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Abstract

In this manuscript we study the vector - vector interaction within the hidden
gauge formalism in a coupled channel unitary approach. In the sector C = 1, S =
1, J = 2 we get a pole in the T-matrix around 2572 MeV that we identify with
the D∗

s2(2573), coupling strongly to the D∗K∗(D∗
sφ(ω)) channels. In addition we

obtain resonances in other exotic sectors which have not been studied before such
as C = 1, S = −1, C = 2, S = 0 and C = 2, S = 1. This ’flavor-exotic’ states are
interpreted as D∗K̄∗, D∗D∗ and D∗

sD
∗ molecular states but have not been observed

yet. In total we obtain nine states with different spin, isospin, charm and strangeness
of non C = 0, S = 0 and C = 1, S = 0 character, which have been reported before.

1 Introduction

The D∗
s2(2573) was first observed by the CLEO Collaboration in 1994 [1]. Within the

heavy quark symmetry framework (HQS) the spin of the heavy quark and the total angular
momentum of the light quark are separately conserved. As a consequence, the heavy-light
systems can be grouped in one doublet with jl = 3/2 and JP = 1+, 2+ and a second
doublet with jl = 1/2 and JP = 0+, 1+. Here jl denotes the total spin of the light quark.
While the jl = 3/2 states are relatively narrow, the states of the jl = 1/2 doublet are
very broad [2]. When the D∗

s2(2573) was observed for the first time it was regarded as the
possible jl = 3/2-doublet partner of the D∗

s1(2536) in this picture. However, the quark
model reveals some problems in the cs̄ spectrum. First of all the doublet with JP = 0+, 1+

has not been observed for a long time although it is predicted to be very broad [2]. Further
on the later discovery of the D∗

s0(2317) and the Ds1(2460) by the CLEO [3] and BABAR [4]
collaborations are difficult to explain in terms of quark models.
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Even if the JP = 0+ assignment for the D∗
s0(2317) meson gets confirmed, the D∗

s0(2317)
and Ds1(2460) masses and widths are in contradiction to typical quark model predictions.
The physical masses lie around 100 MeV below the quark potential model which estimates
a mass of the D∗

s0(2317) of 2.48 [2,5] or 2.49 GeV [6] and 2.53−2.57 GeV for the Ds1(2460).
In addition, the widths for these two states are very small, < 3.5 and < 3.8 MeV for the

D∗
s0(2317) and Ds1(2460) respectively. This is in disagreement with the HQS prediction

expecting a broad jl = 1/2 doublet with JP = 0+, 1+. A possible solution suggested by
many authors is that the strong S-wave coupling of the D∗

sJ states to the DK(D∗K) decay
channel and the proximity to the thresholds could shift the respective masses [7–12]. Since
the standard cs̄ scenario is in disagreement with experimental observations, alternative
structure interpretations have been made. For instance a 4-quark picture could be more
likely [7], where the strong S-wave coupling to PP and PV might be the key to the unusual
properties of the new light DsJ mesons.

In [13] two different models are used to study coupled channels of pseudoscalar mesons.
In the first approach the PP interaction is set up by a chiral Lagrangian while the second
method is provided by a phenomenological model based on a SU(4) symmetric Lagrangian.
Subsequently, the symmetry is broken down to SU(3) by identifying the suppressed currents
where heavy vector-mesons are exchanged. Both models, the chiral Lagrangian and the
phenomenological model, lead to very similar results. The unitarization in the coupled
channel formalism generates dynamically the Ds0(2317) as a bound state from the DK
and Dsη channels essentially. Here, the chiral symmetry can be restored by setting this
new SU(4) symmetry breaking parameters to zero and using a unique fπ parameter [14].
The results of [13] are comparable to those obtained in [15] where a effective Lagrangian
approach is used assuming a pure DK molec ular structure for the Ds0(2317). In addition,
similar results are obtained in [16, 17] omitting the exchange of heavy vector mesons. In
a later work the coupled channel analysis of [13] was extended by a phenomenological
model for the PV interaction [19]. As a conclusion, the Ds1(2460) and the Ds1(2536)
are obtained in this work as very narrow peaks from the KD∗(ηD∗

s) and DK∗(Dsω(φ))
channels, respectively. We emphasize that in this work very few parameters are used
in comparison with the large amount of information obtained. Similarly, in [18, 20] the
Ds1(2460) is also considered as a hadronic bound state of a K and a D∗ meson. The work
of [21] used a chiral Lagrangian based on heavy quark symmetry for the open charm sector
which neglects exchanges of heavy vector mesons in the implicit Weinberg-Tomozawa term.

The success of the PP and PV coupled channels in the charm-strange sector motivates
the extension to V V interaction. The vector meson interaction can be included in the chiral
Lagrangian by means of the hidden gauge formalism. In the present paper we extend the
two meson molecular idea to two vector mesons. We concentrate on dynamically generated
resonances with charm-strange (C = 1, S = 1) quantum numbers and exotic sectors which
have not been addressed before from this point of view.

In [22] the authors used the hidden gauge lagrangian, together with a unitary approach,
to study the ρρ interaction. The potential was strong enough to bind the ρρ system
and two states around 1270 and 1500 MeV were obtained as poles in the ρρ scattering
amplitude. They were identified with the f2(1270) and f0(1375) respectively. The decay
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of these resonances was provided by means of box diagrams with two or four pions in the
intermediate state. This mechanism provided a width of the order of 110 and 200 MeV
respectively for these states, which is comparable to the data in the PDG [23]. Actually,
there are strong experimental arguments which support the ρρ molecule interpretation of
the f0(1370) [24, 25]. In [26] the authors extended the model to SU(3) resulting in eleven
poles in the scattering matrix, bound states or resonances. Five of them can be identified
with states quoted in the PDG: f0(1370), f0(1710), f2(1270), f

′
2(1535) and K

∗
2(1430) (see

Table IV of [26]). The analysis of processes involving these states further support their
interpretation as dynamically generated states. In this direction, the radiative decay of the
f0(1370) and f2(1270) mesons into γγ was calculated in [27], where the authors found a
good agreement with the experimental data. Similarly the J/ψ decay into φ(ω) and one of
the f2(1270), f

′
2(1525), f0(1710) resonances as well as the process J/ψ → K∗K∗

2 (1430) was
also found to be consistent with experiment [28]. In the same line, the J/ψ radiative decay
into γ and one of these non-strange resonances was also able to reproduce experimental
data [29]. Recently, the γγ and γ-vector meson decays of the eleven dynamically generated
resonances of [26] have been studied in [30] and the decay widths are in good agreement
with data where these are available.

The model applied in [22, 26] was in later works extended to channels with a charmed
meson involved [31,32]. The authors proceeded in a similar way as in case of the inclusion of
D and D∗ mesons in the PP or as PV channels [13,19]. A SU(4)-symmetric lagrangian for
the three and four-vector interaction is constructed and once one builds the vector-exchange
diagrams the symmetry is broken by suppressing those terms where a heavy vector meson
is exchanged. In [31] the attraction between the ρ(ω) meson and the D∗ is strong enough
to bind the ρ(ω)D∗ system and three states are obtained for I = 1/2 and JP = 0+, 1+, 2+

respectively: the D0(2600), D
∗(2640) and D∗

2(2460). The first one, with a width around 61
MeV is a prediction of the model and the third state appears naturally in the scheme. The
D∗(2640) is obtained with a small width of 3− 4 MeV since the decay to two pseudoscalar
mesons (πD) by means of a box diagram is forbidden for the quantum numbers JP = 1+.
In particular this small width is the main reason to associate the D∗(2640) to the JP = 1+

quantum numbers. Therefore, one finds a reasonable explanation on why the D∗(2640)
is a very narrow state in comparison with the D∗

2(2460), even though the first one has a
larger mass. In [32] the authors study the region of 4000 MeV with a set of 16 channels for
C = 0, S = 0 and I = 0 or 1. They obtained five poles in the scattering matrix, three of
which could be identified by the proximity of the mass, width and quantum numbers with
the Y(3940), Z(3930) and X(4160), corresponding to hadronic molecules made of D∗D̄∗,
D∗

sD̄
∗
s . The radiative decay of these resonances in PV γ was studied in [33]. The strong

hidden charm decay mode J/ψω and the two-photon decay of the Y (3940) within a D∗D̄∗

bound state interpretation is also discussed in [34].
In the present work we follow the same approach as in [31, 32] in order to study V V

coupled channels in the hidden-charm (C = 0;S = 1) and charm-strange sector (C =
1;S = −1). Further on we also extend our formalism to ’flavor-exotic’ channels as for
instance C = 1;S = 1, C = 1;S = 2, C = 2;S = 0, C = 2;S = 1 and C = 2;S = 2.

