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Abstract

We study the η′N interaction within a chiral unitary approach which includes πN , ηN and related
pseudoscalar meson-baryon coupled channels. Since the SU(3) singlet does not contribute to the standard
interaction and the η′ is mostly a singlet, the resulting scattering amplitude is very small and inconsistent
with experimental estimations of the η′N scattering length. The additional consideration of vector meson-
baryon states into the coupled channel scheme, via normal and anomalous couplings of pseudoscalar to
vector mesons, enhances substantially the η′N amplitude. We also exploit the freedom of adding to the
Lagrangian a new term, allowed by the symmetries of QCD, which couples baryons to the singlet meson of
SU(3). Adjusting the unknown strength to the η′N scattering length, we obtain predictions for the elastic
η′N → η′N and inelastic η′N → ηN , πN , KΛ, KΣ cross sections at low η′ energies, and discuss their
significance.

PACS numbers: 11.15.Tk; 11.30.Rd; 12.38.Lg; 13.75.Gx; 14.40.Cs
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I. INTRODUCTION

The η′ meson has interesting properties associated to the underlying QCD dynamics of hadrons,
in particular to the UA(1) axial vector anomaly [1–4]. Being close to a singlet of SU(3), its
interaction with nucleons is supposed to be weak compared for instance with the case of its partner,
the η meson. Yet, there are no theoretical calculations of the η′N interaction and only poor
estimations of the value of the η′N scattering length. These estimations come from the study of
the pp → ppη′ cross section near threshold at COSY [5, 6]. By looking at the shape of this cross
section it was concluded in [5] that |Re aη′N | < 0.8 fm. A more refined analysis of the reaction,
comparing the cross section with that of the pp → ppπ0 reaction to minimize the pp final state
interaction effects, concluded that the scattering length should be of the order of magnitude of
that of the πN and hence |aη′N | ∼ 0.1 fm [6]. This indicates a rather weak η′N interaction, much
weaker than suggested in [7] and [8] based on earlier data that were much improved in [5].

Even if only the approximate size of the scattering length is known, it is interesting to see what
one can obtain in a theoretical approach. Also, the η′N interaction should have, even if weak, some
repercussion in η′ production processes where one has a η′N pair in the final state, such as in the
γp → η′p or pp → ppη′ reactions. The latter process has provided an experimental estimation of the
η′N scattering length [5, 6], as mentioned above, while the γp → η′p reaction has been investigated
experimentally [9–13] and theoretically [14–21]. The theoretical approaches to η′ photoproduction
do not consider explicitly the η′N final state interaction, though it is implicitly assumed through
the coupling of the η′N pair to some resonances. Yet, this is short of a refined unitary approach
in coupled channels which would consider the η′N state together with its coupled meson-baryon
states in the final system, rendering the problem into a many channel problem. The resonant
models for the γp → η′p reactions do not provide information on the η′N scattering amplitude nor
on how it could be tested experimentally.

The aim of the present paper is to study explicitly the η′N interaction at low scattering energies.
For this purpose, we have employed the chiral unitary approach to meson baryon interactions which
has shown a remarkable success in the study of this type of processes [22–32]. A necessary ingredient
in the calculation is the mixing of the SU(3) singlet (η1) and octet (η8) states present in the physical
η and η′ mesons. The amount of singlet and octet components of the two particles is a problem
that has attracted much attention [33–40], and there are good recent determinations of this mixing
angle.

We start our study by considering, in the coupled channel scheme, the basis of pseudoscalar
meson-baryon states (PB) containing πN , ηN , η′N , KΛ and KΣ. The resulting η′N scattering
amplitude is very small since, given the structure of the standard Lagrangian employed, it is
obtained from the octet component of the η′ meson. However, the energy region around the
η′N threshold lies very close to the position of a resonance with the quantum numbers of η′N ,
generated dynamically from the vector meson-baryon (V B) interaction in s-wave [41]. This state
will certainly have an influence on the η′N interaction, worth to be explored. For this purpose,
we have implemented in our formalism the relevant V B channels that generate this resonance,
allowing them to couple to the PB components. This produces a substantial enhancement of the
η′N amplitude, yet insufficient to account for the empirical η′N scattering length. Finally, we note
that the symmetries of QCD also allow for a term in the Lagrangian coupling the baryons to the
singlet component of the pseudoscalar meson [42, 43]. We exploit this freedom and, adjusting the
unknown strength of this new term to the empirical value of the η′N scattering length, we obtain
the elastic η′N cross section and transitions of η′N to the different coupled channels. We find that,
while the elastic η′N cross section is very sensitive to the free parameter of the theory, the inelastic
cross sections are rather stable and constitute a genuine prediction of the model.
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II. THE η
′ N INTERACTION FROM A COUPLED PSEUDOSCALAR-BARYON BASIS.

