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Abstract

The self-energy of the K− meson in nuclear matter is calculated in a self-

consistent microscopic approach, using a K̄N interaction obtained from the

lowest-order meson-baryon chiral Lagrangian. The effective K̄N interaction in

the medium is derived by solving the coupled-channel Bethe-Salpeter equation

including Pauli blocking on the nucleons, mean-field binding potentials for

the baryons and the self-energy of the π and K̄ mesons. The incorporation of

the self-consistent K̄ self-energy in the description, in addition to the Pauli

blocking effects, yields a weaker attractive in-medium K̄N interaction and a

Λ(1405) which dissolves faster with increasing matter density, as a result of

the K̄ spectral function being spread out over a wide range of energies. These

effects are further magnified when the intermediate pions are dressed.

PACS: 12.38.Lg, 13.75.Jz, 14.20.Gk, 14.20.Jn, 14.40.Aq, 21.65.+f, 25.80.Nv
Keywords: K̄N interaction, Chiral Lagrangian, Λ(1405) in nuclear matter, Effective kaon
mass, Kaonic atoms.

I. INTRODUCTION

The properties of the kaons and antikaons in the nuclear medium have been the object
of numerous investigations since the possibility of the existence of a kaon condensed phase
in dense nuclear matter was pointed out [1]. The enhancement of the K− yield in Ni+Ni
collisions measured recently by the KaoS collaboration at GSI [2] can be explained by as-
suming the K− meson to feel a strong attraction in the medium [3,4]. Kaonic atom data, a
compilation of which is given in Ref. [5], also favor an attractive K− nucleus interaction.

Most of the recent theoretical works start from chiral Lagrangians that reproduce the
free space scattering properties which, in the case of K−p scattering, are dominated by
the presence of an isospin zero resonance, the Λ(1405). It is precisely the influence of
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this resonance what makes the K−p interaction repulsive at threshold, while the lowest
order Born s-wave amplitude from the chiral Lagrangian (the Tomozawa-Weinberg term)
is attractive. Evidently, one cannot expect chiral perturbation theory to work close to
a resonance. This is why all works studying the free space K−N interaction from the
chiral Lagrangian either introduce the Λ(1405) as an elementary field [6] or generate it
dynamically through the Lippmann-Schwinger [7] or the Bethe-Salpeter [8] equations. These
latter approaches allow for a microscopic incorporation of the medium effects on the the K̄N
interaction [9–12]. For instance, Pauli blocking on the intermediate nucleon states, makes
the K̄N interaction density dependent and this, in turn, modifies the K− properties from
those in free space. These medium modifications were already included long time ago in
the context of Brueckner-type many body theory [13] to obtain the kaon-nucleus optical
potential for kaonic atoms. The medium properties of kaons and antikaons have also been
obtained from mean field theories, built within the framework of chiral Lagrangians [4,14],
based on the relativistic Walecka-type model extended to incorporate strangeness in the
form of hyperons or kaons [15], or using explicitly quark degrees of freedom [16].

All the different approaches agree qualitatively in establishing that, in the medium, the
K+ feels a moderate repulsion and the K− a strong attraction. How large is this attraction
is still somewhat controversial. Recent phenomenological approaches [5] based on fits to
kaonic atom data find a K−-nucleus potential of the order of −200± 20 MeV in the nuclear
center. However, no calculation that starts from the bare K−N interaction predicts such
an attraction, the values ranging from −140 to −75 MeV. Hopefully, heavy-ion reactions,
that are sensitive to higher density regions, will help in elucidating these discrepancies. At
the same time, it is necessary to develop theories that treat the intricacies associated to the
mutual interaction between all the hadrons in the medium as accurately as possible.

In the present work we perform a microscopic study of the the K− properties in nuclear
matter by incorporating the medium modifications on the K̄N amplitude using the model
of Ref. [8], which was shown to reproduce the K−p scattering observables very satisfactorily.
As mentioned above, one source of density dependence is the Pauli blocking on the nucleon
states. This makes the K̄N interaction attractive and, on the other hand, shifts the reso-
nance to higher energies [9,11]. However, it was shown recently [12] that a self-consistent
calculation of the K− self-energy leaves the position of the resonance unchanged, due to
a compensation of the repulsive Λ(1405) shift with the attraction felt by the K− meson.
The importance of these medium effects makes it interesting to investigate other medium
modifications of the particles participating in building up the K̄N interaction. This is the
aim of the present work. To this end, we include, in addition, the dressing of the pions in the
πΛ, πΣ intermediate states, which couple strongly to the K̄N state. This is done through
a pion self-energy that contains the effect of one- and two-nucleon absorption, conveniently
modified to include the effect of nuclear short-range correlations. The medium effects on the
nucleons and hyperons is considered via density-dependent mean-field binding potentials.

After reviewing the free-space formalism in Sect. II, we describe, in Sect. III, the
appropiate modifications needed to incorporate the medium effects on the K̄N amplitude.
The details of the kaon and pion self-energies are given in Sect. IV. Our results are discussed
in Sect. V, where various approximations are compared. Finally, Sect. VI summarizes our
main results and conclusions.
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II. K̄N AMPLITUDES IN FREE SPACE

In this section we review the formalism used in Ref. [8] for describing K̄N scattering in
free space. The effective chiral Lagrangian formalism has been very successful in explaining
the properties of meson-meson interaction at low energies [17,18], as well as those of the
meson-baryon systems [19,20] when the interaction is weak, as in the case of the s-wave πN
and K+N interaction. However, the K̄N system couples strongly to many other channels
and generates a resonance below threshold, the Λ(1405). In this case the standard chiral
scheme, an expansion in powers of the typical momenta involved in the process, fails to be
an appropriate approach.

In Ref. [8] a non perturbative scheme, consisting of solving a set of coupled-channel
Bethe-Salpeter equations using the lowest order chiral Lagrangian in S-wave, was shown to
reproduce the low energy K−p scattering data very satisfactorily with only one-parameter,
the cut-off used to renormalize the loop integrals. A reinterpretation of these equations to
the light of the inverse amplitude method can be seen in Ref. [21], where it is shown that
the effect of higher order chiral Lagrangians can be reabsorbed with the choice of a suitable
cut-off in some cases. The model of Ref. [8] follows closely that of Ref. [7], where the success
of the non-perturbative approach using the chiral Lagrangians was first shown, but includes
the complete set of 0− meson and 1/2+ baryon octet states in the basis space of coupled
channels. The use of this complete set, apart from providing the right SU(3) symmetry
in the limit of equal baryon masses and equal meson masses, was found to be essential
for reproducing the experimental branching ratios at threshold with only the lowest order
Lagrangian.

The lowest order chiral Lagrangian, coupling the octet of pseudoscalar mesons to the
octet of 1/2+ baryons, is

L
(B)
1 = 〈B̄iγµ∇µB〉 − MB〈B̄B〉

+
1

2
D〈B̄γµγ5 {uµ, B}〉 +

1

2
F 〈B̄γµγ5[uµ, B]〉 , (1)

where the symbol 〈 〉 denotes the trace of SU(3) matrices and

∇µB = ∂µB + [Γµ, B]
Γµ = 1

2
(u†∂µu + u∂µu

†)

U = u2 = exp(i
√

2Φ/f)
uµ = iu†∂µUu† .

(2)

The SU(3) matrices for the mesons and the baryons are the following

Φ =









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η









, (3)

B =









1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ









. (4)
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At lowest order in momentum the interaction Lagrangian reduces to

L
(B)
1 = 〈B̄iγµ 1

4f 2
[(Φ∂µΦ − ∂µΦΦ)B − B(Φ∂µΦ − ∂µΦΦ)]〉 . (5)

The coupled channel formalism requires to evaluate the transition amplitudes between the
different channels that can be built from the meson and baryon octets. For K−p scattering
there are 10 channels, namely K−p, K̄0n, π0Λ, π0Σ0, π+Σ−, π−Σ+, ηΛ, ηΣ0, K+Ξ− and
K0Ξ0. In the case of K−n scattering the coupled channels are: K−n, π0Σ−, π−Σ0, π−Λ,
ηΣ− and K0Ξ−. These amplitudes have the form

Vij = −Cij

1

4f 2
ū(pi)γ

µu(pj)(kiµ + kjµ) , (6)

where pj, pi(kj, ki) are the initial, final momenta of the baryons (mesons). The explicit values
of the coefficients Cij can be found in Ref. [8]. At low energies we can neglect the spatial
components and Eq. (6) simplifies to

Vij = −Cij

1

4f 2
(k0

j + k0
i ) . (7)

The coupled-channel Bethe-Salpeter equations in the center of mass frame read

Tij = Vij + Vil Gl Tlj , (8)

where the indices i, l, j run over all possible channels and

Vil Gl Tlj = i
∫

d4q

(2π)4

Ml

El(−~q )

Vil(ki, q) Tlj(q, kj)

k0 + p0 − q0 − El(−~q ) + iǫ

1

q2 − m2
l + iǫ

, (9)

with Ml, El and ml being, respectively, the baryon mass, baryon energy and meson mass in
the intermediate state.

Although Eq. (9) requires the half-off-shell amplitudes, it was shown in Ref. [8] that the
off-shell part goes into renormalization of coupling constants. Therefore, one can factorize
the remainig on-shell components of V and T outside the integral of Eq. (9) reducing the
integral equation to a set of algebraic equations. The loop integral reads

Gl(
√

s) = i
∫

d4q

(2π)4

Ml

El(−~q )

1√
s − q0 − El(−~q ) + iǫ

1

q2 − m2
l + iǫ

=
∫

|~q|<qmax

d3q

(2π)3

1

2ωl(~q )

Ml

El(−~q )

1√
s − ωl(~q ) − El(−~q ) + iǫ

(10)

with
√

s = p0 + k0.
The model discussed here depends on the loop regularization cut-off, whose value qmax =

630 MeV was chosen to reproduce the K−p scattering branching ratios at threshold [8]. The
weak decay constant is f = 1.15fπ, a value lying in between the pion and kaon ones that
was chosen to optimize the position of the Λ(1405) resonance. In Table I we summarize
the predictions of the model for several scattering observables at threshold. The scattering
cross sections, which are not used in the fit, were shown to be in good agreement with the
low energy data [8] and the model can safely be used up to 500 MeV/c K− lab momentum
[26] up to some punctual discrepancy in the small K−p → K̄0n cross section around 400
MeV/c, where the D-wave Λ(1520) resonance, not accounted for in the theory, shows up in
the data.
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III. K̄ IN THE NUCLEAR MEDIUM

The dynamics of the K̄N interaction at low energies is dominated by the Λ(1405) reso-
nance, which in the approaches of Refs. [7,8] is interpreted as an isospin I = 0 quasi-bound
K−p state. The Λ(1405) resonance is slightly below the K−p threshold and leads to a re-
pulsive K−p amplitude. Although the isospin I = 1 K−n channel is attractive [24], the
K−p, K−n averaged amplitude, T̄ , is still repulsive and, according to the low energy theo-
rem, the K− self-energy (T̄ ρ) should also be repulsive. However, kaonic atom data suggest
that, even at a small fraction of the normal nuclear matter density ρ0, the K− feels a strongly
attractive potential. This implies a rapid transition from a repulsive K̄N interaction to an
attractive one as density increases and a microscopic study of the K− properties in the
medium cannot be done in terms of the simple T̄ ρ or impulse approximation. It is therefore
necessary to consider the density dependence of the in-medium K̄N interaction, Teff(ρ).

One source of density dependence comes from the Pauli principle, which prevents the
scattering to intermediate nucleon states below the Fermi momentum, pF . To incorporate
this effect in the channels having an intermediate nucleon state, one must replace the free
nucleon propagator by the in-medium one in the loop integral of Eq. (10). The evaluation of
the K− self-energy will require the knowledge of the K−N T -matrix at momenta P = pN+pK

in the nuclear lab frame, where pN is a nucleon momentum from the Fermi sea and pK is
the momentum of the K−. The loop integral of Eq. (10) used in the description of the
K−N scattering data is evaluated and regularized by means of a cut-off in the center-of-
mass frame. In order to be able to use the same formalism we boost the K−N system to
its center-of-mass frame and then evaluate the loop function. However, since Pauli blocking
is most easily implemented in the lab frame, we express the occupation number in terms of
the momentum of the intermediate nucleon in the laboratory, ~qlab. Hence, we have

Gl(P
0, ~P , ρ) = i

∫

d4q

(2π)4

Ml

El(−~q )

{

1 − n(~qlab)√
s − q0 − El(−~q ) + iǫ

+
n(~qlab)√

s − q0 − El(−~q ) − iǫ

}

× 1

q2 − m2
l + iǫ

, (11)

where (P0, ~P ) is the total four-momentum in the lab frame, s = (P 0)2 − ~P 2 and

~qlab =



−
(

P 0

√
s
− 1

)

~P~q

| ~P |2
+

√
s − q0

√
s



 ~P − ~q (12)

is the nucleon momentum in the lab frame corresponding to a momentum −~q in the center-
of-mass frame.

As one can see from Eq. (11), the Pauli blocking corrections are only operative at
the nucleon pole. Indeed, by collecting the terms proportional to n(~qlab) in the nucleon
propagator one finds 2πin(~qlab)δ(

√
s − q0 − El(−~q )), which sets the value of q0 to be used

in Eq. (12). This allows one to perform the integration over q0 in Eq. (11) analytically
resulting in

Gl(P
0, ~P , ρ) =

∫

|~q|<qmax

d3q

(2π)3

1

2ωl(~q )

Ml

El(−~q )

{

1 − n(~qlab)√
s − ωl(~q ) − El(−~q ) + iǫ
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+
n(~qlab)√

s + ωl(~q ) − El(−~q ) − iǫ

}

, (13)

In practice, we have checked that the value
√

s− q0 = E(−~q ) to be used in Eq. (12) can be
replaced, with negligible changes, by the energy of the nucleon when both the meson and
the baryon are placed on-shell

√
s − q0 =

s + M2
l − m2

l

2
√

s
. (14)

The second term on the right hand side of Eq. (13), related to the hole part of the nucleon
propagator, is purely real for the kinematical conditions studied in this work, since one
always finds

√
s + ω(~q ) − El(−~q ) > 0.

All works studying the Pauli blocking effects on the in-medium K̄N interaction [9–12]
have neglected the hole term of Eq. (13), a simplification that is well justified for low
densities since the phase space for holes is much reduced with respect to that for particles.
However, this effect can become important if one wants to find the properties of the K̄ at
high densities as those achieved in heavy ion reactions or neutron stars.

Another source of density dependence is related to the fact that all the mesons and
baryons participating in the intermediate loops interact with the nucleons of the Fermi sea
and, as a consequence, feel a binding potential which changes the threshold energy of the
different channels.

The binding effects on the baryons are taken within a mean-field approach consisting
in adding, to the single particle energies in Eqs. (10) and (13), a momentum-independent
potential of the type U = U0ρ/ρ0, where ρ0 = 0.17 fm−3 is normal nuclear matter density.
In the case of nucleons a reasonable value is U0 = −50 MeV as implied by numerous nuclear
structure data. On the other hand, since the experimental binding energy of a Λ particle
in hypernuclei extrapolates to about 30 MeV for the very heavy systems [27], we take
the potential depth of the Λ to be U0 = −30 MeV. Finally, although there is very little
information on the Σ single particle states, the recent measurement of the Σ binding energy
of about 4 MeV in 4

ΣHe [28] indicates that the Σ can certainly be bound in the nucleus.
Moreover, analysis of Σ-atom data by Batty et al [29] and from Ref. [30] found the data to
be compatible with a potential of the type U0ρ/ρ0 with U0 about −25 to −30 MeV. Based
on this evidence, we take U0 = −30 MeV for the Σ potential.

The nuclear medium effects on the mesons will be included through the corresponding
self-energy. We will only consider the dressing of the K̄ and π mesons since the η and K
mesons appear in intermediate states that lie quite far above the K−p threshold. In the
next section, we show how the K̄ and π self-energies are constructed. Here, we will focus on
how the dressed meson propagator is incorporated into the scheme. To this end, we write
the meson propagator (i = K̄, π)

Di(q
0, ~q, ρ) =

1

(q0)2 − ~q 2 − m2
i − Πi(q0, ~q, ρ)

(15)

in the Lehmann representation

Di(q
0, ~q, ρ) = −1

π

∫ ∞

0
dω

ImDi(ω, ~q, ρ)

q0 − ω + iǫ
+

1

π

∫ ∞

0
dω

ImDi(ω, ~q, ρ)

q0 + ω − iǫ

6



=
∫ ∞

0
dω 2ω

Si(ω, ~q, ρ)

(q0)2 − ω2 + iǫ
, (16)

where the spectral density, defined as

Si(ω, ~q, ρ) = −1

π
Im Di(ω, ~q, ρ) = −1

π

ImΠi(ω, ~q, ρ)

| ω2 − ~q 2 − m2
i − Πi(ω, ~q, ρ) |2 , (17)

has been introduced.
The free meson propagator in Eq. (13) must now be replaced by the dressed one written

as in Eq. (16). While the q0 integral proceeds as before, there now appears an additional
integration over the variable ω running over all possible excited states to which a meson of
momentum ~q can couple. The new meson-baryon loop integral is (l = K̄, π)

Gl(P
0, ~P , ρ) =

∫

|~q|<qmax

d3q

(2π)3

Ml

El(−~q )

∫ ∞

0
dωSl(ω, ~q, ρ)

×
{

1 − n(~qlab)√
s − ω − El(−~q ) + iǫ

+
n(~qlab)√

s + ω − El(−~q )

}

, (18)

where n(~qlab) = 0 for the intermediate states involving hyperons (πΛ and πΣ).

If only Pauli blocking effects are considered, the effective interaction Teff(P 0, ~P , ρ) is
obtained by solving the coupled-channel Bethe-Salpeter equation using the meson-baryon
propagator of Eq. (13) for the intermediate loops involving nucleons and that of Eq. (10)
otherwise. If one also incorporates the dressing of the mesons, one must solve the Bethe-
Salpeter equation using the meson-baryon propagator of Eq. (18).

IV. MESON SELF-ENERGIES

The model discussed in Sect. II for the K̄N interaction gives rise to a s-wave K̄ self-
energy (K̄ = K− or K̄0)

Πs
K̄(q0, ~q, ρ) = 2

∫

d3p

(2π)3
n(~p)

[

T K̄p
eff (P 0, ~P , ρ) + T K̄n

eff (P 0, ~P , ρ)
]

, (19)

which is obtained by summing the in-medium K̄N interaction, T α
eff (α = K̄p, K̄n), over the

nucleons in the Fermi sea. The values (q0, ~q ) stand now for the energy and momentum of the
K̄ in the lab frame. Note that a self-consistent approach is required since one calculates the
K̄ self-energy from the effective interaction Teff which uses K̄ propagators which themselves
include the self-energy being calculated.

We also include a p-wave contribution to the K̄ self-energy coming from the coupling
of the K̄ meson to hyperon particle-nucleon hole (Y N−1) excitations. The K− meson can
couple to pΛ, pΣ0 or nΣ− and the K̄0 to nΛ, nΣ0 or pΣ−. The vertices MBB′ are easily
derived from the D and F terms of Eq. (1), expanding U up to one meson field. Using a
non-relativistic reduction of the γµγ5 matrix, one finds

− itMBB′ = DMBB′~σ~q =

(

αMBB′

D + F

2fπ

+ βMBB′

D − F

2fπ

)

~σ~q , (20)
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where ~q is the kaon momentum. We take D + F = gA = 1.257 and D − F = 0.33. The
coefficients αMBB′ and βMBB′ are listed in Table II.

The p-wave self-energy for the K− meson reads

ΠK−(q0, ~q, ρn, ρp) = ~q 2(D2
K−pΛUΛ(q0, ~q, ρp) + D2

K−pΣ0UΣ(q0, ~q, ρp) + D2
K−nΣ−UΣ(q0, ~q, ρn)) ,

(21)

where UY (q0, ~q, ρi) is the generalized Lindhard function for different particle and hole masses
in a medium of density ρi, with ρi = ρn or ρp. As shown in the appendix of Ref. [30], it
reads

UY (q0, ~q, ρi) = Re UY (q0, ~q, ρi) + iIm UY (q0, ~q, ρi) , (22)

where

Re UY (q0, ~q, ρi) =
3

2
ρi

MY

qpi
F

{

z +
1

2
(1 − z2) ln

| z + 1 |
| z − 1 |

}

Im UY (q0, ~q, ρi) = −π
3

4
ρi

MY

qpi
F

{

(1 − z2)θ(1− | z |)
}

, (23)

and

z =

(

q0 − q2

2MY

− (MY − M)

)

MY

qpi
F

(24)

An analogous expression is found for the K̄0 meson. In symmetric nuclear matter, as is
considered here, both self-energies are the same and reduce to

Πp

K̄
(q0, ~q, ρ) =

1

2

(

gNΛK

2M

)2

~q 2UΛ(q0, ~q, ρ) +
3

2

(

gNΣK

2M

)2

~q 2UΣ(q0, ~q, ρ) , (25)

where
gNΛK

2M
= DK−pΛ = DK̄0nΛ and

gNΣK

2M
= DK−pΣ0 are the generic KNΛ and KNΣ

coupling constants, respectively. This p-wave contribution to the K̄ self-energy can become
important for large momentum values.

The solution of the new K− dispersion relation

ω2 = ~q 2 + m2
K + Re ