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Abstract

We study the (K−, p) reaction on nuclei with a 1 GeV/c momentum kaon beam,
paying a special attention at the region of emitted protons having kinetic energy
above 600 MeV, which was used to claim a deeply attractive kaon nucleus optical
potential. Our model describes the nuclear reaction in the framework of a local den-
sity approach and the calculations are performed following two different procedures:
one is based on a many-body method using the Lindhard function and the other one
is based on a Monte Carlo simulation. The simulation method offers flexibility to
account for processes other than kaon quasi-elastic scattering, like K− absorption by
one and two nucleons producing hyperons, and allows to consider final state interac-
tions of the K−, p and all other primary and secondary particles on their way out of
the nucleus, as well as the weak decay of the produced hyperons into πN . We find a
limited sensitivity of the cross section to the strength of the kaon optical potential.
We also show serious drawback in the experimental set up from the requirement of
having, together with the energetic proton, at least one charged particle detected in
the decay counter surrounding the target, since we find that the shape of the original
cross section is appreciably distorted, to the point of invalidating the claims made in
the experimental paper on the strength of the kaon nucleus optical.

1 Introduction

The issue of the kaon interaction in the nucleus has attracted much attention in past
years. Although from the study of kaonic atoms one knows that the K−-nucleus potential
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is attractive [1], the discussion centers on how attractive the potential is and if it can
accommodate deeply bound kaonic atoms (kaonic nuclei), which could be observed in
direct reactions. A sufficiently large attraction could even make possible the existence of
kaon condensates in nuclei, which has been suggested in [2]. Stimulated by the success in
reproducing the data of kaonic atoms, many works considered strongly attractive potentials
of the order of 200 MeV at normal nuclear matter density [3–7], or explored the dependence
of a few observables to a wide range of depths from 0 to 200 MeV [8–10]. More moderate
attraction is found in similar works done in [11–13]. Yet, all modern potentials based
on underlying chiral dynamics of the Kaon-nucleon interaction [14–18] lead to moderate
potentials of the order of 60 MeV attraction at nuclear matter density. They also have a
large imaginary part making the width of the deeply bound states much larger than the
energy separation between the levels, which would rule out the experimental observation
of peaks. The agreement with the data of kaonic atoms of this purely theoretical shallow
potential is good [19], and a fit to all data adding a small phenomenological potential to
the theoretical one performed in [20] indicates that the best fit potential deviates at most
by 20% from the theoretical one of [15].

The opposite extreme is represented by some highly attractive phenomenological po-
tentials with about 600 MeV strength in the center of the nucleus [21,22]. These potentials,
leading to compressed nuclear matter of ten times nuclear matter density, met criticisms
from [23] and more recently from [24], which were rebutted in [25] and followed by further
argumentation in [26] and [27]. More recently the lightest K-nuclear system of K̄NN has
also been the subject of strong debate [28–31].

Experimentally, the great excitement generated by peaks seen at KEK [32] and FIN-
UDA [33, 34], originally interpreted in terms of deeply bound kaons atoms, is receding,
particularly after the work of [23], regarding the KEK experiment, and those of [35–37],
regarding the FINUDA ones, found explanations of the experimental peaks based on con-
ventional reactions that unavoidably occur in the process of kaon absorption. Also the
thoughts of [38], with opposite views to those of FINUDA in [34], and the reanalysis of the
KEK proton spectrum from K− absorption on 4He [32], done in [39], where the original
narrow peak appears much broader and is consistent with the signal seen on a heavier 6Li
target in FINUDA [40], have helped to bring the discussion to more realistic terms. Never-
theless, the possibility that the FINUDA peak of [33] could be a signal of a deeply bound
kaon state is still defended [41]. This brief description just shows the intense activity and
strong interest in this subject over the past few years.

There are also claims (with very low statistical significance) of K−pp and K−ppn bound
states from p̄ annihilation in 4He at rest measured by OBELIX@CERN [42], as well as the
recent claim of a K−pp bound state, seen from the pp → K+X reaction by the DISTO
experiment [43]. These experimental claims are under investigation now since, before
calling in new physics, it is important to make clear that these data cannot be explained
with conventional mechanisms.

In this work we focus on yet another experiment which led the authors to claim evidence
for a very strong kaon-nucleons potential, with a depth of the order of 200 MeV [44]. The
experiment looks for fast protons emitted from the absorption of in flight kaons by nuclei.
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Our aim is to show how this experiment was analyzed and which ingredients are missing.
Throughout this work we shall see that the interpretation of the data requires a more
thorough analysis, and with all things considered, we reach different conclusions than
those of Ref. [44], in the sense that we do not find evidence for a a strongly attractive
kaon-nucleus optical potential.