3



2 Formalism

The hidden-gauge formalism is applied in order to describe the interaction between vector
mesons and vector mesons with pseudoscalars and photons [35–38]. The hidden-gauge
Lagrangian, which is consistent with chiral symmetry, provides this former interaction
from the following terms

L = −1

4
〈V̄µνV̄ µν〉+ 1

2
M2

v 〈[Vµ − (i/g)Γµ]
2〉, (1)

where
V̄µν = ∂µVν − ∂νVµ − ig[Vµ, Vν ], (2)

Γµ =
1

2

{

u†[∂µ − i(vµ + aµ)]u+ u[∂µ − i(vµ − aµ)]u
†
}

, (3)

and 〈〉 stands for the trace in the SU(3) flavor space. Vµ represents the vector nonet:

Vµ =





















ω+ρ0√
2

ρ+ K∗+

ρ− ω−ρ0√
2

K∗0

K∗− K̄∗0 φ





















µ

, (4)

where u2 = U = exp
(

i
√
2Φ
f

)

and Φ is the octet of the pseudoscalars

Φ =





















η√
6
+ π0√

2
π+ K+

π− η√
6
− π0√

2
K0

K− K̄0 −
√

2
3
η





















. (5)

The use of the value of the coupling constant g of the Lagrangian (Eq. (1)) is given by

g =
MV

2f
, (6)

with the pion decay constant f = 93 MeV. The use of the value of g of Eq. (6) provides
one way to account for the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin (KSFR) relation
[39], which is tied to the vector meson dominance formalism [40]. In order to incorporate
the charmed mesons we do a straightforward extension of the Vµ matrix to SU(4), as it
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VV

V V

−→

a) b) c) d)

V V

V

+

Figure 1: Terms of the LIII Lagrangian: a) four-vector contact term, Eq. (8); b) three-
vector interaction, Eq. (9); c) t and u channels from vector exchange; d) s channel for
vector exchange.

was done in [13, 19, 31, 32]:

Vµ =































ω+ρ0√
2

ρ+ K∗+ D̄∗0

ρ− ω−ρ0√
2

K∗0 D∗−

K∗− K̄∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ































µ

. (7)

Subsequently, the symmetry is broken down by taking the heavy masses of the charmed
mesons into account, in particular suppressing the heavy-meson exchange terms. The
Lagrangian of Eq. (1) provides the four-vector and three-vector contact terms

LVVVV =
1

2
g2〈[Vµ, Vν]V µV ν〉, (8)

LV V V = ig〈(∂µVν − ∂νVµ)V
µV ν〉

= ig〈V µ∂νVµV
ν − ∂νVµV

µV ν〉
= ig〈(V µ∂νVµ − ∂νVµV

µ)V ν)〉. (9)

The three-vector contact terms lead to the vector-exchange diagrams of Figs. 1 c) and d).
In the approximation of low momenta of the external vectors compared to the mass of the
vector mesons, ~k/MV ∼ 0, the polarization vectors of the external vector mesons reduce
to the spatial components. This implies that the vector field V ν in Eq. (9) corresponds
necessarily to the exchanged vector meson. Indeed, if it were an external vector meson, the
ν index should be spatial as already mentioned. Then, the derivative ∂ν would lead to a
three-momentum of an external vector or a difference of two of them, which are neglected
in the present approach. Eq. (9) leads to the amplitudes of the diagram of Fig. 1 c)
(V1(k1)V2(k2) → V3(k3)V4(k4)) which in the t-channel reads as

(k1 + k3) · (k2 + k4) ǫ1 · ǫ3 ǫ2 · ǫ4, (10)
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whereas the amplitudes corresponding to u-channel diagrams are of the type

(k1 + k4) · (k2 + k3) ǫ1 · ǫ4 ǫ2 · ǫ3. (11)

In general, the diagrams in the s-channel (see Fig. 1 d)) are also possible. However,
according to [22] these amplitudes lead to a repulsive p-wave interaction for equal masses
of the vectors and only to a minor s-wave component in the case of different masses [26].
Therefore, we can neglect the diagrams of Fig. 1 d) completely.

By neglecting the three-momenta of the external vector mesons with respect to the
mass, only the spatial components of the polarization vectors remain, and one can easily
build the spin-projection operators [22], which are

P(0) =
1

3
ǫµǫ

µǫνǫ
ν

P(1) =
1

2
(ǫµǫνǫ

µǫν − ǫµǫνǫ
νǫµ)

P(2) = {1
2
(ǫµǫνǫ

µǫν + ǫµǫνǫ
νǫµ)− 1

3
ǫµǫ

µǫνǫ
ν} . (12)

Thus, the spin projections of the structures of Eq. (10) and Eq. (11) can be written as

(k1 + k3) · (k2 + k4) for J = 0, 1, 2 , (13)

and

(k1 + k4) · (k2 + k3) for J = 0, 2 ,

− (k1 + k4) · (k2 + k3) for J = 1 , (14)

respectively. The tree-level transition amplitudes from the four-vector contact terms and
vector-exchange terms are listed in the Appendix. The value of g in these tables is set
to g = Mρ/2 fπ. As one can observe from these tables, the potential from the four-vector
contact terms plus vector-exchange diagrams lead to a strong attractive interaction for the
quantum numbers: C = 1, S = −1, I = 0, J = 0, 1, 2; C = 1, S = 1, I = 0, 1, J = 0, 1, 2;
C = 2, S = 0, I = 0, J = 1 and C = 2, S = 1, I = 1/2, J = 1, whereas we obtain
repulsion or a very small contribution (∼ g2) in the other sectors. This is in addition to the
C = 1, S = 0, I = 1/2, J = 0, 1, 2 cases studied in [31] and C = 0, S = 0, I = 0, 1, J = 0, 1, 2
studied in [32].

In order to calculate the t(u)-channel vector meson exchange diagrams, one must project
the amplitudes in s wave. This can be done by means of the following replacements:

k1 · k2 =
s−M2

1 −M2
2

2

k1 · k3 = k01k
0
3 − ~p · ~q → (s+M2

1 −M2
2 )(s+M2

3 −M2
4 )

4s

where ’→’ denotes the projection over s wave, and k1 = (k01, ~p), k2 = (k02,−~p), k3 = (k03, ~q),
k4 = (k04,−~q) and Mi, with i = 1, 4, is the mass of each external particle.
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After projecting the amplitudes in isospin, spin and s wave, they will be inserted into
the Bethe-Salpeter equation as kernel V , which in the on-shell formalism [41, 42] can be
expressed by

T = (1̂− V G)−1 V . (15)

The kernel V is of matrix type where its elements are the (V1(k1)V2(k2) → V3(k3)V4(k4))
amplitudes in lowest order in g2 evaluated above in the base of spin and isospin. In Eq.
(15), G is a diagonal matrix with the two meson loop functions Gi for each V1V2 channel:

Gi = i
∫

d4q

(2π)4
1

q2 −M2
1 + iǫ

1

(P − q)2 −M2
2 + iǫ

, (16)

which upon using dimensional regularization can be written as

Gi =
1

16π2

(

α + Log
M2

1

µ2
+
M2

2 −M2
1 + s

2s
Log

M2
2

M2
1

+
p√
s

(

Log
s−M2

2 +M2
1 + 2p

√
s

−s+M2
2 −M2

1 + 2p
√
s
+ Log

s +M2
2 −M2

1 + 2p
√
s

−s−M2
2 +M2

1 + 2p
√
s

)

)

, (17)

where P is the total four-momentum of the two mesons and p is the three-momentum of
the mesons in the center-of-mass frame:

p =

√

(s− (M1 +M2)2) (s− (M1 −M2)2)

2
√
s

. (18)

Analogously, one can calculate the loop function by using a cut off

Gi =
∫ qmax

0

q2dq

(2π)2
ω1 + ω2

ω1ω2[(P 0)2 − (ω1 + ω2)2 + iǫ]
, (19)

where qmax stands for the cut off in the three-momentum, ωi = (~q 2
i +M

2
i )

1/2 and the square
of center-of-mass energy (P 0)

2
= s. In the complex plane and for a general

√
s, the loop

function in the second Riemann sheet can be written as [43]:

GII
i (

√
s) = GI

i (
√
s) + i

p

4π
√
s

Im(p) > 0 (20)

where GII
i refers to the loop function on the second Riemann sheet and GI

i is the loop
function in the first Riemann sheet given by Eqs. (17) and (19) for each channel i. Bound
states appear as poles over the real axis and below thresholds on the first Riemann sheet.
In contrast resonances are identified by poles on the second Riemann sheet above the
thresholds of the channels which are open.

The channels that we consider are:

• C = 0;S = 1; I = 1/2 (hidden charm):

D∗
sD̄

∗(4121), J/ψK∗(3990)
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• C = 1;S = −1; I = 0 and 1:

D∗K̄∗(2902)

• C = 1;S = 1; I = 0:

D∗K∗(2902), D∗
sω(2895), D

∗
sφ(3132)

• C = 1;S = 1; I = 1:

D∗K∗(2902), D∗
sρ(2888)

• C = 1;S = 2; I = 1/2:

D∗
sK

∗(3006)

• C = 2;S = 0; I = 0 and 1:

D∗D∗(4017)

• C = 2;S = 1; I = 1/2:

D∗
sD

∗(4121)

• C = 2;S = 2; I = 0:

D∗
sD

∗
s(4224)

Here the quantities in parenthesis correspond to the sum of the masses of the two vector
mesons.

2.1 Convolution due to the vector meson mass distribution

In the channels i = V1V2, where the width of one of the vector mesons involved is quite large,
the mass distribution of the vector meson has to be taken into account. We demonstrate
our technique by means of a broad V1 meson. Its width is taken into account replacing the
loop function G in Eq. (15) by the convoluted G̃ [44]:

G̃(s) =
1

N

∫ (M1+2Γ1)2

(M1−2Γ1)2
dm̃2

1(−
1

π
)Im 1

m̃2
1 −M2

1 + iΓ(m̃)m̃1
G(s, m̃2

1,M
2
2 ) , (21)

with

N =
∫ (M1+2Γ1)2

(M1−2Γ1)2
dm̃2

1(−
1

π
)Im 1

m̃2
1 −M2

1 + iΓ(m̃)m̃1

, (22)
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K∗(k4)K∗(k2)

K(P − q)

D(q)

D∗(k3)D∗(k1) D∗

K∗

D∗

s

K

D

φ

π(k1 − q) ππ(k3 − q) K

φ φ

D∗

s
D∗

s

D

K

KK

D∗

K̄∗ K̄∗

D∗

D

K̄

ππ

Figure 2: Box diagrams included in the calculus.

where M1 and Γ1 are the nominal mass and width of the vector meson. Γ(m̃) is given by

Γ̃(m̃) = Γ0
q3off
q3on

Θ(m̃−m1 −m2) (23)

with

qoff =
λ1/2(m̃2, m2

1, m
2
2)

2m̃
, qon =

λ1/2(M2
1 , m

2
1, m

2
2)

2M1
. (24)

In Eq. (24), m1, m2 are the masses of the two pseudoscalar mesons in the decay V1(M1) →
p1(m1)p2(m2). We only use Eq. (21) for the cases where a ρ or K∗(K̄∗) meson are involved
in a particular channel i. For the ρ meson, Γ1 = 146.2 MeV, and m1 = m2 = mπ while for
the K∗ meson we have Γ1 = 50.55 MeV and m1 = mK , m2 = mπ.

The use of G̃ in Eq. (15) provides larger widths of the states than using only G (Eq.
(16)).

2.2 Box diagrams

The box diagrams containing intermediate states of two pseudoscalar mesons provide a
mechanism to consider the two pseudoscalar decay mode of the dynamically generated
resonances. In fact, these box diagrams were considered in [22, 26, 31, 32]. The real part
was negligible compared to the strong interaction obtained by means of the four-vector
contact term plus vector-exchange diagrams of Fig. 1 a) and c). However, the imaginary
part of the box diagrams is relevant for the generation of the width of the resonances. We
will come to this issue later on.
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q

q − k1 q − k3

q − P

k1

k2

k3

k4

m1

m2

m3

m4

Figure 3: Box diagram containing four pseudoscalar mesons. The cuts in the diagram
provide the sources of imaginary part of the potential.

In Fig. 3 we represent the box diagram and its momentum variables. The vertices are
provided by the same hidden gauge formalism (HGS) used in Section 2 by means of the
Lagrangian

LVΦΦ = −ig〈V µ[Φ, ∂µΦ]〉 . (25)

The generic structure of the diagram in Fig. 3 is:

V ∼ C
∫

d4q

(2π)4
ǫ1 · (2q − k1)ǫ2 · (2q − k3) (26)

×ǫ3 · (2q − k3 − P )ǫ4 · (2q − k1 − P )

× 1

(q − k1)2 −m2
1 + iǫ

1

q2 −m2
2 + iǫ

× 1

(q − k3)2 −m2
3 + iǫ

1

(q − P )2 −m2
4 + iǫ

,

where C is the coupling of a certain transition. The approximation of neglecting the
three-momenta of the external particles leads to a simplified expression for V

V ∼ C1

∫

d4q

(2π)4
ǫi1ǫ

j
2ǫ

m
3 ǫ

n
4q

iqjqmqn

× 1

(q − k01)
2 −m2

1 + iǫ

1

q2 −m2
2 + iǫ

× 1

(q − k03)
2 −m2

3 + iǫ

1

(q − P 0)2 −m2
4 + iǫ

= C1G, (27)

with C1 = 16C. This integral is logarithmically divergent and we regularize it with a cut
off in the three momenta of natural size. Thus, the integral in q0 is performed by means
of the residue theorem and then the integral in the three momenta is calculated with a
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cut off of qmax = 1.2 GeV [22, 31, 32]. We include these diagrams in the sectors where the
interaction is strong enough to obtain bound states or resonances. Looking at the Tables
in the Appendix, these sectors (and the channels involved) are:

• C = 1;S = −1; I = 0; J = 0, 1 and 2:

D∗K̄∗

• C = 1;S = 1; I = 0; J = 0, 1 and 2:

D∗K∗, D∗
sφ, D

∗
sω

• C = 1;S = 1; I = 1; J = 0, 1 and 2:

D∗K∗, D∗
sρ

• C = 2;S = 0; I = 0; J = 1:

D∗D∗

• C = 2;S = 1; I = 1/2; J = 1:

D∗
sD

∗

However, the box diagrams only have a contribution for the quantum numbers JP = 0+

and 2+. The reason is the following: the VV system has positive parity in s wave, which
forces the PP intermediate state to be in L = 0, 2. Since the two pseudoscalar meson do
not have a spin, the only possibilities are JP = 0+ and 2+. Hence we do not consider it
for the last two sectors where J = 1. For the other quantum numbers we consider the box
diagrams in Fig. 2. We do not include any box diagram for the channel D∗

sρ since ρ goes
to ππ and the vertex D∗

sπDs is equal to zero. Of course there exist other box diagrams
involving the exchange in the t-channel of two pseudoscalars diferent from ππ, πK or KK
(the latter illustrated in Fig. 2) but they are suppressed and can therefore be neglected.
Crossed box diagrams (with four pseudoscalar mesons in the intermediate state) and box
diagrams involving anomalous couplings were also calculated in [22], but they were found
to be much smaller, especially in the case of the anomalous coupling, than the contributions
from the box diagram of Fig. 3. The final formula for each of the diagrams in Fig. 2 is
given in the Appendix. One can see in these formulas that the cuts plotted in the diagram
in Fig. 3 are clearly visible in the denominators.

Following the ideas of [31] we include two different form factors in the integral of the
box-diagram potential (formulas of the Appendix). These are:
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• Model A: We multiply the vertices in the diagram of Fig. 3 by:

F1(q
2) =

Λ2
b −m2

1

Λ2
b − (k01 − q0)2 + |~q|2 , (28)

F3(q
2) =

Λ2
b −m2

3

Λ2
b − (k03 − q0)2 + |~q|2 , (29)

with q0 =
s+m2

2
−m2

4

2
√
s

, ~q being the running variable, and Λb = 1.4, 1.5 GeV [22]. These
form factors were inspired by the empirical form factors used in the decay of vector
mesons [45,46]. Therefore, we add F1(q

2)2F3(q
2)2 to the integrand in Eqs. (32), (35)

and (38) and we put g =Mρ/2 fπ.

• Model B: Here we use a exponential parametrization for a off-shell π(K) evaluated
using QCD sum rules [47],

F (q2) = e((q
0)2−|~q|2)/Λ2

, (30)

with Λ = 1, 1.2 GeV and q0 =
s+m2

2
−m2

4

2
√
s

. So we add F (q2)4 to the integrand in Eqs.

(32), (35) and (38). In this case we also change the factor g4 in these equations by the
corresponding product of g’s, g = Mρ/2 fπ, with fπ = 93 MeV, gDs = MD∗

s
/2 fDs =

5.47 with fDs = 273/
√
2 MeV [23] and gD = gexpD∗Dπ = 8.95 (experimental value)

[48–50].

In Figs. 4 and 5 we compare the real parts of the box diagrams with the contact terms
plus vector-exchange terms for the D∗K∗ → D∗K∗ and D∗K∗ → D∗

sφ amplitudes (the
interaction is very attractive for these amplitudes, see Table 13). As one can see in this
figure, the box diagram has a small real part compared to the strong potential provided
by the four-vector contact terms plus vector-exchange diagrams, particularly in the region
of energies corresponding to the states that we find. Therefore, one can neglect the real
part of the box diagrams as it was done in [22, 31, 32]. In Fig. 6 we depict the imaginary
part of the box diagrams in Fig. 2 for the two models. Here we set Λ = 1400 MeV for
the Model A, while we put Λ = 1200 MeV when using Model B. As this figure shows, the
Model B with the form factor of Eq. (30) provides a larger imaginary part compared to
Model A which results in a larger width of the resonance.

3 Results

In this section we will present the results for each sector as follows: First, we apply the
Bethe-Salpeter equation Eq. (15), by taking the potential V from the Tables in the Ap-
pendix (contact terms plus vector-exchange diagrams). Here, we use the following pa-
rameters: g = Mρ/2 fπ, we fix µ = 1500 MeV for all the sectors and set the subtraction
constant α = −1.6 (value very close the one used in [19], −1.55, and [31], −1.74) in the

12
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Figure 4: Comparison of the real part of the box diagram with the contact term plus
vector-exchange term for the D∗K∗ → D∗K∗ amplitude and I = 0, J = 0 and J = 2
respectively.
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sectors C = 1;S = −1, C = 1;S = 1 and C = 1;S = 2. Note that µ and α are not inde-
pendent which justifies the determination of µ and then adjusting α to the data. In the
other sectors, C = 0;S = 1 (hidden charm), C = 2;S = 0, C = 2;S = 1 and C = 2;S = 2,
we put α = −1.4. The reason is that we use a different set of the parameters µ and αH in
comparison to the earlier study of the dynamically generated D∗

(s)D̄
∗
(s) resonances in [32]

with µ = 1000 MeV and αH =-2.07. In the present approach we set µ = 1500 MeV as
in [13,19,31] and have to adapt αH accordingly in order to be able to reproduce the XYZ
states in [32]. Then, we evaluate the pole positions in the sectors where we find attractive
interaction and calculate the couplings to each channel from the residue of the amplitudes,
since, close to a pole, the amplitudes from Eq. (15) look like

Tij ≈
gigj
s− sp

. (31)

Therefore, the constants gi (i = V V channel), which provide the couplings of the resonance
to the particular channels can be calculated by means of the residues of the amplitudes.
The pole positions and couplings are given in Tables 1, 3, 5, 7 and 8. Then we replace
the expression for G of Eq. (17) by the convoluted G̃ of Eq. (21) and additionally include
the box diagrams in Fig. 2. These modifications do not practically change the positions
of the poles and the couplings are barely affected. However, the convolution of the mass
distribution and the consideration of the pseudoscalar decay channels in terms of box
diagrams leads to a larger width of the respective resonances. The reevaluation of the
Bethe-Salpeter equation, Eq. (15), leads to the squared transition amplitudes pictured in
the Figs. 7, 8, 9, 10 and 11. The corresponding masses and widths are given in Tables 2,
4 and 6.

3.1 C = 0;S = 1; I = 1/2 (hidden charm)

The amplitudes from the four-vector contact terms plus vector-exchange diagrams can be
found in Table 10 in the Appendix. We can see from the tables that the potential is small
and repulsive except for the D∗

sD̄
∗ → J/ψK∗ and D∗

sD̄
∗ → D∗

sD̄
∗ amplitudes for J = 1

and 2 respectively. However, the attraction is too small to bind the system and therefore
we do not get poles or possible states from the T-matrix.

3.2 C = 1;S = −1; I = 0

In contrast to the above sector the potential in the case of C = 1 and S = −1 is very
attractive as indicated in Table 11. For I = 0 and J = 0, 1 the potential is around −10 g2

whereas it is about−16 g2 for J = 2. In this sector the strong interaction from the potential
leads to bound states. We obtain one resonance for each spin, J = 0, 1 and 2, where the
corresponding pole positions and couplings are given in Table 1. The convolution of the
G function due to the K̄∗ width leads to a minor shift in the pole positions (only 3 MeV
for J = 2) and around 3 MeV in the widths for the three states. This is a minor effect
compared to the contribution of the box diagrams. Therefore we neglect the K∗ width in
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the final |T |2 analysis. |T |2 is depicted in Figs. 7 and 8 for J = 0 and 2 and for the two
models A and B after the inclusion of the corresponding box diagrams of Fig. 2. Here, the
two models lead to similar results except for the model B with Λ = 1200 MeV. In Table
2 we show the values of the masses and final widths of the states. Since these states have
exotic flavor quantum numbers ther e is no possible qq̄ counterpart.

I[JP ]
√
spole (MeV) gD∗K̄∗)

0[0+] 2848 12227

0[1+] 2839 13184

0[2+] 2733 17379

Table 1: C = 1;S = −1; I = 0. Quantum numbers, pole positions and couplings gi in
units of MeV. Here, α = −1.6.

3.3 C = 1;S = −1; I = 1

In this sector, which also has exotic quantum numbers, we can see from Table 12 that the
interaction is very repulsive in contrast to the previous case of I = 0. Therefore, no bound
states or resonances are found in this sector.

3.4 C = 1;S = 1; I = 0

The strong interaction coming from the contact terms plus vector-exchange diagrams leads
to a potential of the order of −18 g2 to −26 g2, see Table 13 in the Appendix, which is
enough to bind the D∗ and K∗ mesons. In this sector we obtain three poles with masses
M = 2683, 2707 and 2572 MeV for J = 0, 1 and 2, respectively. The potentials in Tab.
13 provide the kernel V of Eq. (15) which results in the pole positions and couplings
summarized in Table 3. The state with J = 2 is more bound than the other poles for
J = 0 and 1 which can be identified with the D∗

2(2573) resonance in the PDG. Here, the
D∗K∗ channel is dominant for the three different spins. Nevertheless the other channels,
D∗

sω and D∗
sφ are not negligible.

When considering the K∗ width, which is equivalent to replacing G by the convoluted
G̃, neither the mass changes significantly (in fact only 2 MeV) nor the width is affected by
this modification. Therefore, the effect of the convolution is so small that it does not need
to be considered. Only the consideration of the box diagrams has some influence on the
width. In Figs. 9 and 10 |T |2 is plotted after the inclusion of the box diagrams of Fig. 2
for the two models A and B. We observe that these diagrams provide some width for the
states with J = 0 and 2 (possible quantum numbers of the box diagrams), although the
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I[JP ]
√
spole (MeV) Model Γ (MeV)

0[0+] 2848 A, Λ = 1400 MeV 23

A, Λ = 1500 MeV 30

B, Λ = 1000 MeV 25

B, Λ = 1200 MeV 59

0[1+] 2839 Convolution 3

0[2+] 2733 A, Λ = 1400 MeV 11

A, Λ = 1500 MeV 14

B, Λ = 1000 MeV 22

B, Λ = 1200 MeV 36

Table 2: C = 1;S = −1; I = 0. Mass and width for the states with J = 0 and 2.
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Figure 7: Squared amplitude in the D∗K̄∗ channel for I = 0 and J = 0. Left: Model A,
right: Model B.
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width provided by the model B is much bigger than that from model A. The values of the
masses and widths are given in Table 4. Model B with Λ = 1000, 1200 MeV provides a
width for the state appearing around 2572 MeV of 18− 23 MeV.

We associate this state with the D∗
s2(2573) of the PDG [23] since the quantum numbers,

position and width agree with those of the PDG. We should note that this is the case where
we found the largest attraction, of the order of −26 g2, which is even bigger than what was
found for I = 0, J = 2 in the ρρ interaction (≃ −20 g2) which lead to the production of
the f2(1270) [22, 26].

I[JP ]
√
spole (MeV) gD∗K∗ gD∗

sω gD∗

sφ

0[0+] 2683 15635 −4035 6074

0[1+] 2707 14902 −5047 4788

0[2+] 2572 18252 −7597 7257

Table 3: C = 1;S = 1; I = 0. Quantum numbers, pole positions and couplings gi in units
of MeV for I = 0. Here α = −1.6.

3.5 C = 1;S = 1; I = 1

In this sector the potential is attractive for the D∗K∗ → D∗
sρ reaction. For J = 0 and 1

this potential is around −7 g2 whereas it is by a factor of two bigger −13 g2 for J = 2 (see
Table 14). In fact, we only obtain a pole for J = 2. For J = 0 and 1 we only observe a cusp
in the D∗

sρ threshold. In Table 5 we show the pole position and couplings to the different
channels. Both channels, D∗K∗ and D∗

sρ, are equally important as one can deduce from
the corresponding couplings. The broad width of the ρ meson has to be taken into account
by means of Eq. (21) which results in a width of 8 MeV. In this case the box diagrams in
Fig. 2 for the D∗K∗ channel only make a small contribution to the width of the resonance
(see Fig. 11). In contrast to the previous situations the width of the resonance is mainly
generated by the convolution of the ρ mass while the box diagr ams play a minor role. In
Table 6 we give the exact values of the width in the two models which give very similar
results. No experimental counterpart is found for this state in the PDG.

3.6 C = 1;S = 2; I = 1/2

This sector is exotic since a double-strange state is not reached in qq̄. As we can see from
Table 15 in the Appendix, the potential is repulsive for all possible spins. Therefore we do
not get any bound state or resonance in this sector.
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I[JP ]
√
spole (MeV) Model Γtheo (MeV) Γexp (MeV)

0[0+] 2683 A, Λ = 1400 MeV 20 -

A, Λ = 1500 MeV 25

B, Λ = 1000 MeV 44

B, Λ = 1200 MeV 71

0[1+] 2707 Convolution 4× 10−3 -

0[2+] 2572 A, Λ = 1400 MeV 7 20± 5 [23]

A, Λ = 1500 MeV 8

B, Λ = 1000 MeV 18

B, Λ = 1200 MeV 23

Table 4: C = 1;S = 1; I = 0. Mass and width for the states with J = 0 and 2.

IG[JPC ]
√
spole (MeV) gD∗K∗ gD∗

sρ

1[2+] 2786 11041 11092

Table 5: C = 1;S = 1; I = 1. Quantum numbers, pole positions and couplings gi in units
of MeV. Here α = −1.6.
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Figure 9: Squared amplitude in the D∗K∗ channel for I = 0 and J = 0. Left: Model A,
right: Model B.
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I[JP ]
√
spole (MeV) Model Γ (MeV)

1[2+] 2786 A, Λ = 1400 MeV 8

A, Λ = 1500 MeV 9

B, Λ = 1000 MeV 9

B, Λ = 1200 MeV 11

Table 6: C = 1;S = 1; I = 1. Mass and width for the state with J = 1 and 2.
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3.7 C = 2;S = 0; I = 0

In this case we study double charmed states by coupled D∗D∗ channels. The amplitudes
are given in Table 16, where the potential is zero for J = 0 and 2. This can be explained
by the fact that the D∗D∗ state is antisymmetric for I = 0. Therefore, the only possibility
to obtain a fully symmetric wave function is provided by J = 1 which is equivalent to
the rule L + S̃ + I = odd, since L = 0 for s−wave (S̃, spin ≡ J for L = 0). For J = 1
the interaction is strongly attractive and we obtain a pole in the scattering matrix. The
pole position and coupling to the D∗D∗ channel is given in Table 7. The width of the D∗

meson is very small (∼ 100 keV or less in the case of the neutral charmed meson), hence,
we do not perform the convolution of the G function. Since we deal with a J = 1 state
the inclusion of the box diagrams can be ruled out. Therefore we obtain a state with zero
width or a very narrow width when considering the convolution. This sector with C = 2
is exotic and so far there are no experimental observations.

I[JP ]
√
spole (MeV) gD∗D∗

0[1+] 3969 16825

Table 7: C = 2;S = 0; I = 0. Quantum numbers, pole positions and couplings gi in units
of MeV. Here α = −1.4.

3.8 C = 2;S = 0; I = 1

Here we deal with the reversed situation as in the previous I = 0 sector. The isospin
combination for I = 1 of the D∗D∗ channel is symmetric and therefore J = 1 is forbidden
(L + S̃ + I = even). However, the potential is very repulsive for J = 0 and J = 2 (see
Table 17) and consequently we do not obtain any pole in the scattering matrix.

3.9 C = 2;S = 1; I = 1/2

This sector is also exotic. The amplitudes from the four-vector contact terms plus vector-
exchange diagrams lead to a repulsive potential for J = 0 and 2 and is attractive for J = 1
as indicated Table 18. We get a pole almost at the D∗

sD
∗ threshold (4121 MeV), where

the pole position and the coupling is given in Table 8. This state comes with zero width
since the box diagrams are not possible for J = 1 and any possible convolution of the G
function would lead to a very small width. This state is also a prediction of the model and
needs to be confirmed by experiment.
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I[JP ]
√
spole (MeV) gD∗

sD
∗

1/2[1+] 4101 13429

Table 8: C = 2;S = 1; I = 1/2. Quantum numbers, pole positions and couplings gi in
units of MeV . Here, α = −1.4.

3.10 C = 2;S = 2; I = 0

The D∗
sD

∗
s channel allows us to study double-charm double-strange objects. Since we deal

with two identical particles with isospin zero, the isospin D∗
sD

∗
s -state is symmetric and

hence we get interaction for J = 0 and 2 while the potential zero for J = 1 (see Table 19).
Since the potential is strongly repulsive we do not obtain any state in this sector.

In Table 9 we give a summary of the states obtained together with the only experimental
counterpart observed so far.

C, S I[JP ]
√
s ΓA(Λ = 1400) ΓB(Λ = 1000) State

√
sexp Γexp

1,−1 0[0+] 2848 23 25

0[1+] 2839 3 3

0[2+] 2733 11 22

1, 1 0[0+] 2683 20 44

0[1+] 2707 4× 10−3 4× 10−3

0[2+] 2572 7 18 Ds2(2573) 2572.6± 0.9 20± 5

1[2+] 2786 8 9

2, 0, 0[1+] 3969 0 0

2, 1 1/2[1+] 4101 0 0

Table 9: Summary of the nine states obtained. The width is given for the model A, ΓA,
and B, ΓB. All the quantities here are in MeV.
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4 Conclusions

We studied dynamically generated resonances from vector-vector interaction in the charm-
strange and hidden-charm sectors and extended for the first time the formalism to flavor
exotic sectors. The hidden gauge Lagrangians provide a consistent method to include vector
meson interaction in the coupled channel unitarity formalism. Our analysis of the T matrix
resulted in nine bound states. At the beginning these states appear with zero width (poles
on the real axis). There are two effects which are relevant for the generation of the width of
the resonance. First, the widths of the vector mesons involved need to be considered by the
convolution of the two-meson loop function. This effect is in particular important for the
D∗

sρ channel. Second, the PP decay modes of the vector mesons play an important role.
In the present coupled channel approach this issue is taken into account by the insertion
of box diagrams with pseudoscalar mesons in the intermediate state. The se modifications
lead to appreciable widths of the states which are close to the experimental observations if
available. In the present work we can assign one resonance to an experimental counterpart,
which is the D∗

2(2573). For C = 1, S = 1 we obtain three states with masses M = 2683,
2707 and 2572 MeV for I = 0 and J = 0, 1, 2 respectively. The widths lie around 44, 0
and 18 MeV correspondingly (Model B with Λ = 1000 MeV). We associate the state for
J = 2 with the D∗

2(2573) giving a novel interpretation for this resonance as a vector -
vector molecular state. The assumption of this structure is consistent with the DK nature
assumed for the D∗(2317), the D∗K molecular structure of the D∗(2460) or the X(3872)
(DD̄∗). The other two states around 2700 MeV are predictions of the model without
experimental evidence for these masses and quantum numbers up to now. For I = 1 we
find only one state, of non exotic nature, a 2+ state arou nd 2786 MeV.

In the flavor-exotic sectors which have not been studied before, we obtain interesting
predictions for new states. In the sector C = 1;S = −1; I = 0 we obtain three new exotic
states with masses M = 2848, 2839 and 2733 MeV and widths around Γ = 25, 3 and
22 MeV, for the quantum numbers I[JP ] = 0[0+], 0[1+] and 0[2+] respectively. In the
case of the double-charm sectors C = 2;S = 0; I = 0 and C = 2;S = 1; I = 1/2 the
potential leads to a bound system for J = 1 only. That is, we deal with two very narrow
states with masses around M = 3969 and 4101 MeV close to the thresholds of D∗D∗ and
D∗

sD
∗ respectively. In summary, all states are relatively narrow. For the quantum numbers

JP = 0+, 2+ the widths are lower than 71 MeV (depending on the model) while all states
with JP = 1+ come with practically no width since the box diagrams do not contribute.
There is no experimental counterpart for all exotic structures which can be considered
as D∗K∗, D∗K̄∗, D∗D∗ and D∗

sD
∗ molecular states. Our findings might be useful to get

further insight in the flavor exotic sectors and can encourage the search for flavor-exotic
mesons with e.g. double charm or double charm-strangeness in future experiments.
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6 Appendix

6.1 Tree-level transition amplitudes of the four-vector contact
diagrams and of the t(u)-channel vector-exchange diagrams

for the different channels.

J Amplitude Contact V-exchange ∼ Total

0 D∗
sD̄

∗ → D∗
sD̄

∗ 2g2 − g2(p1+p3).(p2+p4)
m2

J/ψ

0.23g2

0 D∗
sD̄

∗ → J/ψK∗ −4g2 g2(p1+p4).(p2+p3)
m2

D∗

+ g2(p1+p3).(p2+p4)
m2

D∗

s

3.6g2

0 J/ψK∗ → J/ψK∗ 0 0 0

1 D∗
sD̄

∗ → D∗
sD̄

∗ 3g2 − g2(p1+p3).(p2+p4)
m2

J/ψ

1.2g2

1 D∗
sD̄

∗ → J/ψK∗ 0 − g2(p1+p4).(p2+p3)
m2

D∗

+ g2(p1+p3).(p2+p4)
m2

D∗

s

−0.43g2

1 J/ψK∗ → J/ψK∗ 0 0 0

2 D∗
sD̄

∗ → D∗
sD̄

∗ −g2 − g2(p1+p3).(p2+p4)
m2

J/ψ

−2.8g2

2 D∗
sD̄

∗ → J/ψK∗ 2g2 g2(p1+p4).(p2+p3)
m2

D∗

+ g2(p1+p3).(p2+p4)
m2

D∗

s

9.6g2

2 J/ψK∗ → J/ψK∗ 0 0 0

Table 10: Amplitudes for C = 0, S = 1 and I = 1/2.
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J Amplitude Contact V-exchange ∼ Total

0 D∗K̄∗ → D∗K̄∗ 4g2 − g2(p1+p4).(p2+p3)
m2

D∗

s

+ 1
2g

2( 1
m2
ω
− 3

m2
ρ
)(p1 + p3).(p2 + p4) −9.9g2

1 D∗K̄∗ → D∗K̄∗ 0 g2(p1+p4).(p2+p3)
m2

D∗

s

+ 1
2g

2( 1
m2
ω
− 3

m2
ρ
)(p1 + p3).(p2 + p4) −10.2g2

2 D∗K̄∗ → D∗K̄∗ −2g2 − g2(p1+p4).(p2+p3)
m2

D∗

s

+ 1
2g

2( 1
m2
ω
− 3

m2
ρ
)(p1 + p3).(p2 + p4) −15.9g2

Table 11: Amplitudes for C = 1, S = −1 and I = 0.

J Amplitude Contact V-exchange ∼ Total

0 D∗K̄∗ → D∗K̄∗ −4g2 g2(p1+p4).(p2+p3)
m2

D∗

s

+ g2

2 (
1

m2
ω
+ 1

m2
ρ
)(p1 + p3).(p2 + p4) 9.7g2

1 D∗K̄∗ → D∗K̄∗ 0 − g2(p1+p4).(p2+p3)
m2

D∗

s

+ g2

2 (
1

m2
ω
+ 1

m2
ρ
)(p1 + p3).(p2 + p4) 9.9g2

2 D∗K̄∗ → D∗K̄∗ 2g2 g2(p1+p4).(p2+p3)
m2

D∗

s

+ g2

2 (
1

m2
ω
+ 1

m2
ρ
)(p1 + p3).(p2 + p4) 15.7g2

Table 12: Amplitudes for C = 1, S = −1 and I = 1.
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J Amplitude Contact V-exchange ∼ Total

0 D∗K∗ → D∗K∗ 4g2 − g2

2 (
3
m2
ρ
+ 1

m2
ω
)(p1 + p3).(p2 + p4) −19.8g2

0 D∗K∗ → D∗
sω −4g2 g2(p1+p4).(p2+p3)

m2

D∗

s

+ g2(p1+p3).(p2+p4)
m2

K∗

6.8g2

0 D∗K∗ → D∗
sφ 2

√
2g2 −

√
2g2(p1+p3).(p2+p4)

m2

K∗

−9.2g2

0 D∗
sω → D∗

sω 0 0 0

0 D∗
sω → D∗

sφ 0 0 0

0 D∗
sφ→ D∗

sφ −2g2 g2(p1+p4).(p2+p3)
m2

D∗

s

0.20g2

1 D∗K∗ → D∗K∗ 6g2 − g2

2 (
3
m2
ρ
+ 1

m2
ω
)(p1 + p3).(p2 + p4) −17.7g2

1 D∗K∗ → D∗
sω 0 − g2(p1+p4).(p2+p3)

m2

D∗

s

+ g2(p1+p3).(p2+p4)
m2

K∗

6.6g2

1 D∗K∗ → D∗
sφ 3

√
2g2 −

√
2g2(p1+p3).(p2+p4)

m2

K∗

−7.8g2

1 D∗
sω → D∗

sω 0 0 0

1 D∗
sω → D∗

sφ 0 0 0

1 D∗
sφ→ D∗

sφ 3g2 − g2(p1+p4).(p2+p3)
m2

D∗

s

0.8g2

2 D∗K∗ → D∗K∗ −2g2 − g2

2 (
3
m2
ρ
+ 1

m2
ω
)(p1 + p3).(p2 + p4) −25.8g2

2 D∗K∗ → D∗
sω 2g2 g2(p1+p4).(p2+p3)

m2

D∗

s

+ g2(p1+p3).(p2+p4)
m2

K∗

12.8g2

2 D∗K∗ → D∗
sφ −

√
2g2 −

√
2g2(p1+p3).(p2+p4)

m2

K∗

−13.5g2

2 D∗
sω → D∗

sω 0 0 0

2 D∗
sω → D∗

sφ 0 0 0

2 D∗
sφ→ D∗

sφ g2 g2(p1+p4).(p2+p3)
m2

D∗

s

3.2g2

Table 13: Amplitudes for C = 1, S = 1 and I = 0.
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J Amplitude Contact V-exchange ∼ Total

0 D∗K∗ → D∗K∗ 0 g2

2 (
1
m2
ρ
− 1

m2
ω
)(p1 + p3).(p2 + p4) 0.11g2

0 D∗K∗ → D∗
sρ 4g2 − g2(p1+p4)(p2+p3)

m2

D∗

− g2(p1+p3).(p2+p4)
m2

K∗

−6.8g2

0 D∗
sρ→ D∗

sρ 0 0 0

1 D∗K∗ → D∗K∗ 0 g2

2 (
1
m2
ρ
− 1

m2
ω
)(p1 + p3).(p2 + p4) 0.11g2

1 D∗K∗ → D∗
sρ 0 g2(p1+p4)(p2+p3)

m2

D∗

− g2(p1+p3).(p2+p4)
m2

K∗

−6.6g2

1 D∗
sρ→ D∗

sρ 0 0 0

2 D∗K∗ → D∗K∗ 0 g2

2 (
1
m2
ρ
− 1

m2
ω
)(p1 + p3).(p2 + p4) 0.11g2

2 D∗K∗ → D∗
sρ −2g2 − g2(p1+p4)(p2+p3)

m2

D∗

− g2(p1+p3).(p2+p4)
m2

K∗

−12.8g2

2 D∗
sρ→ D∗

sρ 0 0 0

Table 14: Amplitudes for C = 1, S = 1 and I = 1.

J Amplitude Contact V-exchange ∼ Total

0 D∗
sK

∗ → D∗
sK

∗ −4g2 g2(p1+p4)(p2+p3)
m2

D∗

+ g2(p1+p3).(p2+p4)
m2

φ
5.5g2

1 D∗
sK

∗ → D∗
sK

∗ 0 − g2(p1+p4)(p2+p3)
m2

D∗

+ g2(p1+p3).(p2+p4)
m2

φ
5.0g2

2 D∗
sK

∗ → D∗
sK

∗ 2g2 g2(p1+p4)(p2+p3)
m2

D∗

+ g2(p1+p3).(p2+p4)
m2

φ
11.5g2

Table 15: Amplitudes for C = 1, S = 2 and I = 1/2.
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J Amplitude Contact V-exchange ∼ Total

0 D∗D∗ → D∗D∗ 0 0 0

1 D∗D∗ → D∗D∗ 0 1
4g

2( 2
m2

J/ψ

+ 1
m2
ω
− 3

m2
ρ
){(p1 + p4).(p2 + p3) −25.4g2

+(p1 + p3).(p2 + p4)}

2 D∗D∗ → D∗D∗ 0 0 0

Table 16: Amplitudes for C = 2, S = 0 and I = 0.

J Amplitude Contact V-exchange ∼ Total

0 D∗D∗ → D∗D∗ −4g2 1
4g

2( 2
m2

J/ψ

+ 1
m2
ω
+ 1

m2
ρ
){(p1 + p4).(p2 + p3) 24.3g2

+(p1 + p3).(p2 + p4)}

1 D∗D∗ → D∗D∗ 0 0 0

2 D∗D∗ → D∗D∗ 2g2 1
4g

2( 2
m2

J/ψ

+ 1
m2
ω
+ 1

m2
ρ
){(p1 + p4).(p2 + p3) 30.3g2

+(p1 + p3).(p2 + p4)}

Table 17: Amplitudes for C = 2, S = 0 and I = 1.

J Amplitude Contact V-exchange ∼ Total

0 D∗
sD

∗ → D∗
sD

∗ −4g2 g2(p1+p4).(p2+p3)
m2

K∗

+ g2(p1+p3).(p2+p4)
mJ/ψ2

19.0g2

1 D∗
sD

∗ → D∗
sD

∗ 0 − g2(p1+p4).(p2+p3)
m2

K∗

+ g2(p1+p3).(p2+p4)
mJ/ψ2

−19.5g2

2 D∗
sD

∗ → D∗
sD

∗ 2g2 g2(p1+p4).(p2+p3)
m2

K∗

+ g2(p1+p3).(p2+p4)
mJ/ψ2

25.0g2

Table 18: Amplitudes for C = 2, S = 1 and I = 1/2.
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J Amplitude Contact V-exchange ∼ Total

0 D∗
sD

∗
s → D∗

sD
∗
s −4g2 g2

2 (
1

m2

J/ψ

+ 1
m2

φ
){(p1 + p4).(p2 + p3) + (p1 + p3).(p2 + p4)} 15.0g2

1 D∗
sD

∗
s → D∗

sD
∗
s 0 0 0

2 D∗
sD

∗
s → D∗

sD
∗
s 2g2 g2

2 (
1

m2

J/ψ

+ 1
m2

φ
){(p1 + p4).(p2 + p3) + (p1 + p3).(p2 + p4)} 21.0g2

Table 19: Amplitudes for C = 2, S = 2 and I = 0.

6.2 Box diagrams

6.2.1 D∗K∗ → D∗K∗ box diagram with m1 = π, m2 = D, m3 = π and m4 = K

VD∗K∗(s) =
∫ qmax

0
dq

q6

ω3ωKωD

1

(−k03 + ω + ωD − iǫ)2
1

(−√
s+ ωD + ωK − iǫ)

× 1

(−k04 + ω + ωK − iǫ)2
1

(k03 + ω + ωD)2
1

(
√
s+ ωD + ωK)

× 1

(k04 + ω + ωK)2
× g4

15π2
P (s) , (32)

with

P (s) = −2(2k03
√
s(ω + ωD)ωK(4ω

4 − s(4ω2 + 3ωωD + ω2
D) + 4ω2(ωD + ωK)

2

+ 3ωωD(ωD + ωK)
2 + ω2

D(ωD + ωK)
2 + 4ω3(ωD + 2ωK))

+ 2(k03)
3
√
sωK(−4ω3 − ωD(−s+ (ωD + ωK)

2))

+ (k03)
4(2ω3(ωD + ωK) + ωDωK(−s+ (ωD + ωK)

2))

− (k03)
2(4ω5(ωD + ωK) + 8ω4(ωD + ωK)

2

+ 4ω3(ω3
D − 3sωK + 6ω2

DωK + 6ωDω
2
K + ω3

K)

+ 14ω2ωDωK(−s+ (ωD + ωK)
2) + 4ωωDωK(ωD + ωK)

× (−s+ (ωD + ωK)
2) + ωDωK(s

2 + (ωD + ωK)
2(ω2

D + ω2
K)

− 2s(ω2
D + ωDωK + ω2

K))) + (ω + ωD)
2(2ω5(ωD + ωK)

+ 4ω4(ω2
D + 3ωDωK + 2ω2

K) + 2ω3(ω3
D − 2sωK + 7ω2

DωK + 12ωDω
2
K + 6ω3

K)

+ ωDωK(s− ω2
K)(s− (ωD + ωK)

2) + ω2ωK(5ωD + 8ωK)(−s+ (ωD + ωK)
2)

+ 2ωωK(s
2 + ωK(ωD + ωK)

2(2ωD + ωK)− s(ω2
D + 4ωDωK + 2ω2

K)))) . (33)

Where ω =
√

q2 +m2
π, ωD =

√

q2 +m2
D, ωK =

√

q2 +m2
K , k

0
3 =

s+m2

D∗
−m2

K∗

2
√
s

and k04 =
s+m2

K∗
−m2

D∗

2
√
s

. After projecting in spin and isospin, the potential is

V I=0,J=0
D∗K∗ (s) =

9

4
5 VD∗K∗(s)
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V I=0,J=2
D∗K∗ (s) =

9

4
2 VD∗K∗(s)

V I=1,J=0
D∗K∗ (s) =

1

4
5 VD∗K∗(s)

V I=1,J=2
D∗K∗ (s) =

1

4
2 VD∗K∗(s) . (34)

6.2.2 D∗K∗ → D∗
sφ box diagram with m1 = π, m2 = D, m3 = K and m4 = K

VD∗K∗→D∗

sφ(s) =
∫ qmax

0
dq

q6

ωωDω2
K

1

(−k01 + ω + ωD − iǫ)

1

(k01 − k03 + ω + ωK − iǫ)

× 1

(−k01 + k03 + ω + ωK − iǫ)

1

(−k02 + ω + ωK − iǫ)

× 1

(−k03 + ωD + ωK − iǫ)

1

(−k04 + 2ωK − iǫ)

× 1

(−√
s+ ωD + ωK − iǫ)

1

(k01 + ω + ωD)

× 1

(k03 + ωD + ωK)

1

(k02 + ω + ωK)

× 1

(
√
s+ ωD + ωk)

1

(k04 + 2ωk)
× 4g4

15π2
P (s) , (35)

with

P (s) = −ωK(2(k
0
1)

3ω(−(k03)
2
√
sωK + (k03)

3(ωD + ωK)

+
√
s(ωD + ωK)(s− ω2

D − 3ωDωK − 4ω2
K)

− k03(ω
3
D + sωK + 4ω2

DωK + 7ωDω
2
K + 4ω3

K))

− (k01)
4ω(−2k03

√
sωK + (k03)

2(ωD + ωK)

+ (ωD + ωK)(s− 2(ω2
D + 3ωDωK + 2ω2

K)))

+ 2k01(k
0
3 +

√
s)ω((k03)

3
√
sωK

− (k03)
2(ω3

D + 2sωK + 2ω2
DωK + 2ωDω

2
K + ω3

K + ω2(ωD + ωK)

+ 2ω(ωD + ωK)
2) + k03

√
s(ω3

D + sωK + 4ω2
DωK + 4ωDω

2
K − 2ω3

K

+ ω2(ωD + 2ωK) + 2ω(ω2
D + 4ωDωK + 2ω2

K))

+ (ωD + ωK)(ω
4
D + 3ω3

DωK + 4ω2
Dω

2
K

+ 4ωDω
3
K + 4ω4

K + ω2(ω2
D + 3ωDωK + 4ω2

K)

+ 2ω(ω3
D + 3ω2

DωK + 4ωDω
2
K + 4ω3

K)

− s(ω2 + ω2
D + ωDωK + ω2

K + 2ω(ωD + ωK))))

− (k01)
2ω(2(k03)

3
√
sωK + (k03)

4(ωD + ωK)

− 2(k03)
2(ω3

D + ω2
DωK + 3ωDω

2
K + ω2(ωD + ωK) + 3ωK(s+ ω2

K)

+ ω(ω2
D + 3ωDωK + 2ω2

K))
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+ 2k03
√
sωK(s+ 2(ω2 − ω2

D − 4ωDωK − 3ω2
K + ω(ωD + 2ωK)))

+ (ωD + ωK)(s
2 − 2s(ω2 + ω2

D + 3ω2
K + ω(ωD + 2ωK))

+ 2(ωD + ωK)(ω
3
D + 2ω2

DωK + 5ωDω
2
K + 4ω3

K

+ 2ω2(ωD + 2ωK) + 2ω(ωD + 2ωK)
2)))

+ (ω + ωD)(2(k
0
3)

3
√
sωK(s− ω2 − (ωD + ωK)

2

− ω(ωD + 2ωK)) + (k03)
4(ω2(ωD + ωK)

+ ω(ω2
D + 3ωDωK + 2ω2

K) + ωK(−s + (ωD + ωK)
2))

+ 2k03
√
sωK(ω

4 + (ωD + ωK)
4 + ω3(ωD + 4ωK)

+ ω2(ω2
D + 4ωDωK + 6ω2

K) + ω(ω3
D + 4ω2

DωK + 6ωDω
2
K + 4ω3

K)

− s(ω2 + (ωD + ωK)
2 + ω(ωD + 2ωK)))− (k03)

2(ω4(ωD + ωK)

+ ω3(ω2
D + 5ωDωK + 4ω2

K) + ω2(ω3
D − 2sωK + 9ω2

DωK + 18ωDω
2
K + 10ω3

K)

+ ω(ω4
D + 2sωDωK + 5ω3

DωK − 4sω2
K + 18ω2

Dω
2
K + 26ωDω

3
K + 12ω4

K)

+ ωK(s
2 − 2s(ω2

D + 2ωDωK + 3ω2
K) + (ωD + ωK)

2(ω2
D + 2ωDωK + 5ω2

K)))

+ (ω + ωK)(ωD + ωK)(s
2(ω + ωD + ωK)

+ 2(ω + ωK)(ωD + ωK)(2ωK(ωD + ωK)
2

+ ω2(ωD + 2ωK) + ω(ωD + 2ωK)
2)

− s(ω3 + ω3
D + 3ω2

DωK + 7ωDω
2
K + 5ω3

K

+ ω2(ωD + 3ωK) + ω(ω2
D + 7ωDωK + 7ω2

K))))) . (36)

Where ω =
√

q2 +m2
π, ωD =

√

q2 +m2
D, ωK =

√

q2 +m2
K , k

0
1 =

s+m2

D∗
−m2

K∗

2
√
s

, k02 =

s+m2

K∗
−m2

D∗

2
√
s

and k03 =
s+m2

D∗

s
−m2

φ

2
√
s

. And its spin-isospin projection is

V I=0,J=0
D∗K∗→D∗

sφ
(s) =

3√
2
5 VD∗K∗→D∗

sφ(s)

V I=0,J=2
D∗K∗→D∗

sφ
(s) =

3√
2
2 VD∗K∗→D∗

sφ(s) . (37)

6.2.3 D∗
sφ→ D∗

sφ box diagram with m1 = K, m2 = D, m3 = K and m4 = K

VD∗

sφ(s) =
∫ qmax

0
dq

q6

ωDω3
K

1

(−k03 + ωD + ωK − iǫ)2
1

(−√
s+ ωD + ωK − iǫ)

× 1

(−k04 + 2ωK − iǫ)2
1

(
√
s+ ωD + ωK)

1

(k04 + 2ωK)2

× 1

(k03 + ωD + ωK)2
× g4

15π2
P (s) , (38)

with

P (s) = 2((k03)
4(sωD − ω3

D − 2ω2
DωK − 3ωDω

2
K − 2ω3

K)
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+ 2(k03)
3
√
s(−sωD + ω3

D + 2ω2
DωK + ωDω

2
K + 4ω3

K)

− 2k03
√
s(ωD + ωK)(ω

4
D + 5ω3

DωK + 11ω2
Dω

2
K

+ 15ωDω
3
K + 16ω4

K − s(ω2
D + 3ωDωK + 4ω2

K))

+ (k03)
2(s2ωD + ω5

D + 6ω4
DωK + 32ω3

Dω
2
K + 74ω2

Dω
3
K

+ 63ωDω
4
K + 16ω5

K − 2s(ω3
D + 3ω2

DωK + 10ωDω
2
K + 6ω3

K))

− (ωD + ωK)
2(s2(ωD + 2ωK) + 4ω2

K(3ω
3
D + 12ω2

DωK

+ 17ωDω
2
K + 8ω3

K)− s(ω3
D + 4ω2

DωK + 15ωDω
2
K + 16ω3

K))) . (39)

Where ω =
√

q2 +m2
π, ωD =

√

q2 +m2
D, ωK =

√

q2 +m2
K , k

0
3 =

s+m2

D∗

s
−m2

φ

2
√
s

, k04 =
s+m2

φ
−m2

D∗

s

2
√
s

and ǫ = 1 MeV. Finally, we project it in spin and isospin

V I=0,J=0
D∗

sφ
(s) = 2× 5 VD∗

sφ(s)

V I=0,J=2
D∗

sφ
(s) = 2× 2 VD∗

sφ(s) . (40)

6.2.4 D∗K̄∗ → D∗K̄∗ box diagram with m1 = π, m2 = D, m3 = π and m4 = K̄

The potential is the same than that given by Eq. (32) with:

V I=0,J=0
D∗K̄∗

(s) =
9

4
5 VD∗K∗(s)

V I=0,J=2
D∗K̄∗

(s) =
9

4
2 VD∗K∗(s)

V I=1,J=0
D∗K̄∗

(s) =
1

4
5 VD∗K∗(s)

V I=1,J=2
D∗K̄∗

(s) =
1

4
2 VD∗K∗(s) . (41)
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