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Abstract

A search is presented for microscopic black holes in a like-sign dimuon final state in proton–
proton collisions at

√
s = 8 TeV. The data were collected with the ATLAS detector at the Large

Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb−1. Using a high track
multiplicity requirement, 0.6 ± 0.2 background events from Standard Model processes are predicted
and none observed. This result is interpreted in the context of low-scale gravity models and 95% CL
lower limits on microscopic black hole masses are set for different model assumptions.ar

X
iv

:1
30

8.
40

75
v1

  [
he

p-
ex

] 
 1

9 
A

ug
 2

01
3



Search for microscopic black holes in a like-sign dimuon final state using large track
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A search is presented for microscopic black holes in a like-sign dimuon final state in proton–
proton collisions at

√
s = 8 TeV. The data were collected with the ATLAS detector at the Large

Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb−1. Using a high track
multiplicity requirement, 0.6± 0.2 background events from Standard Model processes are predicted
and none observed. This result is interpreted in the context of low-scale gravity models and 95%
CL lower limits on microscopic black hole masses are set for different model assumptions.

PACS numbers: 13.85.Rm, 11.10.Kk, 04.50.-h, 04.50.Gh

I. INTRODUCTION

The hierarchy problem, in which the Planck scale
(MPl ≈ 1019 GeV) is much higher than the electroweak
scale (≈ 100 GeV), provides a strong motivation to search
for new phenomena not described by the Standard Model
of particle physics. A theory introducing extra dimen-
sions is one possible solution. In some models of extra
dimensions, the gravitational field propagates into n+ 4
dimensions, where n is the number of extra dimensions
beyond the four space-time dimensions. One of the mod-
els of extra dimensions is the model proposed by Arkani-
Hamed, Dimopoulos, and Dvali (ADD) [1–3], in which
the gravitational field propagates into large, flat, extra
dimensions while the Standard Model particles are lo-
calized in four space-time dimensions. Since the grav-
itational field propagates into the extra dimensions, it
is measured at a reduced strength in the four space-
time dimensions. Thus, the fundamental Planck scale
in D = 4 +n dimensions, MD, could be comparable with
the electroweak scale.

If extra dimensions exist and MD is of the order of
1 TeV, microscopic black holes with TeV-scale mass could
exist and be produced at the Large Hadron Collider
(LHC) [4–8]. These black holes are produced when the
impact parameter of the two colliding protons is smaller
than the higher-dimensional event horizon of a black hole
with mass equal to the invariant mass of the colliding
proton system.

The black hole production has a continuous mass dis-
tribution ranging from MD to the proton–proton center-
of-mass energy. The black holes evaporate by emitting
Hawking radiation [9], which determines the energy and
multiplicity of the emitted particles. The relative multi-
plicities of different particle types are determined by the
number of degrees of freedom of each particle type and
the decay modes of the emitted unstable particles. Black
hole events are thus expected to have a high multiplicity
of high-momentum particles.

This paper describes a search for black holes in a like-
sign dimuon final state. This final state can arise from
muons directly produced by the black hole, or from the
decay of Standard Model particles produced by the black

hole. The final state is expected to have low Standard
Model backgrounds while retaining a high signal accep-
tance. Since the microscopic black holes can decay to a
large number of particles with high transverse momen-
tum (pT), the total track multiplicity of the event is
exploited to distinguish signal events from backgrounds.
The final result is obtained from the event yield in a sig-
nal region defined by high track multiplicity.

The following assumptions and conventions apply in
this analysis. The classical approximations used for black
hole production, and the semi-classical approximations
for the decay are predicted to be valid only for black
hole masses well above MD. A lower threshold (MTH) is
applied to the black hole mass, MTH > MD + 0.5 TeV,
to reduce contributions from regions where the models
are invalid, and the production cross section is set to
zero if the proton–proton center of mass energy is below
MTH. The mass of the produced black hole decreases
from MTH to MD as a result of the emission of Hawking
radiation. When the mass of the black hole approaches
MD, quantum gravity effects become important. In the
final stage of the black hole decay, classical evaporation
is no longer a good description. In such cases where the
black hole mass is near MD, the burst model adopted by
the BlackMax event generator [10] is used in the final
part of the decay. No graviton initial-state radiation or
emission from the black hole is considered in this paper.
Models of rotating and non-rotating black holes are both
studied. The track multiplicity is predicted to be slightly
lower for rotating black holes [11].

A previous result from ATLAS [12] in this final state
excludes at 95% confidence level (CL) the production of
black holes with MTH ≤ 3.3, 3.6 and 3.7 TeV for MD

of 1.5 TeV and for n = 2, 4, and 6, respectively. A
previous search by the ATLAS Collaboration in a lep-
ton+jets final state [13] excludes at 95% CL black holes
with MTH ≤ 4.5 TeV for MD = 1.5 TeV and n = 6. The
CMS Collaboration has conducted searches in a multi-
object final state and excluded the production of black
holes at 95% CL with MTH ≤ 5.7, 6.1, and 6.2 TeV
for MD = 1.5 TeV and for n = 2, 4, and 6, respec-
tively [14, 15].

The rest of this paper is organized as follows. A brief
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description of the ATLAS detector is given in Sec. II. The
data and simulation samples are described in Sec. III, fol-
lowed by the event selection in Sec. IV. The background
estimation techniques are discussed in Sec. V. The final
results and their interpretation are presented in Sec. VI.

II. THE ATLAS DETECTOR

The ATLAS detector [16] is a multi-purpose detector
with a forward-backward symmetric cylindrical geome-
try covering nearly the entire solid angle [49] around the
collision point with layers of tracking detectors, calorime-
ters and muon chambers. The inner detector is immersed
in a 2 T axial magnetic field, provided by a solenoid, in
the z direction and provides charged particle tracking in
the pseudorapidity range |η| < 2.5. A silicon pixel de-
tector covers the luminous region and typically provides
three measurements per track, followed by a silicon mi-
crostrip tracker (SCT) that provides measurements from
eight strip layers. In the region with |η| < 2.0, the sili-
con detectors are complemented by a transition radiation
tracker (TRT), which provides more than 30 straw-tube
measurements per track.

The calorimeter system covers the range |η| < 4.9.
Lead/liquid argon (lead/LAr) electromagnetic sampling
calorimeters cover the range |η| < 3.2, with an additional
thin lead/LAr presampler covering |η| < 1.8 to correct
for energy loss in material upstream of the calorimeters.
Hadronic calorimetry is provided by a steel/scintillator-
tile calorimeter over |η| < 1.7 and two copper/LAr end-
cap calorimeters over 1.75 < |η| < 3.2. The solid
angle coverage is completed with forward copper/LAr
and tungsten/LAr calorimeters for electromagnetic and
hadronic measurements respectively up to |η| of 4.9.

The muon spectrometer consists of separate trigger
and high-precision tracking chambers that measure the
deflection of muon tracks in a magnetic field with a bend-
ing integral in the range of 2 T m to 8 T m. The mag-
netic field is generated by three superconducting air-core
toroid magnet systems. The tracking chambers cover the
region |η| < 2.7 with three layers of monitored drift tubes
supplemented by cathode strip chambers in the inner-
most region of the endcap muon spectrometer. The muon
trigger system covers the range |η| < 2.4 with resistive
plate chambers in the barrel, and thin gap chambers in
the endcap regions.

III. DATA AND MONTE CARLO SAMPLES

The data used in this analysis were collected with
the ATLAS detector from proton–proton collisions pro-
duced at

√
s = 8 TeV in 2012. The data correspond

to an integrated luminosity of 20.3 fb−1. The uncer-
tainty on the luminosity is 2.8% and is derived, follow-
ing the same methodology as that detailed in Ref. [17],
from a preliminary calibration of the luminosity scale ob-

tained from beam-separation scans performed in Novem-
ber 2012. The events used for this analysis were recorded
with a single-muon trigger with a threshold at 36 GeV on
the muon pT. The single muon trigger efficiency reaches
a plateau for muons with pT > 40 GeV and the plateau
efficiency is 71% in the barrel and 87% in the endcap
for muons reconstructed offline. The inefficiency in the
trigger is driven mainly by the uninstrumented regions
of the muon trigger system.

Monte Carlo (MC) samples are used for both signal
and background modeling. The ATLAS detector is sim-
ulated using geant4 [18], and simulation samples [19]
are reconstructed using the same software as that used for
the collision data. The effect of additional proton–proton
collisions in the same or neighboring bunch crossings is
modeled by overlaying simulated minimum-bias events
onto the original hard-scattering event. MC events are
then re-weighted so that the reconstructed vertex multi-
plicity distribution agrees with the one from data.

The dominant background processes are top-quark
pair (tt̄), diboson, and W+jets production with smaller
contributions from single-top production. Background
MC samples for the tt̄ and the single-top (Wt-channel)
processes are generated using powheg [20] and the
CT10 [21] parton distribution functions (PDFs). Frag-
mentation and hadronization of the events is done with
Pythia v6.426 [22] using the Perugia tune [23]. The
top-quark mass is fixed at 172.5 GeV. Alternative sam-
ples for studying the systematic uncertainty are made
using the alpgen v2.14 [24] or mc@nlo v4.03 [25] gen-
erators with herwig v6.520 [26] used for hadroniza-
tion and jimmy v4.31 [27] used to model the underly-
ing event for both generators. The nominal single-top
sample uses the diagram-removal scheme [28] and an al-
ternative sample using the diagram-subtraction scheme is
produced for systematic studies. Diboson samples (WZ
and ZZ) are generated and hadronized using sherpa
v1.4.1 [29]. The diboson samples are produced with the
CT10 PDF set and use the ATLAS Underlying Event
Tune 2B (AUET2B) [30]. These samples include the case
where the Z boson (or γ∗) is off-shell, with the invariant
mass of the γ∗ required to be above twice the muon mass.