One of the shortcomings of Ref. [44] stems from employing the Green’s function method
[45] in a variant used in [46–48] to analyze the data and extract from there the kaon optical
potential. The only mechanism considered in Ref. [44] for the emission of fast protons is
the K̄p → K̄p process, taking into account the optical potential for the slow kaon in the
final state. However, there are other mechanisms that contribute to generate fast protons,
namely kaon absorption by one nucleon, K−N → πΣ or K−N → πΛ followed by decay
of the Σ or the Λ into πN , or the absorption by pairs of nucleons, K̄NN → ΣN and
K̄NN → ΛN , followed also by similar hyperon decays. The contributions from these
processes were also suggested in Ref. [49]. In the present work, we take into account these
additional mechanisms by means of a Monte Carlo simulation, while the processes involving
K̄N scattering, which are dominant in this reaction, are considered in two different ways,
one based on standard many body methods using Lindhard functions and another one
based on a Monte Carlo simulation. The agreement of the two calculational methods gives
us confidence to use the Monte Carlo simulation for the processes involving more than one
step and/or one nucleon and two nucleon kaon absorption.

2 The (K−, p) reaction in nuclei: many body approach

We are dealing here with an inclusive reaction, where a kaon in flight hits a nucleus and
a proton is emitted. In the present case we focus on fast protons, which could be emitted
when the kaons are trapped in the nucleus or are rescattered with small energy. The
reaction is inclusive in the sense that, apart from the proton observed, anything can happen
to the nucleus. In fact many processes may take place. The original kaon can undergo
quasi-elastic collisions with the nucleons, transferring them some energy. The kaon can be
absorbed, either by one nucleon or by pairs of nucleons. The kaon can be trapped in a
kaonic orbit, etc. Once a kaon has experienced a particular reaction, the final products
also suffer their own interactions with the nucleus before, eventually, a fast proton gets out.
Complicated as it may sound —and we shall deal with these complications in a following
section— the evaluation of the inclusive cross section is however easy since one is looking
for the most energetic protons and in the forward direction, which means that these protons
must take the largest possible energy from the original kaon. In other words, if a kaon
undergoes a quasi-elastic collision in which the proton does not fall in this narrow window,
the event will be dismissed because this kaon, having lost a fraction of its energy, will not
have a second chance of producing a fast proton again. Obviously, if the kaon is absorbed it
disappears from the flux and must also be eliminated in the evaluation of further processes
(the contribution from the absorption mechanisms will be calculated later). The other
relevant observation is that if the final fast proton has a secondary collision it will also
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loose energy and will not lie in the desired energy window. In practical terms this means
that we can just care about the direct K−p → K−p quasi-elastic reaction at a certain point
in the nucleus and distort the initial K− and final proton waves. These type of reactions
have received much attention and we describe here the standard procedure of dealing with
them [50, 51].

Diagrammatically, the process considered is depicted in Fig. 1, which shows the kaon
inducing a ph excitation and remaining in the nucleus, representing what we call a quasi-
elastic collision. The kaon transfers energy and momentum to a nucleon that is promoted
from below to above the (local) Fermi sea.

Figure 1: Diagrammatic representation of the inclusive (K−, p) reaction.

The kaon self-energy for the diagram of Fig. 1 in a Fermi sea is given by

− iΠqe(k) =
∫

d4q

(2π)4
iŪ(k − q)(−i)T (−i)T

i

q02 − ~q 2 −m2
K −Π(q)

, (1)

where Ū(k−q) is the Lindhard function for ph excitation and T stands for theK−p → K−p
scattering matrix. The factor [q0

2 − ~q 2 −m2
K − Π(q0, ~q )]−1 is the kaon propagator which

includes its self-energy in the medium, Π(q0, ~q ). Using the Cutkosky rules one easily
obtains the imaginary part of Πqe(k) as in [52],

Πqe → 2iIm Πqe , (2)

Ū(k − q) → 2iθ(k0 − q0)Im Ū(k − q) , (3)

D(q) =
1

q02 − ~q 2 −m2
K −Π(q)

→ 2iθ(q0)Im D(q) . (4)

Then

Im Πqe(k) = −2
∫

d4q

(2π)4
Im Ū(k − q)|T |2Im 1

q02 − ~q 2 −m2
K −Π(q0, ~q )

, (5)

