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Abstract

We study the photoproduction of scalar mesons close to the thresh-
old of f0(980) and a0(980) using a unitary chiral model. Peaks for
both resonances show up in the invariant mass distributions of pairs
of pseudoscalar mesons. A discussion is made on the photoproduction
of these resonances in nuclei, which can shed light on their nature, a
subject of continuous debate.
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1 Introduction

The understanding of the scalar sector of mesons has been traditionally very
problematic. The low energy scalar states, like the f0(980) IG(JPC) =
0+(0++) and a0(980) IG(JPC) = 1−(0++), have been ascribed to conven-
tional qq̄ mesons [1, 2], q2q̄2 states [3, 4], KK̄ molecules [5, 6], glueballs [7]
and hybrids [8]. An important step in the understanding of the nature of
these states has been made possible in terms of chiral Lagrangians [9] by
using a nonperturbative unitary model in coupled channels based on a O(p2)
expansion of the inverse of the K matrix [10], similar to the effective range
expansion in Quantum Mechanics. Within this method, a good reproduction
of all data on meson-meson interactions up to 1.2 GeV is obtained, including
the scalar and vector resonances, with their position, width and partial decay
rates well described.

A further insight into the problem is offered in [11] where an investigation
of the meson-meson data up to 1.4 GeV using arguments based on the large
Nc limit of QCD is done. This allows one to distinguish between meson
resonances which survive in the large Nc limit, which are genuine QCD meson
states (essentially built from qq̄), and other states which appear from multiple
scattering of the mesons and which qualify as quasibound meson-meson states
or scattering resonances. The genuine qq̄ states in the scalar sector (L = 0)
would be one octet around 1.4 GeV and a singlet around 1 GeV. The σ(500)
and a0(980) appear then as a ππ resonance and a quasibound meson-meson
state, respectively. The f0(980) becomes a mixture of the genuine 1 GeV
singlet with large components of a meson-meson quasibound state. This
1 GeV singlet could be associated with the I = 0 state predicted around
this energy in QCD inspired models [12, 13] and also has been advocated
in phenomenological analyses [14, 15]. The effects of the 1 GeV singlet are
essentially seen in the ηη decay channels at energies above 1.1 GeV, but
it has no practical effect on other channels. This is indicative of the large
weight of the meson-meson molecular component in the f0(980) resonance.
For this reason it was possible to obtain a good reproduction of the data
of the scalar sector below 1.2 GeV in terms of multiple scattering of the
mesons alone with a “pseudopotential” provided by the lowest order chiral
Lagrangian [16]. In addition, one needs there a cut off to regularize the loop
integrals and account for the effect of higher order contributions from the
second order Lagrangian. This latter picture is technically very simple and
it is the one we shall employ here.
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Figure 1: Mechanisms for two pion production considered in Refs. [17, 18,
19, 20].

Consistency of these ideas, and in any case information on the nature
of these states, can be obtained by producing them on proton targets and
also in a nuclear environment which modifies the properties of the building
blocks, in this case pseudoscalar mesons, and should have repercussions on
the scalar mesons. Hence, we make some suggestions on how the properties
of the f0(980) and a0(980) scalar resonances in the nuclear medium could be
investigated.

2 Photoproduction of the scalar resonances

The reaction proposed is

γp → pM , (1)

where M is either of the resonances f0 or a0. In practice, the meson M will
decay into two mesons, ππ or KK̄ in the case of the f0(980) or KK̄, πη in
the case of the a0(980).

The f0 and a0 are L = 0 resonances. Hence we introduce the basic
mechanisms that will lead to the s-wave production of the pair of mesons.
Photoproduction of pairs of mesons has been the subject of theoretical studies
[17, 18, 19], particularly for ππ production. The approaches of [17, 18] for ππ
production are meant for energies of the photon below the K+K− production
threshold. Without going into detail in these latter models, we can refer to
the dominant term, depicted in Fig. 1(a), in order to see that it does not
involve the production of the two pions in s-wave. Indeed, the upper vertex
corresponds to ∆ → πN decay, where the pion is produced in a p-wave
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and the lower vertex is of the type ~S+ ·~ǫ leading to an s-wave pion. Another
term of relevance in [17, 18] is the photoproduction of the N∗(1520) resonance
which later decays into a ∆π (with s and d-waves) and the ∆ again decays
into a πN with the pion in p-wave. Other terms containing explicitly the
production of a ρ meson involve directly the pions in p-wave.

One can think of other resonance excitation like the N∗(1535) and its
decay into Nππ, but this we will show later on that does not lead to 2π in
s-wave.

A different point of view can be taken by means of which the production of
the s-wave pair of mesons is isolated. This can be accomplished easily in the
context of chiral effective theories which are meant to work at relatively low
energies. This is the approach which we shall follow and for this reason we
shall concentrate at energies of the photon close to the threshold production
of the f0(980) and a0(980) resonances.

In [19] a combined analysis of ππ and KK̄ photoproduction in s-wave is
conducted. The study is done at higher photon energies than in the present
paper, Eγ = 4 GeV in [19] while here we shall evaluate cross sections for
Eγ = 1.7 GeV. In [19] a particular mechanism for pair production is used,
which is depicted in Fig. 1(b). The intermediate meson lines stand for π,
ρ, ω. Alternatively a Regge exchange model is used with a strength to be
adjusted to data. At the high energies explored and with the model used,
there is a strong t dependence of the cross section and the pair of pions are
produced in many partial waves, out of which the s-wave is projected out.

In [20] which is concerned about K+K− photoproduction, other mecha-
nisms are suggested. They are depicted in Fig. 1(c), where an s-wave reso-
nance is produced from the photon and a virtual meson or a Pomeron (as
in diagram 1(d)) is exchanged from a vector meson produced by the pho-
ton. In addition, the bremsstrahlung diagrams depicted in Fig. 2(a)(b) are
also suggested. It looks clear to us that at high energies the mechanisms of
production can be rather complicated, as the complexity of the φ photopro-
duction model of [21], followed by φ → K+K− decay, shows. Also, as shown
in [21], there are many unknown parameters in the theory. The same can
be said about the diagrams (c) and (d) of Fig. 1, the strength of which is
unknown.

Our approach is different to all of these and relies upon the use of effective
chiral Lagrangians. They provide us with Lagrangians for s-wave coupling of
pairs of mesons to the baryons, from where the coupling of the external pho-
ton becomes straightforward. However, we have the limitation of relatively
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low energies for the use of these Lagrangians and this is the reason why we
concentrate around threshold of the scalar mesons production.

The lowest order Lagrangians for meson-meson and meson-baryon inter-
actions are given by [9]

LI = L(M)
I + L(MBE)

I + L(MBO)
I (2)

with L(M)
I for pure meson-meson interaction, L(MBE)

I for meson-baryon ver-

tices containing an even number of mesons and L(MBO)
I for meson-baryon

vertices containing an odd number of mesons. These interaction Lagrangians
are given by

L(M)
I =

1

12f 2
〈(∂µΦΦ − Φ∂µΦ)2 + MΦ4〉 (3)

L(MBE)
I =

1

4f 2
〈B̄iγµ [(Φ∂µΦ − ∂µΦΦ)B − B(Φ∂µΦ − ∂µΦΦ)]〉 (4)

L(MBO)
I =

D + F

2
〈B̄γµγ5uµB〉 +

D − F

2
〈B̄γµγ5Buµ〉 (5)

with uµ up to three meson fields given by

uµ = −
√

2

f
∂µΦ +

√
2

12f 3
(∂µΦΦ2 − 2Φ∂µΦΦ + Φ2∂µΦ) (6)

with f the pion decay constant, the symbol 〈 〉 standing for the trace of the
SU(3) matrices and Φ, B the meson and baryon SU(3) matrices given by

Φ =









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η









(7)

B =









1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ









(8)

Our starting point will be the meson-baryon → meson-baryon vertex origi-
nated from the Lagrangian of Eq. (4). We need actually only the K−p →
K−p and π−p → π−p couplings which are given by
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Figure 2: Feynman diagrams for the process γp → p m1m2: (a) and (b),
meson pole processes; (c) contact term required by gauge invariance.

Vπ(K) = −Cπ(K)
1

4f 2
ū(p′)γµu(p)(kµ + k′

µ) , (9)

where k, k′ are the momenta of the incoming and outgoing mesons and
Cπ = 1, CK = 2. As mentioned above, the constant f is the pion decay
constant (fπ = 93 MeV). In the present work the KK̄ states are the most
relevant building blocks of the resonances, and thus the K−p → K−p is
the relevant ingredient. In Refs. [22, 24] a study of the latter reaction and
coupled channels was done using a unitary chiral method. We follow here
the approach of [24] where an intermediate value of f between the one of
kaons and pions f = 1.15fπ was chosen and this will be used here too for
this latter amplitude. The choice of an average value for f in [24], together
with the choice of a cut off, is an approximate way to incorporate the effects
of higher order Lagrangians, which is possible in the K−p sector but not in
other meson baryon channels [22, 23].