Signal MC samples are generated using BlackMax
v2.02 [10, 31] and the MSTW 2008 LO [32] PDF set
with the mass of the black hole used as the factoriza-
tion and renormalization scale. The signal samples are
hadronized with Pythia v8.165 [33] using the AUET2B
tune. Signal samples for rotating and non-rotating black
holes are produced by varying MD between 1.0 TeV and
4.5 TeV, and MTH between 3.0 TeV and 6.5 TeV. In each
case, samples are generated with n = 2, 4, and 6. As an
illustration, the expected yield from rotating black holes
in a model with n = 4, MTH = 5 TeV, and MD = 1.5 TeV
is shown throughout the paper.
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IV. EVENT SELECTION

Events in data passing the single-muon trigger are se-
lected for this analysis. The detector was required to
have been operating properly when these events were
collected. Events are also required to have a primary
vertex reconstructed from at least five tracks with pT >
400 MeV. In events with multiple vertices, the vertex
whose associated tracks have the largest Σp2

T is identi-
fied as the primary vertex.

Muon candidates are reconstructed from tracks mea-
sured in the muon spectrometer (MS). The MS tracks are
matched with inner detector (ID) tracks using a proce-
dure that takes material effects into account. The final
parameters for the muon candidates are obtained from
a statistical combination of the measured quantities in
the MS and the ID. The muon candidates must sat-
isfy |η| < 2.4 and have pT > 15 GeV. The quality of
the ID track associated with a muon is ensured by im-
posing requirements [34] on the number of pixel, SCT
and TRT hits associated with the track. The ID tracks
must also pass a requirement on the longitudinal im-
pact parameter (z0) with respect to the primary vertex,
|z0 sin θ| < 1.5 mm.

Events are required to have at least two muons. The
two muons with the highest pT are required to have the
same charge. The muon with the highest pT in the event
is called the leading muon, while the muon with the sec-
ond highest pT is called the subleading muon. The lead-
ing muon is required to satisfy pT > 40 GeV to be above
the trigger threshold and pass requirements on isolation
and transverse impact parameter as described below. No
such requirements are made for the subleading muon.

The muon isolation is constructed from the sum of
transverse momenta of other ID tracks in a cone in η–
φ space of radius ∆R =

√
(∆η)2 + (∆φ)2 = 0.2 around

the muon. For the leading muon, the sum is required to
be less than 20% of the muon pT. The impact parameter
significance for the muons is defined as |d0/σ(d0)|, where
d0 is the transverse impact parameter of the muon, and
σ(d0) is the associated uncertainty. The leading muon
must satisfy |d0/σ(d0)| ≤ 3.0. The leading and sublead-
ing muons are required to be separated by ∆R > 0.2.

The total track multiplicity (Ntrk) of the event is cal-
culated by considering all ID tracks with pT > 10 GeV
and |η| < 2.5 that pass the same quality and z0 criteria
as those for the muon ID tracks. The track selection is
thus less stringent than the muon selection and the track
multiplicity counts the two muons as well.

All selections except the trigger requirements are ap-
plied to the MC events. The MC events are assigned
a weight based on their probability to pass the trigger
requirements. The total probability is calculated by con-
sidering each muon in the event and the individual prob-
ability of the muon to pass the trigger selection. The MC
events are also corrected to account for minor differences
between data and MC simulation in the muon reconstruc-
tion and identification efficiencies by applying pT- and

η-dependent scale factors. The tracking efficiency in MC
simulation [35] is consistent with data and has been con-
firmed with additional studies of tracking performance
in a dense environment [36]. Thus no corrections are
applied to the simulation for tracking performance.

Signal and validation regions are defined after the like-
sign dimuon preselection described above and using the
Ntrk definition. The signal region is defined as follows:

• Leading-muon pT > 100 GeV, and

• Track multiplicity Ntrk ≥ 30.

The validation regions are defined by inverting one or
both of the above requirements. Explicitly, the validation
regions are split into two types:

• Leading muon satisfies 40 < pT < 100 GeV without
any requirement on Ntrk.

• Leading-muon pT > 100 GeV and Ntrk < 24.