4



where Ū is given by

Ū(k − q) = 2
∫

d3pN
(2π)3

M

E(~pN)

M

E(~k + ~pN − ~q )

n(~pN)[1− n(~k + ~pN − ~q )]

k0 + p0N − q0 − EN ′(~k + ~pN − ~q ) + iǫ
. (6)

The fast protons with momentum ~k + ~pN − ~q are the energetic ones that would be
observed, hence the corresponding Pauli blocking factor, 1 − n, is just unity here. ¿From
Eq. (6) one obtains Im Ū as

Im Ū = −2π
∫

d3pN
(2π)3

M

E(~pN )

M

E(~k + ~pN − ~q )
n(~pN)δ(k

0+E(~pN)− q0−∆−E(~k+ ~pN −~q )) ,

(7)
where we have introduced an energy gap between the energy of the holes and the energy
of the particles [53, 54]. We thus obtain for Im Πqe the following equation

Im Πqe(k) = 2
∫

d3pN
(2π)3

n(~pN)
M

E(~pN)

∫

d3q

(2π)3
|T |2 M

E(~k + ~pN − ~q )

×Im
1

q02 − ~q 2 −m2
K − Π(q0, ~q )

∣

∣

∣

∣

q0=k0+E(~pN )−∆−E(~k+~pN−~q )
. (8)

The physical interpretation comes by recalling that

2ωVopt ≡ Πqe , (9)

Im Vopt =
1

2ω
Im Πqe , (10)

Γ = −2Im Vopt = −Im Πqe

ω
, (11)

where ω is the kaon energy and Vopt is the K−-nucleus optical potential. Our states are
normalized to unity in a box of volume V . The flux of the incoming kaons is vK−/V and
thus the K− cross section with the nucleons of the Fermi sea of volume V is given by

σ =
Γ

K− flux
=

Γ

vK−/V
= V

Γ

k
ω . (12)

Replacing V by an integral
∫

d3r over the nuclear density we obtain, upon the change of
variables

~p ≡ ~k + ~pN − ~q , (13)

where ~p is the outgoing proton variable,

σ = −2

k

∫

d3r
∫ d3pN

(2π)3
n(~pN , ~r )

M

E(~pN)

×
∫

d3p

(2π)3
|T |2 M

E(~p )
Im

1

q02 − ~q 2 −m2
K −Π(q0, ~q )

∣

∣

∣

∣

q0=k0+E(~pN )−∆−E(~p )

~q=~k+~pN−~p
, (14)
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from where

dσ

dΩ(p̂)E(~p )
= −2

k
pM

∫

d3r
∫

d3pN
(2π)3

n(~pN , ~r )
M

E(~pN)

× 1

(2π)3
|T |2Im 1

q02 − ~q 2 −m2
K − Π(q0, ~q )

∣

∣

∣

∣

q0=k0+E(~pN )−∆−E(~p )

~q=~k+~pN−~p
. (15)

The integral over ~r covers the size of the nucleus. As in previous works [35, 36], we use a
realistic nuclear density profile for 12C, given by three-parameter Fermi distribution [55],
which reproduces elastic electron scattering data. We have also tried a more sophisticated
nuclear density profile, which accounts for the finite range of the interaction via a folding
procedure, and is preferred by the antiprotonic X-rays and radiochemical data [56]. Al-
though the folded density is almost 10% lower in the center of nuclei and extends to larger
distances, the final result of our simulation is practically unaffected by this density change.
The integral over ~pN is restricted to the hole (bound) nucleon states within the local Fermi
momentum kF (~r ) obtained from the nuclear density at point ~r. This is accounted for by
the Pauli blocking factor n(~pN , ~r ).

In free space, the cross section for kaon scattering off a proton in the lab frame with
the proton emerging in the forward direction reads

dσ

dΩ(p̂)

∣

∣

∣

∣

lab
=

π

k

1

(2π)3
p̄2|T |2M

2

1

p̄(k0 +M)−E(p̄)k
, (16)

where p̄ is the momentum of the nucleon

p̄ =
2pCMECM

M
, pCM =

λ1/2(s,m2
K ,M

2)

2
√
s

. (17)

Equation (16) establishes a link between |T |2 and the forward cross section, which can be
implemented into Eq. (15) to derive our final formula

dσ

dΩ(p̂)E(~p )
= −4p

p̄2
dσ

dΩ(p̂)

∣

∣

∣

∣

lab

∫

d3re
−

∫

∞

−∞
σρ(b,z′)dz′

∫

d3pN
(2π)3

n(~pN , ~r )
M

E(~pN)
θ(q0)