For the low energies which we will consider here and only s-wave of the
pair of mesons, the vertex of Eq. (9) simplifies to

Vπ(K) = −Cπ(K)
1

4f 2
(k0 + k′0) . (10)

This vertex, together with the standard electromagnetic coupling of the pho-
ton to the mesons, allows one to evaluate diagrams (a) and (b) of Fig. 2. How-
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ever, gauge invariance requires the presence of the contact term of Fig. 2(c),
which we also need, for γπ−p → π−p and γK−p → K−p, or analogously
γp → π+π−p, γp → K+K−p. The vertex is given by

V γ
π(K) = −Cπ(K)

e

2f 2
ū(p′)γµu(p)ǫµ . (11)

As argued above we choose an energy of the photon around Eγlab = 1.7 GeV.
This allows one to produce the scalar resonances close to threshold. This
kinematics allows us to simplify Eq. (11) which becomes now in the CM of

the γp system and using the Coulomb gauge, ǫ0 = 0, ~ǫ · ~k = 0,

V γ
π(K) = Cπ(K)

e

2f 2

i(~σ × ~q)~ǫ

2M
, (12)

with M the mass of the proton and ~q the photon momentum.
For the case of K+K− production, with the energy of the photon chosen,

the kaon momenta are very small. In this case, the kaon Bremsstrahlung
diagrams, 2(a), 2(b), give a negligible contribution (less than 5%) and we
shall neglect them. This is not the case for the pions, which carry a larger
momentum and these mechanisms become important. On the other hand,
there are many mechanisms for π+π− production around this region, as can
be seen by the relative complexity of the models used to study the process
γp → π+π−p up to Eγ ≃ 1 GeV in [17, 18].

In the case of ππ production we shall evaluate the contribution from the f0

resonance and we will estimate the background from the experimental cross
section. This should give us an idea of the ratio of the signal for f0 excitation
to the background to be found in actual experiments. On the other hand, the
near threshold cross sections for K+K− production evaluated here should be
rather realistic, since other terms which can be constructed in analogy to the
model of [17] would vanish at threshold.

The next step necessary to build up the scalar meson resonances is the
final state interaction of the mesons. For this purpose we follow the approach
of [16], where the resonances are obtained through an iteration of the lowest
order chiral Lagrangian vertex considered as a potential in the Bethe-Salpeter
equation. This is depicted in Figs. 3(a), 3(b), 3(c).

However, unlike the tree level Bremsstrahlung diagrams of Figs. 2(a), 2(b)
which are either negligible at threshold of the meson pair production, or have
a strong angular dependence when the meson momenta are not small, the
loops considered in Figs. 2(d), (e), (f), (g) directly contribute to s-wave pair
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Figure 3: Iterated terms from the contact term and from mesonic
Bremsstrahlung.

production and are also required by gauge invariance. The set of diagrams
in Fig. 3 build up the s-wave resonance production and are evaluated below.

We have mentioned above how the main terms in ππ production in [17, 18]
do not produce the two pions in s-wave. One can envisage other mechanisms
for the s-wave resonance production like the one corresponding to diagrams
3 (a), (b), (c), where the photon couples to the nucleon before of after the
NNMM vertex. In this case the dominant component would vanish at
threshold of resonance production since it involves the amplitude of Eq. (10)

but with (k0−k′0) rather than (k0+k′0). Smaller components from ~γ ·(~k−~k′ )
from Eq. (9) would be even further suppressed, since at threshold of resonance
production there is a cancellation between the diagrams where the photon
couples before and after the NNMM vertex. It is also easy to see that for
parity reasons, terms like those in Figs. 3(f), (g) with the photon coupling
to the second loop do vanish.

Unitarity in coupled channels for the two strongly interacting mesons is
one of the important ingredients here in order to produce the f0(980) and
a0(980) resonances. One could also think of the coupling of the final BMM
system to intermediate BM states. In this case one should select the case
with BM in s-wave. The coupling of γN to BM in s-wave has been worked
out in [22] and diagrammatically it is depicted in Fig. 4(a), incorporating
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Figure 4: Diagrams for one and two pion production including coupled chan-
nels.

the BM final state interaction.
Within the set of chiral Lagrangians written in Eqs. (3)–(5) the way to

couple an extra meson on top of the intermediate MB state is through dia-
grams like those depicted in Figs. 4(b)(c)(d). All these terms require the use

of the L(MBO)
I Lagrangian of Eq. (5), where the γµγ5∂µΦ combination leads

to a ~σ~p vertex in the nonreativistic reduction, and hence a p-wave meson,
leading to terms which do not contribute to the scalar meson production.

In the particular case of the N∗(1535) excitation, the arguments above
can be expressed by stating that the N∗ with negative parity cannot decay
into a nucleon and two pions in s-wave.

If one goes beyond the chiral approach and considers mechanisms for two
pion production involving the excitation of resonances, we find two types of
diagrams which would provide contribution . One of them is the γN → N∗

process followed by N∗ → N ππ (I = 0, s-wave). The N∗ should be a 1/2+

state in this case, and restricting ourselves to resonances below
√

s = 2000
MeV, we find the N∗(1440) and the N∗(1710). The mechanism mentioned
was considered for the case of the N∗(1440) in [17] and found to be relevant
only at threshold, but negligible at higher energies. Here we consider photons
at higher energies than in [17] and the N∗(1710) has more chances to be
relevant. Unfortunately both the uncertainty in the width , Γ = 50-250 MeV,
and the branching ratio for decay into Nππ (I = 0,s-wave) , B = 10-40%,
introduce large uncertainties in this contribution. On the other hand, the
helicity amplitude for this resonance has also large uncertainties but seems
to be reasonably smaller than in the N∗(1440) case [25].
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The second mechanism would correspond to diagrams like in Fig. 1(a)
with an N∗ instead of a ∆ in the intermediate baryon. In this case we should
have a 1/2− state to allow for an s-wave pion in the N∗ → Nπ decay. Here we
would have the N∗(1535) and N∗(1650) resonances. The uncertainties here
stem from the contact vertex gamma NN∗π, which from minimal coupling
from the leading constant NN∗π vertex would be zero, and in practice should
be relatively small.

The presence of such mechanisms would introduce some elements of un-
certainty in the cross sections evaluated here, although from the arguments
used above these terms do not seem to be large. There is still another argu-
ment that would favour the mechanism chosen here. Indeed, all the resonant
terms discussed above would provide the maximum contribution when their
propagators are placed on shell in the diagrams, providing an imaginary part
of the amplitude. As we shall see later on, the mechanisms considered here
lead to a peak in the real part of the amplitude when the f0(980) resonance
is excited which can interfere with the largely real amplitude of the whole
γN → ππN process, hence magnifying the effect of the resonance. This
would not be the case of the N∗ resonance excitation mechanisms which
would contribute mostly an imaginary part to the amplitude in the case
when the resonance is placed on shell and the mechanism is most relevant.

Accepting some uncertainties, the arguments given above indicate that
the mechanism considered here can provide a fair estimate of the strength
of the scalar resonance excitation, which is sufficient for the purpose of the
present paper, where an exploration of the possibilities of observation of these
resonances in gamma induced reactions is made.

Coming back to our model, the final states with a pair of mesons which
can be produced in the reactions are π+π−, π0π0, K+K−, K0K̄0, π0η. Note
that even if the π0π0, K0K̄0 and π0η do not couple to the photon vertex in
diagram (c) of Fig. 3, they can appear in the final states through the iterated
terms of diagrams (b), (c) . . . (g) when we sum over the intermediate state, l,
which can be either π+π− or K+K−.

The sum of diagrams in Fig. 3 bears a close resemblance to the φ decay
into KK̄γ which has been studied in [26, 27, 28]. Indeed, the vertex of Eq. (9)
changes kµ + k′

µ by kµ − k′
µ when the two mesons are outgoing and has the

same structure as the φ → KK̄ vertex which goes as ǫµ(φ)(kµ − k′
µ). The

results of [26, 27, 28] are very useful. Using arguments of gauge invariance it
is found there that the sum of the loops in Figs. 3(b), 3(d), 3(e) is convergent
and replaces the two meson loop of Fig. 3(b)
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G(P ) = i
∫

d4k

(2π)4

1

k2 − m2 + iǫ

1

(P − k)2 − m2 + iǫ
(13)

by

G̃(Q, P ) = − Q · q
(2π)2

∫ 1

0
dx

∫ x

0
dy

(1 − x)y

Q2x(1 − x) − 2Q · q(1 − x)y − m2 + iǫ
(14)

where P is the fourmomentum of the two mesons, m the mass of the meson
in the loop (π+ or K+ in our case) and Q = p − p′. In addition, MI is the
invariant mass of the pair of mesons and the invariant product Q · q is given
here by

Q · q =
1

2
(Q2 − M2

I )

Q2 = 2M2 − 2E(~p)E(~p ′) + 2|~p||~p ′| cos θ (15)

This introduces a dependence of the t matrix for the process in the angle of
~p, ~p ′, but not the angle of the mesons with the photon.

The evaluation proceeds as follows. We must evaluate the contribution
of the three loops which we show now in Fig. 5 with the appropriate labels
for the momenta of the particles.