We obtain the η′N interaction using the chiral unitary approach in coupled channels of [22–
32]. We essentially follow here the procedure of [23], updated in [27] to energies not so close to
threshold, and, particularly, the model of Ref. [28], which studies the interaction of πN, ηN and
related coupled channels. The meson-baryon scattering dynamics is taken from the lowest order
chiral Lagrangian reduced to the two meson fields needed in the process,

L(B)
1 =< B̄iγµ

1

4f2
[(Φ∂µΦ− ∂µΦΦ)B −B(Φ∂µΦ− ∂µΦΦ)] > (1)

where f is the pion decay constant and Φ, B are the SU(3) matrices for the mesons and the baryons:

Φ =







1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8






, (2)

and

B =







1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ






. (3)

The field η8 in Eq. (2) is a member of the pseudoscalar Goldstone boson octet. In order to deal
with the physical η and η′ mesons, we have to introduce the singlet η1, which is easily accomplished
by adding the diagonal matrix, diag(η1/

√
3, η1/

√
3, η1/

√
3), to the matrix Φ of Eq. (2).

The physical η, η′ meson fields are related to the SU(3) singlet and octet fields, η1 and η8, via
the relations:

η = cos θP η8 − sin θP η1

η′ = sin θP η8 + cos θP η1 , (4)

where θP is the η1 − η8 mixing angle, for which we take the value θP = −14.34◦ reported in
[40], which was determined phenomenologically from fits to the world data. This corresponds to a
mixing angle of strange to nonstrange quarks of 40.4◦. The former equation establishes the η as
being largely an octet while the η′ is mostly a singlet.

Note that the particular structure of the standard Lagrangian of Eq. (1), Φ∂µΦ− ∂µΦΦ, makes
the contribution of the singlet vanish. In other words, within this chiral formalism, a pure singlet
η′ state would not interact with the nucleons. This is at the root of why, as we will see, the η′N
interaction is so weak, since the magnitude of this interaction is tied to the small octet content of
the η′.

From Eq. (1) we obtain a kernel, or transition potential V , in s-wave:

Vij = −Cij
1

4fifj
(2
√
s−Mi −Mj)

(

Mi + Ei

2Mi

)1/2 (Mj +Ej

2Mj

)1/2

, (5)

where
√
s is the total energy in the center-of-mass frame and Mi, Ei (Mj , Ej) stand for the mass,

energy of the incoming (outgoing) baryon. The coupled isospin I = 1/2 channels of the present
problem are πN , ηN , η′N , KΛ and KΣ. The corresponding SU(3) coupling coefficients Cij

are evaluated in [28]. However, since only the octet component of the fields participates in the
interaction, the couplings involving η or η′ mesons are those of the η8 but multiplied by cos θP for
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each η state and by sin θP for each η′ state in the channels studied. As in Ref. [28], we take different
weak decay constants for each meson involved in the transition. We use the values fπ = 93 MeV,
fK = 1.22fπ and fη = 1.3fπ taken from chiral perturbation theory [44]. With the potential of
Eq. (5) we solve the Bethe-Salpeter equation in its on shell factorized form [24, 29, 30]:

T = [1− V G]−1 V (6)

with V the matrix of Eq. (5) evaluated on shell, and G the loop function for the intermediate meson
baryon propagators. Following [24], we employ dimensional regularization and replace the divergent
pieces by subtraction constants al(µ), which depend on the chosen energy scale µ, obtaining:

Gl = i2Ml

∫

d4q

(2π)4
1

(P − q)2 −M2
l + iǫ

1

q2 −m2
l + iǫ

=
2Ml

16π2

{

al(µ) + ln
M2

l

µ2
+

m2
l −M2

l + s

2s
ln

m2
l

M2
l

+

+
q̄l√
s

[

ln(s− (M2
l −m2

l ) + 2q̄l
√
s) + ln(s+ (M2

l −m2
l ) + 2q̄l

√
s)

− ln(−s+ (M2
l −m2

l ) + 2q̄l
√
s)− ln(−s− (M2

l −m2
l ) + 2q̄l

√
s)
]

}

, (7)

where q̄l is the momentum of the meson and baryon of channel l in the c.m. frame. Usually, given
a value of µ, the subtraction constants are left as free parameters that are fitted to reproduce the
available scattering observables in a certain energy region. The simplest model used in Ref. [28] for
studying πN scattering and related channels in the strangeness S = 0 sector adopted the following
values:

µ = 1200 MeV

aπN = 2.0, aη8N = 0.2, aKΛ = 1.6, aKΣ = −2.8 . (8)

This set of parameters leads to a qualitative agreement with the s-wave amplitudes in the energy
range from threshold to 1600 MeV. In particular, it generates the N(1535) S11 resonance, which is
common to all the unitary approaches [22, 31, 32]. Although the model of Ref. [28] was improved
with the inclusion of the ππN channel, which was shown to have an important repercussion espe-
cially in the isospin 3/2 sector, for the purpose of the present work, aiming at obtaining the isospin
I = 1/2 η′N amplitude, the simplified coupled two-body channel model is sufficient. We note that
the imaginary part of the ηN scattering length is constrained by unitarity and a lower bound for
it comes from the the cross section πN → ηN , namely Im aηN ≥ 0.172 ± 0.009 fm [45]. Since the
incorporation of the η1 − η8 mixing modifies slightly the ηN interaction, the model parameters
have also been fine tuned in the present work to the values:

µ = 1200 MeV

aπN = 2.0, aηN = 0.9, aη′N = 0.9, aKΛ = 2.2, aKΣ = −3.1 , (9)

in order to comply with the unitarity constraint for ηN scattering.
In [42] it is shown that there is another type of interaction, coupling the singlet component

of the meson field to the baryons, and written as λ12MBη1η1〈B̄B〉 in the static limit, that can
contribute to the η′N interaction with a strength governed by λ1. Similar developments were made
in [43]. This term was justified to be small in Ref. [42] and was neglected. In the present work, we
explore the influence of this term on the η′N scattering observables. It will only affect transitions
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involving η and η′ mesons which have a singlet component. Taking into account Eq. (4), we can
write the singlet transition potentials between ηN and η′N states as

V
(1)
ηN,ηN = C sin2 θP ; V

(1)
ηN,η′N = −C sin θP cos θP V

(1)
η′N,η′N = C cos2 θP , (10)

where the singlet strength has been parametrized in the form:

C =
α

4f2
π

2mη′
EB + EB′

2MN
, (11)

with α an unknown parameter. We have chosen this parametrization to allow a more straightfor-
ward comparison with the terms of the Lagrangian coming from the octet components of the fields
given in Eq. (5).

III. COUPLING TO VECTOR-BARYON CHANNELS

The interaction of vector mesons and baryons was studied in [41], for the baryons of the octet of
the proton and vector mesons of the nonet of the ρ, and in [46], for the nonet of vector mesons and
the decuplet of baryons of the ∆(1232). In both cases, many dynamically generated resonances
where obtained, some of which compared favorably with particles in the Particle Data Book (PDG)
[47]. The threshold for η′N is around 1900 MeV, very close to the location of dynamically generated
states in Ref. [41] with quantum numbers JP = 1/2−, as well as their degenerate JP = 3/2−

partners, which could correspond to some experimental resonances reported around this region.
In order to incorporate the effect of the resonances in the η′N interaction, we must establish the

transition from the PB to the V B channels which generate these states by multiple scattering. We
are particularly interested in the 1/2− resonance appearing around 1970 MeV in [41]. It couples
mostly to the K∗Λ and K∗Σ channels and decouples from the ρN channel. The coupling to the
ωN and φN channels is very weak and, in addition, the φN coupling is further OZI suppressed in
the η′N → φN transition potential. This leaves only K∗Λ and K∗Σ as the relevant V B channels
to be considered in our study.

Technically, we have implemented the PB − V B coupling by still working within a basis of
coupled PB states but including explicitly, as part of a PB − PB potential, the transition of the
PB to the V B channels, the later ones interacting among themselves to produce the resonance, as
depicted schematically by the diagram of Fig. 1(a).

The mechanisms for the PB − V B transition have been reported in Ref. [48], but here we
will also have to include a contribution from anomalous terms, given the fact that the standard
contributions of [48] will be suppressed by sin θP . More specifically, the PB to V B transition is
done via the normal pseudoscalar exchange involving the V → PP decay vertex [Fig. 1(c)], and
via the anomalous term with vector exchange involving the V → V P decay vertex [Fig. 1(d)]. The
Lagrangian for the normal coupling is given by

LV PP = −ig〈[P, ∂νP ]V ν〉 , (12)

where P is the SU(3) matrix of the pseudoscalar fields of Eq. (2) and Vµ is the SU(3) matrix of
the vector mesons of the octet of the ρ

Vµ =







ρ0√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ







µ

. (13)
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(a)

(b) (c) (d)

P P

V

V V PP

≡ P V
+

B

P

V

B BBB

B BBB B

V

FIG. 1: Diagrams considered to include the intermediate vector mesons-baryon states with their interaction.

For the anomalous coupling we use the VMD Lagrangians involving the vertex V V P of [49]

LV V P =
G√
2
ǫµναβ〈∂µVν∂αVβP 〉 , (14)

where G =
3g′2

4π2f
, g′ = −GV Mρ√

2f2
[49] and f = fπ = 93MeV, with GV being the coupling of ρ to

ππ in the normalization of [50], GV = 53 MeV.
For the baryon vertices, in Fig. 1(c) we need the Yukawa PBB Lagrangian given by

LPBB = −
√
2
D + F

2f
〈B̄γµγ5∂µφB〉 −

√
2
D − F

2f
〈B̄γµγ5B∂µφ〉 , (15)

with D = 0.795, F = 0.465 taken from [51], while in Fig. 1(d) we use the Lagrangian for the
coupling of vector mesons to the baryon octet given by [52, 53] 1

LBBV = g
(

〈B̄γµ[V
µ, B]〉+ 〈B̄γµB〉〈V µ〉

)

. (16)

In the evaluation of the transition potentials, we follow the approach of [41] and neglect the
three momenta of the vector mesons with respect to their mass, which allows one to neglect the
ǫ0 polarization component coming from the Lagrangians of Eqs. (12), (14) and (16) and keep only
the spatial components. Along the same lines, the driving term γµγ5 of the Lagrangian of Eq. (15)
is approximated by ~σ~q in our calculations.

Denoting by a, b any two of the PB channels (πN, ηN, η′N,KΛ,KΣ) we finally obtain the
PB → PB transition corresponding to the diagram of Fig. 1(a) as:

δVab =
∑

kl

ṼakTklṼbl , (17)

1 Correcting a misprint in [52]
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where the indices k, l denote the V B channels, and Tkl are the V B → V B amplitudes evaluated
in [41]. The vertex Ṽak is given by:

Ṽak =

∫

d3q

(2π)3
C̃ak(~q )

1

2ωK∗(~q )

Mk

Ek(~q )

1√
s− ωK∗(~q )− Ek(~q ) + iε

F 2(~q ) , (18)

where ωK∗(~q ) =
√

m2
K∗ + ~q 2 is the energy of the K∗, with mK∗ being the K∗ mass, and Mk, Ek

stand for the mass and energy of the baryon in the V B channel (K∗Λ, K∗Σ). The functions C̃ak(~q ),
calculated from the Lagrangians of Eqs. (12) to (16) and the appropriate meson propagators, are
given in Table I, where

HK(~q ) =
~q 2

~q 2 +m2
K

, Hπ(~q ) =
~q 2

~q 2 +m2
π

, Hη(~q ) =
~q 2

~q 2 +m2
η

, (19)

with mK , mπ and mη, the masses of the kaon, pion and eta mesons. The integral of Eq. (18) is
regularized by a form factor:

F (~q ) =
Λ2

Λ2 + ~q 2
, (20)

typical of a Yukawa PPB coupling, where a value Λ = 1200 MeV has been taken.

a
k

K∗Λ K∗Σ

πN g
1√
6

D + 3F

2f
HK(~q ) g

1√
6

D − F

2f
HK(~q )

ηN −g
1√
6

D + 3F

2f
cos θPHK(~q ) g

3√
6

D − F

2f
cos θPHK(~q )

η′N −g
1√
6

D + 3F

2f
sin θPHK(~q ) g

3√
6

D − F

2f
sin θPHK(~q )

KΛ g
1√
6

2D

2f
cos θPHη(~q ) −g

2√
6

D

2f
Hπ(~q )

KΣ −g
2√
6

D

2f
Hπ(~q ) g

2√
6

2F

2f
Hπ(~q )− g

1√
6

2D

2f
cos θPHη(~q )

TABLE I: Functions C̃ak(~q ) involved in the evaluation of the PB to V B transition vertices of Eq. (18).

For the case of the η′N → k transition we also take into account the anomalous vertex, and
have

Ṽη′N,k = Ṽ norm
η′N,k + Ṽ anom

η′N,k (21)

where Ṽ norm
η′N,k is the function given above in Eq. (18) and Ṽ anom

η′N,k is also obtained from Eq. (18),

replacing C̃ak(~q ) by

C̃anom
η′N,k(~q ) =

1√
3

3√
6
g
G√
2

mK∗

Mk

(

2 cos θP√
3

− sin θP√
6

)

~q 2

~q 2 +m2
K∗

. (22)
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For the octet mesons and the octet-dominated η meson, the normal vertex of Eq. (12) is much
larger than the anomalous one coming from Eq. (14), which can be safely neglected. However,
in the case of the η′, mostly a singlet, the anomalous contribution becomes very important and
numerically larger than the ordinary one, which is proportional to sin θP as we can see from Table I.
The reason is that, as mentioned before, there is no contribution of the singlet component with the
structure of the Lagrangian of Eq. (12), while, on the other hand, Ṽ anom

η′N,k receives a contribution
from the singlet of pseudoscalar mesons. Therefore, the normal vertex is bigger than the anomalous
one for the octet mesons but, in the case of the η′, mostly a singlet, the anomalous contribution
becomes dominant.

We must also evaluate the contribution of the box diagram containing vector-baryon interme-
diate states without interaction. This is technically different than the case with interaction since
the loop contains four p-wave vertices, as we see in Fig. 2.

B B

P

B

P

V, P V, P

V

FIG. 2: Box diagrams coupling the PB states to the intermediate V B states without their interaction.

Using the Lagrangians described above, the evaluation proceeds analogously and we have

δV box
ab =

∑

k

G̃
(ab)
k , (23)

where

G̃
(ab)
k =

∫

d3q

(2π)3
C̃ak(~q )C̃bk(~q )

1

2ωK∗(~q )

Mk

Ek(~q )

1√
s− ωK∗(~q )− Ek(~q ) + iε

F 2(~q ) . (24)

In the case of a or b being the η′N channel, the corresponding C̃ak(~q ) or C̃bk(~q ) function must
include, in addition to the normal term of Table I, the anomalous contribution given by Eq. (22).

The complete PB − PB kernel, to be used in the Bethe-Salpeter equation of Eq. (6), will then
contain the standard Weinberg-Tomozawa (WT) contributions of Eq. (5), including the singlet
terms of Eq. (10) for transitions between ηN and η′N states, plus the additional contributions
coming from the coupling to V B states, namely the box δV box

ab term of Eq. (23) and the interacting
δVab term of Eq. (17).

IV. RESULTS

In the first place, we show in Table II results for the η′p scattering length, aη′p, calculated from
the scattering amplitude tη′p→η′p at threshold via the expression:

aη′p = − 1

4π

Mp

mη′ +Mp
tη′p→η′p , (25)

when only the Weinberg-Tomozawa terms obtained from the Lagrangian of Eq. (1) are included
(PB) and incorporating also the coupling to V B states (PB−V B). In this later case, we show the
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results for various approaches to the PB−V B coupling: including only the box term of Fig. 2 (box)
and including also the interacting terms of Fig. 1 (all). For each approach, we display the results
for the normal coupling obtained from diagram 1(c) (normal) and adding also the contributions of
the anomalous diagram 1(d) (total).