× [p̄(k0 +M)− E(p̄)k]
1

π
Im

1

q02 − ~q 2 −m2
K −Π(q0, ~q )

∣

∣

∣

∣

q0=k0+E(~pN )−∆−E(~p )

~q=~k+~pN−~p
, (18)

where we have added the distortion factor for the initial K− and the final proton p (expo-
nential factor in the equation), as well as the factor θ(q0) of Eq. (4). Taking into account
that 〈σtot

K−N〉 ≃ 45 mb ≃ 〈σpN〉 ≡ σ for K−-nucleon collisions with pK− ≃ 1 GeV/c and
proton-nucleon collisions with protons having about 600−700 MeV kinetic energy, we have
implemented a combined eikonal distortion factor as in [44, 46]

∫

d3r →
∫

d3re
−

∫

∞

−∞
σρ(b,z′)dz′

, (19)
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where b is the impact parameter b2 = x2 + y2.
The backward differential cross section of the elementary process K−p → K−p in the

laboratory frame (dσ/dΩ)lab for incoming kaons of 1 GeV/c is taken to be 8.8 mb/sr, using
the K−p elastic cross-section data of Ref. [57]. We note that the authors of Ref. [17] take a
value of 3.6 mb/sr as an effective way to implement effects of Fermi motion, Pauli blocking,
etc, which here we consider explicitly.

3 Monte Carlo simulation

The procedure outlined above is quite efficient to produce the cross section for the (K−, p)
reaction, but obviously including only the quasi-elastic collisions K−p → K−p. There
might be other processes contributing to generate fast protons and, when this is the case, it
becomes advisable to make a simulation of the reaction. This procedure has been developed
in Ref. [58] for the study of inclusive pionic reactions in nuclei and has also been applied
to other processes, such as photon induced pion and proton emission in nuclei [52, 59],
electron induced proton emission [60], nucleon emission following hypernuclear decay [61,
62], nucleon emission following kaon absorption in nuclei [35], etc.

As sources of fast protons we consider the quasi-elastic K−N scattering process, as well
as the absorption of the kaon by one and two nucleons. The election of which reaction
occurs at a certain point in the nucleus is done as usual. One chooses a step size δl and
calculates, by means of σiρδl with i = qe, 1N, 2N, the probabilities that any of the possible
reactions happens. The values of the cross sections are discussed in Sect. 4. The size of δl
is small enough such that the sum of probabilities that any reaction occurs is reasonably
smaller than unity. A random number from 0 to 1 is generated and a reaction occurs if
the number falls within the corresponding segment of length given by its probability, the
segments being put successively in the interval [0-1]. If the random number falls outside
the sum of all segments then this means that no reaction has been taken place and the
kaon is allowed to proceed one further step δl.

3.1 Quasi-elastic scattering

We here describe how the Monte Carlo simulation treats the quasi-elastic reaction dis-
cussed in Sect. 2. The general strategy is to let the kaon propagate through the nucleus
determining, at each step δl, whether it can undergo a quasi-elastic collision, according to
the probability σqeρδl, where σqe is the K−N → K−N elastic cross section. If there is a
quasi-elastic collision at a certain point, then the initial K− momentum and the nucleon
momentum, randomly chosen within the Fermi sea, are boosted to their CM frame. The
direction of the scattered momenta is determined according to the experimental cross sec-
tion. A boost to the lab frame determines the final kaon and nucleon momenta. The event
is kept as long as the size of the nucleon momentum is larger than the local value of kF .
Since we take into account secondary collisions we consider the reactions K−p → K−p,
K−p → K0n and K−n → K−n with their corresponding cross sections.
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Once primary nucleons are produced they are also followed through the nucleus tak-
ing into account the probability that they collide with other nucleons, losing energy and
changing their direction. We follow the procedure detailed in [58, 59].

We also follow the rescattered kaon on its way through the nucleus. In the subse-
quent interaction process we let the kaon experience whichever reaction of the three that
we consider (quasi-elastic, one body absorption, two body absorption) according to their
probabilities. If the kaon remains after the collision, this procedure continues until it finally
emerges out of the nucleus or it is absorbed by one or two nucleons.

3.2 One body kaon absorption

We consider the reactions K−N → πΛ and K−N → πΣ, with all the possible charge com-
binations. Once again the probability of this occurring is weighed by their corresponding
cross sections and the directions of the π and of the hyperons are also determined in the
CM frame. The system is then boosted back to the lab frame, where we let the Λ or the Σ
propagate through the nucleus, undergoing quasi-elastic collisions with the nucleons. Once
they leave the nucleus they are allowed to decay weakly into πN providing in this way a
source of protons which is not negligible, as we will see.

3.3 Two body absorption

We also take into account the following processes: K−NN → ΛN or K−NN → ΣN
with all possible charge combinations. The probability per unit length for two nucleon
absorption, µK−NN , together with the distribution into the different possible channels, are
discussed in Sect. 4. In these reactions an energetic nucleon is produced, as well as a Λ
or a Σ hyperon. Both the nucleon and the hyperon are followed through the nucleus as
discussed above. Once out of the nucleus, the hyperon is let to decay weakly into πN pairs.
Therefore, the two body absorption process provides a double source of fast protons, those
directly produced in the absorption reactions and those coming from hyperon decays.

3.4 Consideration of the K− optical potential

We also take into account a kaon optical potential Vopt = ReVopt + i ImVopt, which will
influence the kaon propagation through the nucleus, especially after a high momentum
transfer quasi-elastic collision when the kaon will acquire a relatively low momentum.

As discussed in the introduction, one can find in the literature quite different values
for the real part of the potential. In the present study we vary the strength of the poten-
tial, ReVopt, to study the sensitivity of the results: starting from −60 ρ/ρ0 [14–18], going
through −200 ρ/ρ0 MeV [3–10], and down to −600 ρ/ρ0 MeV [21, 22]. For the imaginary
part of the optical potential we take ImVopt ≈ −60 ρ/ρ0 MeV, as in the experimental
paper [44] and the theoretical study of [15].
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In the presence of an optical potential, the kaon spectral function has the form:

SK(M̃K) =
1

π

−2MKImVopt

(M̃2
K −M2

K − 2MKReVopt)2 + (2MKIm Vopt)2
. (20)

In the Monte Carlo simulation we implement this distribution by generating a random
kaon mass M̃K around a central value, MK +ReVopt, which is the bare kaon mass shifted
by the real part of the optical potential. The generated random masses lie within a certain
extension determined by the width of the distribution ΓK = −2ImVopt, the size of which is
controlled by the imaginary part of the optical potential. The probability assigned to each
value of M̃K follows the Breit-Wigner distribution given by the kaon spectral function.

3.5 Final observable

After all the processes implemented in the Monte Carlo simulation, some particles leave
the nucleus, and we select the events that contain a fast proton in the region of interest.
To adapt the calculations to the experiment of [44] we keep the protons that emerge within
an angle of 4.1 degrees in the nuclear rest frame (lab frame). For quasi-elastic scattering
processes this would correspond to events in which the kaons emerge backwards in the K̄N
CM frame and the protons are most energetic, having of the order of 500 − 700 MeV of
kinetic energy in the lab frame.

To facilitate comparison with experiment, the missing invariant mass of the 12C(K−, p)
reaction is converted into a binding energy of the kaon, EB, should the process correspond
to the trapping of a kaon in a bound state and emission of the fast proton, according to

√

(EK +M12C −Ep)2 − (~Pp − ~PK)2 = M11B +MK − EB , (21)

where Ep, ~Pp are the energy and momentum of the observed proton and EK , ~PK are the
energy and momentum of the initial kaon.

3.6 Coincidence simulation

It is very important to keep in mind that the measurements in the experiment of [44] were
done in coincidence. The outgoing proton was measured by the KURAMA spectrometer
in the forward direction, while another detector, the decay counter, was sandwiching the
target. The published spectra was obtained with a requirement of having an outgoing
proton in the KURAMA spectrometer and at least one charged particle in the decay
counter [63].

Obviously, the real simulation of such a coincidence experiment is tremendously dif-
ficult, practically impossible with high accuracy, because it would require tracing all the
charged particles coming out from all possible scatterings and decays. Although we are
studing many processes and following many particles in our Monte Carlo simulation, which
is not the case in the Green function method used in the data analysis [44], we can not
simulate precisely the real coincidence effect.
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What we can do is to eliminate the processes which, for sure, will not produce a
coincidence, a procedure that we refer to as minimal coincidence requirement [68]. If
the kaon in the first quasi-elastic scattering produces an energetic proton falling into the
peaked region of the spectra, then the emerging kaon will be scattered backwards. In
our Monte Carlo simulation we can select events were neither the proton nor the kaon
will have any further reaction after such a scattering. In these cases, although there is a
“good” outgoing proton, there are no charged particles emerging with the right direction
with respect to the beam axis to hit a decay counter, since the K− escapes undetected
through the backward direction. Therefore, this type of events must be eliminated for
comparison with the experimental spectra.