Diagrams (b) and (c) contribute on equal amount. We shall call contact
term (C) the one coming from diagram (a) and Bremsstrahlung (B) the one
coming from diagrams (b), (c). The contribution goes as (for the case of
intermediate π+π−)
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− it(γC) = −Cπ
e

2f 2
ū(~p ′)γµu(~p)ǫµ

∫

d4qL

(2π)4

× 1

q2
L − µ2 + iǫ

1

(Q + q − qL)2 − µ2 + iǫ
t(S) (16)

− it(γB) = Cπ
e

2f 2
ū(~p ′)γµu(~p)

∫

d4qL

(2π)4
2eqν

Lǫν(2qL − Q)µ

× 1

q2
L − µ2 + iǫ

1

(Q − qL)2 − µ2 + iǫ

1

(qL + q)2 − µ2 + iǫ
t(S)(17)

where t(S) is the strong meson-meson amplitude. Since Q, q are the only
vectors not integrated in Eqs. (16) , (17), the sum of the two terms has a
structure of the type

γµǫν {a gµν + bQµQν + c Qµqν + d Qνqµ + e qµqν} , (18)

where the contact term only contributes to agµν while the B term contributes
to all.

Gauge invariance of the sum of all terms requires that the expression of
Eq. (18) vanishes with the substitution ǫν → qν . This implies

a qµ + bQµ(Q · q) + d qµ(Q · q) = 0 (19)

or equivalently

b = 0; a = −d(Q · q) . (20)

On the other hand, in the Coulomb gauge chosen where ǫ0 = 0, ~ǫ ~q = 0 in
the γp CM frame, the expression of Eq. (18) is greatly simplified since we
have that

ǫµQµ = −~ǫ ~Q = −~ǫ (~p − ~p ′) ≃ −~ǫ ~p = ~ǫ ~q = 0 , (21)

ǫµqµ = −~ǫ ~q = 0 , (22)

where we have assumed ~p ′ ≃ 0 because we work close to the scalar meson
photoproduction threshold. Hence only the gµν term of Eq. (18) contributes
to the amplitude. The trick then is to evaluate the term which goes like dQνqµ
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to which only the B diagrams contribute and from it via Eq. (20) obtain the
coefficient a which is the only one needed to evaluate the amplitudes. Eq. (17)
is then evaluated using the Feynman technique and the terms proportional
to Qνqµ are kept. For dimensional reasons the rest of the integral has two
powers less in the loop variable qL, and hence the contribution to this term
is convergent and via Eq. (20) leads to the result of Eq. (14). Further details
on the integration technique can be seen in [26, 27, 28].

The work of [28] adds some new relevant ingredients to the work of [26,
27], since it proves that by using chiral Lagrangians to deal with the final state
interaction of the mesons after the first loop which involves the photon, the
strong t matrix for meson-meson interaction factorizes on shell. This occurs
because the MM → MM amplitudes in lowest order have the structure
αs + β

∑

i p
2
i , which can be recast into αs + β

∑

i m
2
i + β

∑

i(p
2
i − m2

i ), where
the first two terms account for the on-shell part. The last term in this former
expression kills one of the meson propagators in Eqs. (16), (17) and does not
provide contribution to the Qνqµ term.

With all these ingredients we can write the sum of the diagrams in Fig. 3
which leads to the amplitude

tγj =
e

4f 2

i(~σ × ~q)~ǫ

2M
(Dj +

∑

l

DlG̃lTlj) , (23)

where Dj is the vector (4, 0, 2, 0, 0) counting the channels in the following
order, K+K−, K0K̄0, π+π−, π0π0, π0η. The matrix Tlj in Eq. (23) is the
transition t matrix from the meson state l to j. These matrix elements are
easily obtained from [16] using the isospin decomposition of the states and
we find the matrix of Table 1, in terms of the isospin I = 0, I = 1 matrix
elements derived in [16].

One should note that the matrix elements involving pions use a unitary
normalization in [16] including an extra factor 1/

√
2 per each pair of pion

states. This normalization is convenient to account for factors due to the
identity of the particles when summing over intermediate states. The am-
plitudes of Table 1 are the physical ones, where the proper normalization of
the states is used.

The resonance structure of the pair of mesons comes from the term
∑

l DlG̃lTlj in Eq. (23). Hence, for the case of pion pair production, we
remove the isolated term Dj in Eq. (23) which, together with other terms
will build up the background for this process. In the case of KK̄ production
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K+K− K0K̄0 π+π− π0π0 π0η

K+K− 1
2

{

tI=0

KK̄,KK̄
+ tI=1

KK̄,KK̄

}

1
2

{

tI=0

KK̄,KK̄
− tI=1

KK̄,KK̄

} √

1
3

tI=0

KK̄,ππ

√

1
3

tI=0

KK̄,ππ
−

√

1
2

tI=1

KK̄,π0η

K0K̄0 1
2

{

tI=0

KK̄,KK̄
+ tI=1

KK̄,KK̄

} √

1
3

tI=0

KK̄,ππ

√

1
3

tI=0

KK̄,ππ

√

1
2

tI=1

KK̄,π0η

π+π− 2
3

tI=0
ππ,ππ

2
3

tI=0
ππ,ππ 0

π0π0 2
3

tI=0
ππ,ππ 0

π0η tI=1

π0η,π0η

Table 1: Elements of the transition t matrix from the state l to j (Tlj = Tjl).
The isospin I = 0, I = 1 matrix elements can be found in [16].

the threshold is above the f0 and a0 mass and the cross section does not
exhibit the resonance structure, although the amplitudes are affected by it.
In this case we keep all terms since with the amplitude of Eq. (23) we are
producing absolute cross sections.

The function G̃ of Eq. (14) can be written in an analytical form following
[26, 27]. However, there are novel ingredients here since Q2 can be negative,
unlike the case of the φ decay, where m2

φ is positive. For this reason we give
below the analytical expressions valid in all the range of values of Q2, M2

I .

G̃(Q2, M2
I ) =

1

8π2

{

1

2
− 2

a − b

[

f
(

1

b

)

− f
(

1

a

)]

+
a

a − b

[

g
(

1

b

)

− g
(

1

a

)]}

(24)

where a = Q2/m2, b = M2
I /m2, m is the mass of the meson in the loop and

f(x) and g(x) are given by

f(x) =











































−
[

arcsin
(

1
2
√

x

)]2
for x > 1

4

1
4

[

ln
(

η+

η
−

)

− iπ
]2

for 0 < x < 1
4

[

argsinh
(

1
2
√
−x

)]2
for x < 0
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g(x) =







































(4x − 1)
1

2 arcsin
(

1
2
√

x

)

for x > 1
4

1
2
(1 − 4x)

1

2

[

ln
(

η+

η
−

)

− iπ
]

for 0 < x < 1
4

(1 − 4x)
1

2 argsinh
(

1
2
√
−x

)

for x < 0

η± =
1

2x

[

1 ± (1 − 4x)
1

2

]

(25)

The particular structure of Eq. (23) allows one to obtain an easy formula
for the invariant mass distribution of the two mesons

dσ

dMI

∣

∣

∣

∣

∣

j

=
1

(2π)3

1

4s

M2

s − M2

1

MI
Sλ1/2(s, M2

I , M2)λ1/2(M2
I , m2

1, m
2
2)

×1

2

∫ 1

−1
d cos θ ¯∑∑

∣

∣

∣tγj
∣

∣

∣

2
, (26)

where m1, m2 are the masses of the two mesons in the final meson-meson
state, λ is the ordinary Källen function and S is a symmetry factor, 1/2 for
π0π0 in the final state and 1 for the other channels.

The technique used here has been recently applied to the study of the
radiative φ decay, φ → π+π−γ, which proceeds via K+K− loops [30]. An in-
variant mass distribution is predicted in [30] with a clear peak for the f0(980)
excitation. Recently the measurements have been concluded at Novosibirsk
[31] and the experimental distribution is in perfect agreement with the pre-
dictions of [30]. This finding gives us extra confidence in the techniques used
here for the photoproduction processes.

3 Results

In Fig. 6 we show the results for the 5 channels considered. We observe clear
peaks for π+π−, π0π0 and π0η production around 980 MeV. The peaks in
π+π− and π0π0 clearly correspond to the formation of the f0(980) resonance,
while the one in π0η corresponds to the formation of the a0(980). The π0π0

cross section is 1
2

of the π+π− one due to the symmetry factor S in Eq. (26).
As commented above, the K+K− and K0K̄0 production cross section ap-
pears at energies higher than that of the resonances and hence do not show
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Figure 6: Results for the cross section on protons as a function of the invariant
mass of the meson-meson system.

the resonance structure. Yet, final state interaction is very important and
increases appreciably the K+K− production cross section for values close
to threshold with respect to the Born approximation (only the Dj term in
Eq. (23), or diagram (a) of Fig. 3).

It is also interesting to see the shapes of the resonances which differ
appreciably from a Breit-Wigner, due to the opening of the KK̄ channel just
above the resonance [29].

We would like to stress here that the invariant mass distributions for
resonance excitation into the various pseudoscalar channels depicted in Fig. 6
are theoretical predictions of a chiral unitary model, in this case the one of
[16], where only one parameter was fitted to reproduce all the data of the
meson-meson interaction in the scalar sector.

A small variant of this reaction would be the γp → nMM̄ . In this case
the MM̄ system has charge +1 and hence I = 0 is excluded, hence, one
isolates the a0 production.

It is interesting to notice the origin of the peak structure for ππ produc-
tion. Indeed, the cross section for ππ → ππ in I = 0 exhibits a minimum at
the f0 energy because of the interference between the f0 contribution and the
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Figure 7: Results for the cross section on protons as a function of the invariant
mass of the meson-meson system including only the π+π− contribution on
the first loop.

σ(500) broad resonance. We can see this here also by killing the K+K− first
loop in the diagrams of Fig. 3. The results are shown in Fig. 7 for π+π− and
π0π0 production. Very small cross sections and a clear minimum around the
f0 position can be seen in the figure. This means that the resonant structure
for ππ production of Fig. 6 is due to the K+K− first loop which factorizes
the K+K− → ππ amplitude in the final state interaction. This amplitude
has a peak at the f0 position but cannot be seen in the K+K− → ππ cross
section because the resonance is below threshold. A reaction like the present
one which factorizes this amplitude at energies below the physical threshold
can then evidence the peak, as is indeed visible in the figure.

However, we should bear in mind that we have plotted there the contribu-
tion of the f0 resonance alone. The tree level contact term and Bremsstrahlung
diagrams, plus other contributions which would produce a background, are
not considered there. We estimate the background from the experimental
cross section for γp → pπ+π− of [32], which is around 45 µb at Eγ = 1.7 GeV.
Using Eq. (26), assuming ¯∑∑ |tγj |2 constant and integrating over the range of
MI allowed, we determine that constant from the experimental cross section
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Figure 8: Real and imaginary parts of the resonant piece of the amplitude
tγj (

∑

l DlG̃lTlj of Eq. (23)), for the channels π+π− and π0η.

and then the same Eq. (26) gives us the background for dσ/dMI . This pro-
vides a background of around 55 µb/GeV while the resonant peak has about
2.5 µb/GeV strength. This gives a ratio of 5% signal to background assum-
ing that the background is mostly real versus an imaginary contribution from
the resonance and hence there would be no interference. The situation with
the π0π0 channel should be better because the γp → π0π0p cross section is
about eight times smaller than the one for γp → π+π−p [33, 34]. Considering
that the resonant signal now is a factor two smaller than the γp → π+π−p
cross section, this would give a ratio of signal to background of 20%, which
should be more clearly visible in the experiment. The same or even better
ratios than in the π0π0 case are expected for π0η production in the a0 chan-
nel, since estimates of the background along the lines of present models for
π0π0 production [17, 18] would provide a cross section smaller than for π0π0

production.
However, there is a distinct feature about the f0 resonance which makes

its contribution, in principle, bigger than the estimates given above. Indeed,
the f0 is approximately a Breit-Wigner resonance with an extra phase of eiπ/2.
This means that the real part has a peak while the imaginary part changes
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sign around the resonance energy. This was the case in the KK̄ → ππ
amplitude [35] and we have the same situation here as can be seen in Fig. 8.
This means that assuming the background basically real, there would be
an interference with the f0 resonance which would lead to an increase of
about 50% over the background, or a decrease by about 40% (depending
on the relative sign) for the π+π− case and larger effects for the π0π0 case.
This is of course assuming weak dependence on momenta and spin of the
background amplitudes. In any case, due to the particular feature of the
f0 resonance discussed above, it is quite reasonable to expect bigger signals
than the estimates based on a pure incoherent sum of cross sections.

Certainly it is possible to obtain better ratios if one looks at angular cor-
relations. If one looks in a frame where the two mesons are in their CM, the
Bremsstrahlung pieces (both from the squared of the Bremsstrahlung term as
well as from interference with s-wave terms) have a sin2 θ dependence, with
θ the angle between the meson and the photon. Other terms from [17, 18]
exhibit equally strong angular dependence, for what extraction of the angle
independent part of the cross section would be an interesting exercise which
would select the part of the cross section to which the resonant contribution
obtained here belongs to.