For completeness, the table also gives results for the ηp scattering length, aηp, which shows
to be only moderately affected by the inclusion of the V B components, of which the interacting
terms produce more pronounced changes. The small differences between the “normal” and “total”
results of the ηp scattering length are only possible from multiple scattering processes implicit
in the Bethe-Salpeter equation, which contain intermediate η′N → V B transitions involving the
anomalous coupling.

In the case of the η′p scattering length, we observe that the standard PB model produces a
very small value for it, which is connected to the fact that the Lagrangian of Eq. (1) does not give
a contribution for SU(3) singlets, and the η′ meson is mostly a singlet. The incorporation of the
V B states into the scheme, via the normal coupling, gives very moderate changes both when only
the box diagram is considered and even when the interacting terms are added. The picture changes
considerably when the anomalous couplings of the η′ to the vector mesons is added. Then, at the
box-diagram level, the real part of aη′ increases by an order of magnitude, while the imaginary part
decreases slightly. The interacting terms increase further the real part but they affect especially
the imaginary part, which roughly doubles its size, the reason being the presence of the V B decay
channels, K∗Λ → πKΛ and K∗Σ → πKΣ, which are opened at the threshold energy of the η′p
system,

√
s = 1896 MeV.

aηp aη′p

[fm] [fm]

PB 0.210 + i0.251 0.0017 + 0.0139

PB − PV
(normal) (total) (normal) (total)

(box) 0.188 + i0.229 0.187 + i0.232 0.0024 + i0.0138 0.0164 + i0.0109

(all) 0.268 + i0.240 0.264 + i0.242 0.0027 + i0.0143 0.0210 + i0.0192

TABLE II: Scattering lengths of ηp and η′p for the model that considers only PB states and the model
that also considers the coupling to V B states (PB − V B). In the later case, several results are displayed:
those obtained from the box-only term of Fig. 2 (box) or including also the interacting terms of Fig. 1 (all),
considering only the normal coupling of Fig. 1(c) (normal) and adding also the anomalous one Fig. 1(d)
(total).

With the normalization of our scattering amplitudes tij , the cross sections are obtained from:

σij =
1

4π

MiMj

s

kj
ki

| tij |2 , (26)

where Mi, Mj are the baryon masses and ki, kj the c.m. momenta in the incoming and outgoing
channels. In Fig. 3, we show the elastic η′p → η′p and inelastic η′p → π0p, η′p → ηp, η′p → K+Λ,
η′p → K+Σ0 cross sections, as functions of the η′ momentum in the lab frame, together with
the cross section of the reaction π−p → η′n, for which there is some data [55], as function of
the pion momentum. We show results obtained with the standard model that considers only the
coupling to PB states (dashed lines) and with the model that incorporates the coupling to the
V B channels that have a stronger influence at energies around the η′p threshold, namely K∗Λ
and K∗Σ. Depending on the process, the inclusion of the V B channels may produce a positive or
negative interference with the standard PB terms. However, we observe in all cases a pronounced
structure around pη′ = 500 MeV/c, or pπ = 1600 MeV/c, which corresponds to the energy of the
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resonance at 1970 MeV, generated dynamically with the model of Ref. [41] and which could be
associated to some of the states in the PDG with the appropriate quantum numbers. The strongest
relative enhancements of the cross sections are seen for the elastic channel and for the π−p → η′n
reaction. However, in spite of these drastic changes, the results in these two cases are far from the
experimental information that, although limited, we have presently available. The obtained elastic
η′p → η′p amplitude produces a scattering length of | aη′p |= 0.03 fm, as can be derived from
Table II, instead of the experimental estimate of | aη′p |∼ 0.1 fm [6]. In addition, the π−p → η′n
cross section at a pion lab momentum of 1600 MeV/c has been measured to be around 0.1 mb [55],
a value six times larger than what we find after considering the coupling to V B states.
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FIG. 3: Elastic and inelastic η′p cross sections, as functions of the η′ momentum in the lab frame, together
with the cross section of the reaction π−p → η′n as function of the pion momentum. Dashed lines correspond
to the results obtained with the standard model that considers only the coupling to PB states, while solid
lines also contain the coupling to the V B channels.
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Therefore, even after including the effect of the resonances at around 2 GeV via the coupling to
V B states, the model reveals insufficient. We still have one parameter in the theory, the strength α
of the Lagrangian coupling singlet mesons to baryons, as written in Eq. (10). We change the value
of this parameter to obtain a modulus of the η′N scattering length around 0.1 fm. In particular,
we choose values | aη′p |= 0.075, 0.1 and 0.15 fm. Our results are shown in Table III, where we
also list, for completeness, the corresponding results for the ηp scattering length. We observe that
each value of the assumed η′p scattering length admits two types of solutions for α, one positive
(repulsive) and one negative (attractive). For a given sign, the changes in α modify the real part
of aη′p in a nearly proportional way, while the imaginary part remains practically constant. This is
simply understood from the singlet and octet components of the η, η′ mesons [see Eq. (4)] and the
structure of the singlet Lagrangian, which induces the largest effect on the η′N → η′N amplitude
as it behaves like cos2 θP . The η′N → ηN amplitude will be also affected but in a more moderate
way since it goes like cos θP sin θP . The rest of inelastic transition amplitudes of η′N to states
with pure octet mesons, η′N → KΛ, η′N → KΣ, and η′N → πN , are not affected, up to multiple
scattering terms which are small in this region. Consequently, due to the optical theorem, the
imaginary part of the η′N → η′N amplitude should not be much affected, as it is the case. This
also means that our model, in spite of using the η′N scattering length as a free parameter, provides
a robust prediction for the inelastic channels. We note that the magnitude of the singlet strength
α that reproduces the experimental estimate of | aη′p |∼ 0.1 fm amounts to 10-20% of the size of
the WT coefficients Cij obtained from the standard PB Lagrangian of Eq. (1).

It is interesting to see that the two α solutions for a common value of | aη′p | give different
values for the ηp scattering length. However, the differences are quite moderate and cannot be
used as a way of discriminating between the positive or the negative value of the singlet strength
α.

α aηp | aηp | aη′p | aη′p |
[fm] [fm] [fm] [fm]

−0.126 0.272 + i0.246 0.367 0.073 + i0.019 0.075

0.204 0.247 + i0.233 0.340 −0.072 + i0.020 0.075

−0.193 0.276 + i0.248 0.371 0.098 + i0.020 0.1

0.256 0.241 + i0.231 0.334 −0.098 + i0.020 0.1

−0.333 0.282 + i0.251 0.378 0.149 + i0.020 0.15

0.352 0.228 + i0.225 0.320 −0.149 + i0.021 0.15

TABLE III: The negative and positive values of the singlet strength α that produce η′p scattering lengths
of 0.075, 0.1 and 0.15 fm. The corresponding values of the ηp scattering lengths are also given.

In Fig. 4 we show the elastic and inelastic η′p cross sections, together with the cross section of
the reaction π−p → η′n, for various models corresponding to different values of | aη′p |, obtained
with negative values of α. Similar results would be obtained for the equivalent positive values of α.
The elastic η′p cross section experiences a drastic enhancement with increasing values of | aη′p |.
As expected, the changes in the inelastic cross sections are more moderate, although in some cases
the relative increase of the cross section may become significant.

The total η′p cross section can be derived from the elastic scattering amplitude via the optical
theorem:

Im tη′p→η′p = −pc.m.
√
s

Mp
σtot , (27)
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FIG. 4: Elastic and inelastic η′p cross sections, together with the cross section of the reaction π−p → η′n,
for various models giving rise to different values of | aη′p |.

where pc.m. is the η′ momentum in the c.m. frame. By subtracting the elastic cross section, we
obtain the inelastic one, σinel = σtot − σel