As we will see in the next section, the main source of the energetic protons is K−p
quasi-elastic scattering and, therefore, the minimal coincidence requirement removes a
substantial part of the potentially “good” events changing the form of the final spectrum.
Furthermore, events with one or two nucleon absorption or/and with several quasi-elastic
rescatterings have a good chance of producing a charged particle that goes through the
decay counter. Thus, the final spectrum obtained from our Monte Carlo simulations with
minimal coincidence requirement will probably overshoot the experimental spectrum by
an amount which will depend on the capability of the events having the given energy EB

of producing, apart from the corresponding energetic proton, additional charged particles
hitting the decay counters.

4 Input cross sections

4.1 K̄N cross sections

The elastic and inelastic two body K̄N cross sections for kaons of about 1 GeV/c are taken
from the Particle Data Group (PDG) [64]. The values are the following:

σK−p→K−p = 21.22 mb , σK−p→K̄0n = 7.15 mb , σK−n→K−n = 18.5 mb

σK−p→π0Λ = 4.32 mb , σK−p→π+Σ− = 1.76 mb

σK−p→π−Σ+ = 1.4 mb , σK−p→π0Σ0 = 1.58 mb

σK−n→π−Λ = 6.35 mb , σK−n→π−Σ0 = 0.97 mb , σK−n→π0Σ− = 1.15 mb

From the PDG we also know the total cross-sections:

σtot
K−p = 51.7 mb , σtot

K−n = 38 mb ⇒ 〈σtot
K−N〉 = 45 mb [see Eq. (18)] .

Since these are larger than the sum of the partial cross sections that we are using explicitly,
we define:

σK−p→X = 14.27 mb , σK−n→X = 10.0 mb ,

which take care about all possible reaction channels, like K−p → ηΛ, K−p → ηΣ and
others, where no fast nucleons come out. Thus, we introduce an extra segment of length
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σK−p,n→X ρ δl in the interval [0-1] for the Monte Carlo decision of these reactions to occur.
If this is the case, the K− simply disappears, since the particles produced in these reactions
can not contribute to our observable.

0 + −

0 0 −

Figure 2: The two nucleon K− absorption diagrams from a kaon-exchange picture.

4.2 Two nucleon absorption cross-sections

The probability per unit length for two nucleon absorption is proportional to the square
of the nucleon density:

µK−NN (ρ) = Cabsρ
2 .

We assume a total two body absorption rate of 20% that of one body absorption at about
nuclear matter density, something that one can infer from data ofK− absorption in 4He [65].
In practice, this is implemented in the following way:

〈µK−NN〉 = Cabs〈ρ2〉 = 0.2〈µK−N〉 = 0.2〈σtot
K−N〉〈ρ〉 ,

where σtot
K−N accounts for the total one nucleon absorption cross section and, in symmetric

nuclear matter, it is given by:

〈σtot
K−N〉 = (σtot

K−p + σtot
K−n − σK−p→K−p − σK−n→K−n)/2 = 21.45 mb .

Taking 〈ρ〉 = ρ0/2, where ρ0 = 0.17 fm−3 is normal nuclear matter density, we obtain

Cabs ≈ 6 fm5 .
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The different partial processes that can take place in a two nucleon absorption reaction
are:

K−pp → pΛ, pΣ0, nΣ+

K−pn → nΛ, nΣ0, pΣ−

K−nn → nΣ− .

−200 −150 −100 −50 0 50 100
0

50

100

150

200

250

−E
B
 [MeV]

d 
σ/

d 
E

B
 [µ

b/
sr

/M
eV

]

 

 
V

opt
=(−60,−60) ρ/ρ

0
 − many body approach

V
opt

=(−60,−60) ρ/ρ
0
 − Monte Carlo simul., only QE

Figure 3: The results of the direct many body evaluation (full line), and of the Monte Carlo
simulation considering only the quasi-elastic scattering processes (dashed-dotted line), for
Vopt = (−60,−60)ρ/ρ0 MeV.

Ideally, their corresponding branching ratios should be obtained from relevant micro-
scopic mechanisms, such as the kaon-exchange processes depicted in Fig. 2. There might
be, however, other processes such as, for instance, those involving pion exchange. In the
present exploratory work, we will consider a much simpler approach consisting of assigning
equal probability to each of the above reactions. Noting that the chance of the kaon to
find a pn pair is twice as large as that for pp or nn pairs, we finally assign a probability of
3/10 for having a pΣ pair in the final state of K−NN absorption, 4/10 for nΣ, 1/10 for
pΛ and 2/10 for nΛ.