4 Meson resonance production in nuclei

Now we turn our attention to nuclei. As mentioned in the introduction
there is much debate about the nature of the scalar meson resonances. The
modification of the properties of these resonances in nuclei should depend on
their nature. For instance, it would not be modified in the same way if it is
a qq̄ state than if it is a KK̄ molecule. Also, our scheme does not rely upon
any of these pictures, although it gives some support to the quasimolecular
nature of the states. In any case, we saw that the loop structure, with mostly
KK̄ in the loop, is what leads to the f0 production. Thus, the production in
nuclei would be modified due to the K, K̄ modification in a nuclear medium,
but in a particular way, due to the modification of the G̃ function in a
medium when the K, K̄ propagators are substituted by their renormalized
ones in the medium. The changes expected would certainly differ form those
expected on the base of the assumption of a KK̄ molecule and particularly
a qq̄ state for this resonance. In this sense modifications of the resonance
properties in nuclei are bound to offer us some information on the nature of

19



the states, eventually reinforcing the chiral unitary approach interpretation
of those states. The evaluation of the nuclear modifications would require
the use K, K̄ selfenergies in the nuclear medium, or equivalently their optical
potentials.

The interaction of K, K̄ with nuclei is a subject that has attracted much
attention [36]. Interesting developments have been done recently looking at
K−N scattering from a chiral perspective, which have allowed to tackle the
problem of the K, K̄ nucleus interaction with some novel results [37, 38, 39].
The issue is not yet settled since there are still important discrepancies be-
tween the different results. It looks wise to allow some time for the issue to
get clarified before one tackles the problem suggested here, which looks cer-
tainly quite interesting. Meanwhile we can make some exploration following
the lines of the former sections. The first thing which we observe is that if
one looks for a proton in the final state, one can have the γn → pπ−η(K−K0)
and approximately one would expect a cross section

dσ

dMI

∣

∣

∣

∣

∣

A

≃ Z
dσ

dMI

(p) + N
dσ

dMI

(n) . (27)

The latter cross section can proceed through the meson channels K−K0 and
π−η, both in I = 1. The cross sections in this case, for these two channels
and in this order, are given again by means of Eqs. (23) and (26), by taking
in Eq. (23) the vector D = (1, 0) and the matrix Tlj as

Tlj =

(

tI=1
KK̄,KK̄ tI=1

KK̄,πη

tI=1
KK̄,πη tI=1

πη,πη

)

. (28)

These cross sections are about one order of magnitude smaller than those on
the proton target, as seen in Fig. 9.

Hence, in nuclei we should expect a cross section roughly Z times the one
of the proton, unless the properties of the resonances a0 and f0 are drastically
modified in the medium, which is, however, what one expects. One should
recall that the relatively small widths of the f0 and a0 resonances are due to
the small coupling to the ππ and πη channels respectively. The resonances,
however, couple very strongly to the KK̄ system but the decay is largely
inhibited because the KK̄ threshold is above the resonance mass. Only the
fact that the resonances have already a width for ππ and πη decay, respec-
tively, allows the KK̄ decay through the tail of the resonance distribution.
If the K− develops a large width on its own this enlarges considerably the
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Figure 9: Results for the cross section on neutrons as a function of the
invariant mass of the meson-meson system.

phase space for KK̄ decay and the a0, f0 width should become considerably
larger.

Given the interest that the modifications of meson resonances in nuclei,
like the σ [40, 41], ρ [42, 43], etc., is raising, the study of the modifications
of the f0 and a0 is bound to offer us some insight into the nature of these
resonances, that has been so much debated, and eventually into the chiral
approach to these resonances which we have discussed in this paper.

5 Conclusions

In summary, we have studied the photoproduction of the f0(980) and a0(980)
resonances for photon energies close to the KK̄ production threshold using
tools of chiral unitary theory. The KK̄ production cross sections were evalu-
ated and the effect of the resonances was shown to modify drastically the cross
sections with respect to the Born approximation. The f0 and a0 resonances
led to peaks in the invariant mass distributions of ππ and πη production.
Although large backgrounds are expected, the signals could be visible par-
ticularly if angular correlations are also studied. The (γ, p) experiment in
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nuclei would also lead to the f0 and a0 excitation mostly from the collision
of photons with protons, since the neutrons provided only a contribution of
about an order of magnitude smaller than protons for a0 production and
do not contribute to the f0 production. The studies in nuclei would pro-
vide information on the f0, a0 properties in a nuclear medium, where large
modifications are expected in view of present results for the modification of
the K̄ properties in a nuclear medium based on chiral unitary approaches.
Such experimental studies are possible with present facilities like TJNAF and
Spring8/RCNP and they would provide novel tests for our understanding of
the nature of the scalar resonances and about current ideas on chiral unitary
theory, which is emerging as a powerful tool for the study of meson-meson
and meson-baryon interactions.
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