η′p→η′p. The elastic, inelastic and total η′N cross sections
are displayed in Fig. 5 for different values of | aη′p |. As mentioned above, the more drastic changes
are seen in the elastic cross-section, the inelastic one being much less affected and becoming,
in this way, a genuine prediction of our model. We observe that the inelastic cross sections to
the pseudoscalar-baryon channels displayed in Fig. 4 do not provide the amount of inelastic cross
section of Fig. 5. For | aη′p |= 0.1 fm, for instance, and a value of 200 MeV/c for the η′ momentum,
the inelastic cross sections of Fig. 4, multiplying η′p → π0p and η′p → K+Σ0 by 3 to account for
all isospin channels, add up to about 3.5 mb, while σinel ∼ 5 mb in Fig. 5. The difference is due
to the inelasticities coming from the V B channels K∗Λ and K∗Σ included in our model, an effect
that is more clearly seen in Fig. 6, where the elastic (dashed lines), inelastic (dash-dotted lines)
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and total (solid lines) cross sections, obtained with the value of α that gives | aη′p |= 0.1 fm, are
shown for the full model (thick lines) or when the coupling to the V B channels is switched off (thin
lines). Indeed, we observe a large enhancement in the inelastic cross section produced by the V B
channels, especially close to the position of the K∗Σ resonance which is visible around 500 MeV/c
of η′ momentum. We have also studied the amount of inelasticity associated to the intermediate
ρN channels and have found it to be negligible.
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FIG. 5: Elastic, inelastic and total η′N cross sec-
tions as functions of the η′ momentum in the lab
frame, for different values of | aη′p |.
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FIG. 6: Elastic, inelastic and total η′N cross sec-
tions as functions of the η′ momentum in the lab
frame, for | aη′p |= 0.1 fm, with (thick lines)
or without (thin lines) the coupling to the V B
channels.

There is one source of information for the inelastic cross section, coming from the recent experi-
ment on the transparency ratio of η′ photoproduction in nuclei [54]. So far, the preliminar analysis
of the data give an estimate of 10-12 mb for the η′N inelastic cross section around pη′ = 900 MeV/c.
This estimate is an upper bound for the one-body absorption inelasticities, since in the nucleus
the absorption of the η′ can also proceed via two nucleons, which would add to the inelastic η′

reactions with a single nucleon. In any case, the η′ energies of the transparency ratio experiments
are far too high for our model, the validity of which we trust for momenta smaller than pη′ = 600
MeV/c, implying kinetic energies for the η′ smaller than 200 MeV. Data analyses with momentum
cuts will be available in the future and, although the statistics will then be reduced, they will help
in constraining the properties of the η′N interaction.

V. CONCLUSIONS

We have obtained the η′N scattering amplitude within a coupled channels chiral unitary ap-
proach, using the standard η1−η8 mixing for the decomposition of the physical η, η′ states into the
singlet and octet fields of SU(3). The particular form of the lowest order chiral Lagrangian makes
the contribution of the singlet vanish. Consequently, since the η′ is mostly a singlet, the obtained
η′N amplitude is very small and produces a value for the scattering length which disagrees with
recent experimental analysis that estimate it to be around 0.1 fm. Moreover, the fact that the

13



calculated π−p → η′n cross section is also extremely small compared with experiment indicates
that something important is missing in the approach.

We have found that the coupling of the PB channels to the V B ones is very significant because,
in the threshold region of η′N states, the V B interaction leads to a dynamically generated resonance
with the same quantum numbers as the η′N system in s-wave. We have developed the formalism
to connect the PB with the V B states, including anomalous V V P couplings which turn out to
be very important for the η′N → V B transitions. The inclusion of the V B channels induces
important changes in the η′N reactions but still leads to a small scattering length compared to the
experimental estimate.

Finally, we have introduced a Lagrangian that couples the baryons to the singlet SU(3) meson
and have made changes in the unknown strength in order to get acceptable values of the η′N
scattering length. Yet, this does not change much the inelastic cross sections, which become
then robust predictions of our theory. There is not much information to compare our results for
the inelastic cross sections, except for recent results on the transparency ratio obtained from η′

photoproduction reactions in nuclei. The experimental results offer an upper limit of the inelastic
cross section and, at present, they are provided for values of the η′ momenta too high for our
model. Future measurements with momentum cuts will allow us a proper comparison with data
and hopefully gain further information on the η′N interactions.
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