4.3 Nucleon and Hyperon cross-sections

Apart from following the kaons, our calculations also need to consider the quasi-elastic
scattering of nucleons, Λ and Σ hyperons on their way through the residual nucleus. The
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Figure 4: The same as Fig. 3, but for Vopt = (−200,−60)ρ/ρ0 MeV.

nucleon-nucleon cross sections σNN for different momenta are taken from the parameter-
ization of Ref. [66], as applied also in other simulations [35, 37]. Given the uncertainties
in the hyperon-nucleon cross sections, we may use the relation σY N = 2σNN/3 based on a
simple non-strange quark counting rule. This approximation is used for ΣN scatterings.
However, other more refined fits to experimental data also exist and, in the case of ΛN
scattering, we use the parameterization of Ref. [67], as was also done in Ref. [36].

5 Results and discussion

In the first place we would like to compare the results obtained with the diagrammatic
many-body method with those of the Monte Carlo simulation when only quasi-elastic
scattering is considered. This is shown in Figs. 3, 4 for different optical potentials: Vopt =
(−60,−60)ρ/ρ0 MeV and Vopt = (−200,−60)ρ/ρ0 MeV correspondingly. As we can see,
the two calculations are practically identical in the region of interest. The Monte Carlo
simulation produces slightly larger cross sections because it also takes into account the
multiple quasi-elastic scattering processes. It is clear that these additional events, which
contain a “good” final proton and more than one quasi-elastic collision, are rather rare.
However, as we will see, kaon absorption mechanisms produce a substantial amount of
energetic nucleons which need to be taken into account.

Before showing the contributions of the new processes, let us first explore the sensitivity
of the spectrum to the kaon optical potential. In Figs. 5, 6 we show the results obtained
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Figure 5: Results obtained using the many body method for kaon potential depths of 60
MeV, 200 MeV, 400 MeV and 600 MeV at normal nuclear density. Experimental data are
shown with black bars.

with the many body method employing potential depths of 60 MeV, 200 MeV, 400 MeV and
600 MeV at normal nuclear density. In Fig. 5 we see the absolute distributions plotted
together with the experimental spectrum [44]. Increasing the depth of the kaon optical
potential produces an enhancement of the cross section in the bound region of kaons, as
one might expect intuitively. The height of the theoretical distributions is much larger than
that of the experimental cross section. We have tested that our theoretical normalization is
correct. Indeed, if we remove the distortion of the incoming kaons and ougoing protons in
the many body method, we obtain that the strength of the integrated cross section for the
reaction on 12C is six times the one of the elementary reaction, K−p → K−p, at backward
angles. The distortion implemented here reduce the nuclear cross section by about a factor
3.5, which is also the same distortion effect obtained in [46].

The different size of the theoretical distribution as compared to the experimental data
is in fact showing the removal of events implemented by the concidence test applied in
Ref. [44], demanding that some extra charged particle is detected in a decay counter sur-
rounding the target together with the forward fast proton. It is, however, claimed in [44]
that the required coincidence does not change the shape of the spectrum. Assuming this,
we can rescale our calculations to give them the size of the experimental distribution, as
is illustrated in Fig. 6. The region of main interest corrresponds to a deep binding energy
for the kaon (i.e. high momenta for the proton) of about 50 MeV or more to the left of the
peak, since the quasi-elastic approach ignores many processes populating the spectrum at
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Figure 6: The same results as in Fig. 5, but rescaled to the heigth of the experimental
spectrum [44]. Experimental data are shown with black bars.

low proton momenta. We observe that, to obtain a good description of the spectrum from
−EB ∼ 0 down to −EB of around −100 MeV one would need optical potential depths as
large as 400 MeV, or even 600 MeV, at normal nuclear density, not the 190 MeV claimed
in Ref. [44], and even then we observe that the shape is not well reproduced for any of
the potentials.

In our opinion, these results indicate the existence of other contributions from processes
that are not yet taken into account and/or that the assumption of an energy independent
reduction factor due to the coincidence requirement might not be correct. These effects
can be investigated within the Monte Carlo simulation developed in this work. In Fig. 7
we show the results of the Monte Carlo simulation obtained with an optical potential
Vopt = (−60,−60)ρ/ρ0 MeV, taking into account only quasi-elastic processes (dash-dotted
line) and considering as well one nucleon and two nucleon absorption processes (solid line).
We can see that there is a non-negligible amount of strength gained in the region of “bound
kaons” due to the new mechanisms. Although not shown separately in the figure, we have
seen that one nucleon absorption and multi-scatterings contribute to the region−EB > −50
MeV. To some extent, this strength can be simulated by the parametric background used
in [44]. However, this is not true anymore for the two nucleon absorption processes, which
contribute to all values of −EB, starting from almost as low as −300 MeV.

It is very important to keep in mind that in the spectrum of [44] the outgoing forward
protons were measured in coincidence with at least one charged particle in the decay coun-
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Figure 7: Calculated proton spectra with Vopt = (−60,−60)ρ/ρ0 MeV, taking into account
only quasi-elastic processes (dash-dotted line), and including all processes (solid line).

ters surrounding the target. While a detailed simulation of these experimental conditions
is prohibitive we can at least see their consequences by applying the minimal coincidence
requirement. As described in Sect. 3.6 we eliminate the events that, for sure, will not
produce a coincidence, i.e. those in which, after a primary quasi-elastic collision producing
a fast forward proton and a backward kaon, neither particle suffer any further reaction.
While it is clear from Fig. 7 that the main source of energetic protons in the 12C(K−, p)
spectrum is the K−p quasi-elastic scattering process, many of these potentially “good”
events will be eliminated by the the minimal coincidence requirement. As a result, the
shape of the spectrum will change substantially, as clearly illustrated in Fig. 8 upon com-
paring the bare spectrum obtained with a kaon potential depth of 60 MeV (solid line) with
that obtained after the minimal coincidence cut (dashed line). The figure also shows the
spectra corresponding to a potential depth of 200 MeV, before (dot-dashed line) and after
the coincidence cut (dotted line). We clearly see that the sensitivity of the spectra in the
bound region to the optical potential employed is practically lost when the coincidence
requirement is applied. These results demonstrate the limited capability of the (K−, p)
reaction with in-flight kaons to infer the depth of the kaon optical potential. Actually, the
bare spectrum would be a more appropriate observable for this task.

To further understand the effects of the coincidence requirement we introduce addi-
tional constant suppression factors to the calculated spectrum [68], as seen in Figs. 9 and
10. Figure 9 shows our results using a shallow kaon nucleus optical potential, Vopt =
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Figure 8: Calculated 12C(K−, p) spectra for Vopt = (−60,−60)ρ/ρ0 MeV and Vopt =
(−200,−60)ρ/ρ0 MeV taking into account all contributing processes (solid and dot-dashed
lines), and imposing the minimal coincidence requirement (dashed and dotted lines).

(−60,−60)ρ/ρ0 MeV, as obtained in chiral models. Comparing to experimental data, we
can conclude that our results would need a reduction factor of about ∼ 0.7, more or less ho-
mogeneous in the “bound” region, −EB < 0 MeV, while the suppression should be weaker
in the continuum, and basically negligible for −EB > 50 MeV. This picture is natural from
the physical point of view, because the spectrum to the right of the peak is populated with
lower momentum protons. These are mostly produced in many particle final states, which
have a better chance to score the coincidence detectors.

However, if we look at Fig. 10, where the calculations with a deep kaon nucleus optical
potential of Vopt = (−200,−60)ρ/ρ0 MeV are shown, we can conclude that it is much more
difficult to obtain an overall description of the data with such a potential, even admitting
a strong supression in the bound region and a negligible one in the continuum.

In spite of the above described behavior, one cannot conclude that the experimental
spectrum supports especially one potential depth over the other. However, we want to
make clear that, in trying to reproduce the actual data, one necessarily introduces large
uncertanties due to the experimental set up. Contrary to what it is assumed in Ref. [44], we
have clearly seen in Fig. 8, that the spectrum shape is affected by the required coincidence.
In fact, the distorsion of the experimental spectrum due to the coincidence requirement can
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Figure 9: The 12C(K−, p) spectrum obtained with Vopt = (−60,−60)ρ/ρ0 MeV and the
minimal coincidence requirement, for several reduction factors. Experimental points are
taken from [44].

easily be much bigger than the difference between different potential depths, as seen by the
sensitivity of the spectrum to the optical potential displayed in Figs. 5 and 8. Thus, the
experiment of Ref. [44] is not appropriate for extracting information on the kaon optical
potential. The theoretical analysis of [44] was based on the assumption that the shape of
the spectrum does not change with the coincidence requirement. Since we have shown this
not to be case, the conclusions obtained there do not hold. Certainly, the experimental
data without the coincidence requirement of [44] would be a much more useful observable.
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