The validation regions are further split into bins in track
multiplicity to test the background estimation techniques
described in the next section.

V. BACKGROUND ESTIMATION

The backgrounds from Standard Model processes are
divided into two categories for ease of estimation: pro-
cesses where the two muons come from correlated decay
chains and processes that produce like-sign dimuons in
uncorrelated decay chains. Examples of correlated decay
chains are the decays of tt̄ events, where there is a fixed
branching ratio to obtain like-sign dimuons. The most
likely scenario in tt̄ events is where the leading isolated
muon arises from the decay of a W boson from one of the
top quarks, and the subleading muon of the same charge
comes either from the semileptonic decay of a b quark
from the other top quark, or from the sequential decay
b→ cX → µX ′ of a b-quark from the same top quark.

The uncorrelated background estimates arise predom-
inantly from the W+jets process, where the W boson
decay gives rise to the leading isolated muon and the
other muon arises from an in-flight π/K decay, or the
semileptonic decay of a B or D hadron. Processes such
as Z+jets, and single top in the s- and t-channels also
give rise to uncorrelated backgrounds when the leading
isolated muon arises from the vector boson decay, and
one of the jets gives rise to the second muon. The second
muon is referred to as a “fake” muon in the subsequent
discussion of the uncorrelated background estimate.

A. Correlated Background Estimates

The following sources of correlated backgrounds are
considered: tt̄ production, diboson production, and
single-top production in the Wt channel. Each of the
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three correlated backgrounds is estimated from dedi-
cated MC samples. The background from the Wt pro-
cess is small and it has been merged with the tt̄ back-
ground in the subsequent discussion and presentation.
Other possible sources such as tt̄W or tZ production and
backgrounds from charge misidentification of muons were
found to be negligible.

The sources of uncertainty on the tt̄ background are
the choice of MC event generator and parton shower-
ing model, the amount of initial- and final-state radia-
tion (ISR/FSR), and the theoretical uncertainty on the
production cross section. The tt̄ cross section used is
σtt̄ = 238+22

−24 pb for a top-quark mass of 172.5 GeV.
It has been calculated at approximate next-to-next-to-
leading order (NNLO) in QCD with hathor v1.2 [37]
using the MSTW 2008 90% NNLO PDF sets. It incor-
porates PDF+αS uncertainties, according to the MSTW
prescription [38], added in quadrature with the scale un-
certainty and has been cross-checked with the calcula-
tion of Cacciari et al. [39] as implemented in top++
v1.0 [40]. The uncertainty on the parton showering
model is assessed by comparing the nominal tt̄ prediction
with a prediction made using a powheg+herwig sam-
ple. The generator uncertainty is assessed by comparing
the powheg prediction with predictions made using the
alpgen and mc@nlo samples. The ISR/FSR uncer-
tainty is determined by using the AcerMC [41] gener-
ator interfaced to Pythia, and by varying the ISR and
FSR scale ΛQCD, as well as the ISR and FSR cutoff scale.
The effect of the top quark mass is studied by generating
dedicated samples with top-quark masses of 170 GeV and
175 GeV and is found to be negligible.

The diboson backgrounds have an uncertainty of 6%
on the production cross section [42] and a combined gen-
erator and parton-showering uncertainty of 24% based
on comparisons between sherpa and powheg, and from
renormalization and factorization scale variations [43].

In addition to the uncertainties described above, un-
certainties from the measurement of trigger efficiency, the
muon reconstruction and identification (including uncer-
tainties due to muon pT resolution), and the tracking
efficiency are considered for each background along with
the uncertainty on the integrated luminosity (2.8%). The
total systematic uncertainties on the final background
estimates from the different sources are summarized in
Table I.

B. Uncorrelated Background Estimates

The uncorrelated background is estimated from data
by first measuring the probability for a track to be recon-
structed as a muon in a control sample. This probability
is then applied to data events with one muon and at least
one track to predict the number of dimuon events. This
probability is referred to as a fake rate in the subsequent
discussion, and the background estimate is referred to as
the µ+fake background.

TABLE I: The systematic uncertainties on the event yields
in the signal region for the different backgrounds and sources,
in percent. The uncertainties on signal acceptance are also
summarized in the table.

Source µ+fake tt̄ Diboson Signal

Fake rate measurement 34

Photon trigger 13

Prompt correction 18

ISR/FSR 0.7

Parton showering 9

Generator 11 24

Cross section 10 6

Muon trigger 1.2 1.3 1.3

Muon reconstruction 2.0 1.2 2.3

Luminosity 2.8 2.8 2.8

Tracking efficiency 10 10 10

Fiducial efficiency 15

PDF (Acceptance) 5

Total 41 21 27 19

The fake rate is measured in a control sample consist-
ing of photon+jet events. These events are collected by a
single-photon trigger with a threshold at 40 GeV on the
photon transverse momentum. The trigger is prescaled,
and the collected dataset corresponds to an integrated
luminosity of 56 pb−1. The photon is required to have
pT > 45 GeV, and to satisfy the requirements of Ref. [44].

The photon is also required to satisfy E∆R≤0.4
T < 5 GeV,

where E∆R≤0.4
T is the sum of transverse energies of cells in

the electromagnetic and hadronic calorimeters in a cone
of 0.4 around the photon axis (excluding the cells asso-
ciated with the photon). The denominator for the fake
rate measurement is the number of events with one pho-
ton and at least one track. The track must satisfy all the
requirements imposed on an ID track associated with a
muon as described in Sec. IV. The track is required to
be separated from the photon by ∆R > 0.4. The nu-
merator is the subset of these events that have at least
one muon passing all the criteria associated with the sub-
leading muon as described in Sec. IV. In events with more
than one track (muon), the track (muon) with the high-
est pT is chosen. The fake rate can have contributions
from processes such as W (µν)γ and Z(µµ)γ that produce
prompt muons and bias the fake rate measurement. This
prompt-muon bias is corrected by subtracting these con-
tributions based on MC samples generated using sherpa.
The prompt muon correction ranges from approximately
1% at muon pT = 15 GeV to 30% at pT = 100 GeV.

The fake rate is parameterized as a function of the pT

and η of the track, and as a function of Ntrk. Since
the signal black hole models produce isolated photon
events as well, the fake rate is measured by requiring
Ntrk < 10 to reduce any potential signal contamination
of this control sample. The Ntrk dependence is parame-
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TABLE II: The predicted backgrounds in the validation re-
gions compared to the number of observed data events. The
uncertainties shown on the total background are the combined
statistical and systematic uncertainties.

Ntrk tt̄ Diboson µ+fake Total Data

40 GeV < Leading-muon pT < 100 GeV

Ntrk < 10 10000 800 20000 31000 ± 4000 28988

10 ≤ Ntrk < 20 800 3 400 1200 ± 100 1103

Ntrk ≥ 20 16 0.1 6.8 23 ± 3 12

Leading-muon pT ≥ 100 GeV

Ntrk < 10 2400 140 2300 4800 ± 600 4428

10 ≤ Ntrk ≤ 11 190 3 76 270 ± 31 271

12 ≤ Ntrk ≤ 14 133 1.1 42 176 ± 21 167

15 ≤ Ntrk ≤ 19 60 0.3 17 77 ± 9 68

20 ≤ Ntrk ≤ 24 10 0.1 2.9 13 ± 2 13

terized with a linear fit, and extrapolated for all events
with Ntrk > 10. The average fake rate based on the cri-
teria defined here is approximately 1%. The fake rate is
consistent with that obtained from photon+jet or W+jet
MC samples. The final µ+fake background estimate is
obtained by selecting events with one muon satisfying
the requirements of a leading muon, and one track of the
same charge satisfying the requirements associated with
an ID track. These µ±track± events are then assigned
a weight based on the fake rate calculated for the track,
and are then taken through the rest of the analysis chain
in the same way as µ±µ± events, with the track acting
as the proxy for the subleading muon. There is a cor-
rection to the fake estimate from overcounting due to tt̄
and diboson events populating the µ±track± events in
data. This correction is estimated from MC simulation
to be 2% and is negligible compared to the systematic
uncertainty on the fake estimate.

The uncertainties in the µ+fake background estimate
arise from the statistical uncertainties in measuring the
fake rate, the choice of the photon trigger used for the
control sample, and the prompt-muon bias correction.
The statistical uncertainty in the fake rate is propa-
gated to the final background estimate, along with the
uncertainty in the fit parameters used to parameterize
the Ntrk dependence. The fake rate is remeasured us-
ing data collected by a single-photon trigger with a pT

threshold of 80 GeV, and the background estimate is re-
calculated to assess the uncertainty due to the photon
trigger. To assess the uncertainty due to the prompt cor-
rection, the correction is varied by ±15% of its nominal
value to obtain “up” and “down” fake rates. The final
µ+fake background estimate is calculated with the up
and down fake rates, and the larger variation from the
nominal estimate is assigned as a systematic uncertainty.
The choice of ±15% is motivated by the uncertainties
described in Ref. [45] that include experimental uncer-
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FIG. 1: The leading-muon pT distribution for the predicted
background and observed data for all like-sign dimuon events
passing the preselection criteria. The background histograms
are stacked. The signal histogram is overlaid. The last bin
along the x-axis shows the overflows. The bottom panel shows
the ratio of data to the expected background (points) and the
total uncertainty on the background (shaded area).

tainties on photon reconstruction and identification, and
theoretical uncertainties on the production cross sections
of the Wγ/Zγ processes. Table I shows the effect of the
systematic uncertainties on the final µ+fake background
estimate.

