mass around 1920 MeV and which we think is

responsible for the peak seen in the γp → K+Λ reaction. We suggest to perform

experiments on polarization and also the study of the γp → K+K−p reaction close to

threshold in order to test the predictions tied to the existence of this resonance below

the K+K−p threshold.

Finally we reported on very novel few body systems, states made of many ρ mesons

with their spins aligned. We could find that these states are bound, although they have

a width from decay to pions. Yet, up to J=6, the widths are still on the measurable

range such that we could associate the states found to several existing mesons with

spin up to J=6.

As a general remark, the combination of the chiral unitary techniques with few

body systems is proving to be a very fruitful field to which we can only encourage our

colleagues to jump to.
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