VI. RESULTS AND INTERPRETATION

The background estimation techniques described in
the previous section are tested in the validation regions
defined in Sec. IV. Table II shows the predicted back-
grounds in the various validation regions and the ob-
served yields. The signal contamination is negligible in
all the validation regions. Overall, good agreement is
observed between the prediction and the observation.

Figure 1 shows the leading-muon pT distribution for all
like-sign dimuon events (satisfying the preselection). Fig-
ure 2 shows the dimuon invariant mass distribution after
imposing the pT > 100 GeV requirement on the leading
muon. Figure 3 shows the distribution of the dimuon
azimuthal separation, ∆φµµ for events with Ntrk ≥ 10
and where the leading muon has pT > 100 GeV. Fig-
ure 4 shows the track multiplicity distribution, which
shows good agreement between predicted backgrounds
and data. The predicted background and the observed
data events in the signal region are shown in Table III.
The figures and the table show the expected signal contri-
bution from rotating black holes in a model with n = 4,
MTH = 5 TeV and MD = 1.5 TeV.
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FIG. 2: The dimuon invariant mass (Mµµ) distribution for the
predicted background and observed data for like-sign dimuon
events where the leading muon satisfies pT > 100 GeV. The
background histograms are stacked. The signal histogram is
overlaid. The last bin along x-axis shows the overflows. The
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FIG. 4: The track multiplicity (Ntrk) distribution (ptrkT >
10 GeV) for the predicted background and observed data for
events where the leading muon has pT > 100 GeV. The back-
ground histograms are stacked. The signal histogram is over-
laid. The bottom panel shows the ratio of data to the ex-
pected background (points) and the total uncertainty on the
background (shaded area).

TABLE III: The predicted background in the signal region
compared to the number of observed events in data. The MC
predictions are shown together with statistical and systematic
uncertainties. The expected signal contribution from rotating
black holes in a model with n = 4, MTH = 5 TeV and MD =
1.5 TeV is also shown.

Source Signal Region

µ+fake 0.21 ± 0.09 ± 0.09

tt̄ 0.22 ± 0.08 ± 0.04

Diboson 0.12 ± 0.08 ± 0.03

Total 0.55 ± 0.15 ± 0.10

Data 0

Signal 14.2 ± 1.3 ± 2.7

No events are observed in the signal region, which is
consistent with the Standard Model prediction. This re-
sult is used to set upper limits on the number of events
from non-Standard Model sources. The CLs method [46]
is used to calculate 95% CL upper limits on σvis =
σ × BR × A × ε, where σvis is the visible cross section,
σ is the total cross section, BR is the inclusive branch-
ing ratio to like-sign dimuons, A is the acceptance, and
ε is the reconstruction efficiency for non-Standard Model
contributions in this final state in the signal region. The
observed 95% CL limit on σvis is 0.16 fb. The observed
limit agrees well with the expected limit of 0.16 fb. The
standard deviation (σ) bands on the expected limit at 1σ
and 2σ are 0.15–0.22 fb and 0.15–0.29 fb, respectively.
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Exclusion contours in the plane defined by MTH and
MD for rotating and non-rotating black holes for n =
2, 4, and 6 are obtained. No theoretical uncertainty on
the signal prediction is assessed, i.e. the exclusion limits
are set for the exact benchmark models as described in
Sec. III.

The signal acceptance is measured from the event gen-
erator (truth) by imposing the following selections at the
particle level. Each event must have at least two true
muons with pT > 15 GeV and |η| < 2.4, and the lead-
ing two muons in pT must have the same charge. The
leading muon must satisfy pT > 100 GeV. The leading-
muon truth-isolation (Igen) is defined as the sum of pT

of all charged particles with pT > 1 GeV within a cone
of ∆R = 0.2 around the muon (excluding the muon).
The leading muon is required to satisfy Igen < 0.25× pT.
Each event must also have at least 30 charged particles
satisfying pT > 10 GeV and |η| < 2.5. The ratio of events
passing these selections at particle level to the total num-
ber of generated events gives the acceptance. The accep-
tance varies from 11% to 0.2% across the range of model
parameters considered here.

The acceptance is then corrected to take into account
detector effects. The correction factor, εfid, is defined as
the ratio of number of events passing the selection criteria
after full detector reconstruction to the number of events
passing the acceptance criteria at the particle level. The
factor is found to be independent of the number of extra
dimensions, and is linearly dependent on k = MTH/MD.
The linear dependence is assessed separately for rotating
and non-rotating black holes by a fit to the efficiency as
a function of k. For rotating (non-rotating) signals εfid

rises from 0.35 (0.3) for k = 1 to 0.55 (0.65) for k = 3.

The uncertainty on the signal prediction has the fol-
lowing components: the uncertainty on the εfid fit pa-
rameters, the uncertainty on luminosity, the uncertainty
on acceptance due to the PDFs, the experimental uncer-
tainty on acceptance due to muon trigger and identifi-
cation efficiencies, and the uncertainty due to tracking
efficiency. The uncertainty on acceptance due to PDF
was estimated by using the 40 error sets associated to
the MSTW 2008 LO PDF set. In the signal region, at
high Ntrk, it is possible for small differences between the
track reconstruction efficiencies in data and simulation
to be magnified. The effect of any possible disagreement
between data and simulation is studied by artificially in-
creasing the disagreement and probing the subsequent
effect on the signal acceptance. A disagreement of 2% in
the per-track reconstruction efficiency translates to a 5%
uncertainty in the signal acceptance for Ntrk ≥ 30. As a
conservative choice, a 10% uncertainty on signal accep-
tance is assigned to account for possible disagreements in
data and simulation track reconstruction efficiency. The
uncertainties are summarized in Table I.

Figure 5 shows the expected and observed exclusion
contours for non-rotating black holes for n = 2, 4, and
6. Figure 6 shows the same for rotating black holes. In
both figures, the 1σ uncertainty band on the expected
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FIG. 5: The 95% CL exclusion contours for non-rotating black
holes in models with n = 2, 4, and 6. The dashed lines show
the expected exclusion contour, the solid lines show the ob-
served exclusion contour. The regions below the contours are
excluded by this analysis. The 1σ uncertainty on the expected
limit for n = 2 is shown as a band. Lines of constant slope
k = MTH/MD = 2, 3, 4, and 5 are also shown. Only slopes
k � 1 correspond to physical models.
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FIG. 6: The 95% CL exclusion contours for rotating black
holes in models with n = 2, 4, and 6. The dashed lines show
the expected exclusion contour, the solid lines show the ob-
served exclusion contour. The regions below the contours are
excluded by this analysis. The 1σ uncertainty on the expected
limit for n = 2 is shown as a band. Lines of constant slope
k = MTH/MD = 2, 3, 4, and 5 are also shown. Only slopes
k � 1 correspond to physical models.

limit is shown for n = 2. For each value of n, the ob-
served limit lies within the 1σ band. Lines of constant
slope (k = MTH/MD) of 2, 3, 4 and 5 are also shown. The
semi-classical approximations used for black hole produc-
tion and decay are expected to be valid only for large
slopes. The effect of choosing a different set of PDFs
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FIG. 7: The 95% CL exclusion contours for string balls in
models with n = 6. The dashed line shows the expected
exclusion contour with the 1σ uncertainty shown as a band.
The solid line shows the observed exclusion contour. The
region below the contour is excluded by this analysis. Lines
of constant k = MTH/MD = 2, 3, 4, and 5 are also shown.
Only the values k � 1 correspond to physical models.

for signal generation has been studied by considering the
CT10 PDF set. The predicted cross sections with the
CT10 PDF set are approximately 20% higher, but this
has a negligible impact on the exclusion contours due to
the rapidly falling cross section with mass for black hole
production.

The theory of large extra dimensions can be embedded
into weakly-coupled string theory [47, 48], giving rise to
string balls whose decay would be experimentally similar
to the decay of black holes. Models of string balls have
two additional parameters MS and gS, the string scale
and the string coupling constant respectively, in addition
to MTH, MD, and n. BlackMax is used to simulate
the production and decay of string balls, and to obtain
exclusion contours in the plane defined by MTH and MS.
Following Ref. [48], the values of gS and MD are set by

g2
S = 1/5

n+2
n+1 , and MD = 5

1
n+1MS. The exclusion contour

in the MTH–MS plane for string balls is shown in Fig. 7
for models with n = 6 (where gS = 0.40 and MD =
1.26MS). Table IV shows the summary of lower limits
placed on the mass of microscopic black holes and string
balls for MD = 1.5 TeV for different values of n.

VII. CONCLUSIONS

A search for microscopic black holes has been carried
out using 20.3 fb−1 of data collected by the ATLAS de-
tector in 8 TeV proton–proton collisions at the LHC. No
excess of events over the Standard Model background ex-
pectations is observed in the final state with a like-sign
dimuon pair and high track multiplicity. Exclusion con-

TABLE IV: The lower limits on MTH at 95% CL are sum-
marized for different models. MD is fixed at 1.5 TeV. For the
string ball model, gS = 0.40 and MS = MD/1.26 = 1.2 TeV.

Model n MTH[TeV]≥
Non-rotating black hole 2 5.3

Non-rotating black hole 4 5.6

Non-rotating black hole 6 5.7

Rotating black hole 2 5.1

Rotating black hole 4 5.4

Rotating black hole 6 5.5

String ball 6 5.3

tours in the plane of the fundamental Planck scale MD

and the threshold mass MTH of black holes are shown and
a limit of 0.16 fb at 95% CL is set on the visible cross
section for any new physics in the signal region defined
by a like-sign dimuon pair and high track multiplicity
selection.
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[33] T. Sjöstrand, S. Mrenna, and P. Z. Skands, Comput.
Phys. Commun. 178, 852 (2008), 0710.3820.

[34] ATLAS Collaboration, ATLAS-CONF-2011-063 (2011),
http://cds.cern.ch/record/1345743, URL http://cds.

cern.ch/record/1345743.
[35] ATLAS Collaboration, New J. Phys. 13, 053033 (2011),

1012.5104.
[36] ATLAS Collaboration, Eur. Phys. J. C71, 1795 (2011),

1109.5816.
[37] M. Aliev et al., Comput. Phys. Commun. 182, 1034

(2011), 1007.1327.
[38] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur.

Phys. J. C64, 653 (2009), 0905.3531.
[39] M. Cacciari et al., Phys. Lett. B 710, 612 (2012),

1111.5869.
[40] M. Czakon and A. Mitov (????), 1112.5675.
[41] B. P. Kersevan and E. Richter-Was (????), 0405247.
[42] J. M. Campbell, R. K. Ellis, and C. Williams, J. High

Energy Phys. 07, 018 (2011), 1105.0020.
[43] ATLAS Collaboration, Phys. Rev. D 87, 052002 (2013),

1211.6312.
[44] ATLAS Collaboration, Phys. Rev. D 85, 092014 (2012),

1203.3161, URL http://link.aps.org/doi/10.1103/

PhysRevD.85.092014.
[45] ATLAS Collaboration, Phys. Rev. D 87, 112003 (2013),

1302.1283, URL http://link.aps.org/doi/10.1103/

PhysRevD.87.112003.
[46] A. L. Read, J. Phys. G28, 2693 (2002), URL http://

stacks.iop.org/0954-3899/28/i=10/a=313.
[47] S. Dimopoulos and R. Emparan, Phys. Lett. B 526, 393

(2002), hep-ph/0108060.
[48] D. M. Gingrich and K. Martell, Phys. Rev. D 78, 115009

(2008), 0808.2512.
[49] ATLAS uses a right-handed coordinate system with its

origin at the nominal interaction point (IP) in the center
of the detector and the z-axis along the beam pipe. The x-
axis points from the IP to the center of the LHC ring, and
the y-axis points upward. Cylindrical coordinates (r, φ)
are used in the transverse plane, φ being the azimuthal

http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://link.aps.org/doi/10.1103/PhysRevD.82.074018
http://link.aps.org/doi/10.1103/PhysRevD.82.074018
http://cds.cern.ch/record/1363300
http://cds.cern.ch/record/1345743
http://cds.cern.ch/record/1345743
http://link.aps.org/doi/10.1103/PhysRevD.85.092014
http://link.aps.org/doi/10.1103/PhysRevD.85.092014
http://link.aps.org/doi/10.1103/PhysRevD.87.112003
http://link.aps.org/doi/10.1103/PhysRevD.87.112003
http://stacks.iop.org/0954-3899/28/i=10/a=313
http://stacks.iop.org/0954-3899/28/i=10/a=313


10

angle around the beam pipe. The pseudorapidity is de-
fined in terms of the polar angle θ as η = − ln tan(θ/2).



11

The ATLAS Collaboration

G. Aad48, T. Abajyan21, B. Abbott112, J. Abdallah12, S. Abdel Khalek116, O. Abdinov11, R. Aben106, B. Abi113,
M. Abolins89, O.S. AbouZeid159, H. Abramowicz154, H. Abreu137, Y. Abulaiti147a,147b, B.S. Acharya165a,165b,a,
L. Adamczyk38a, D.L. Adams25, T.N. Addy56, J. Adelman177, S. Adomeit99, T. Adye130, S. Aefsky23,
T. Agatonovic-Jovin13b, J.A. Aguilar-Saavedra125b,b, M. Agustoni17, S.P. Ahlen22, A. Ahmad149, F. Ahmadov64,c,
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W.J. Mills169, C. Mills57, A. Milov173, D.A. Milstead147a,147b, D. Milstein173, A.A. Minaenko129,
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ac Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat
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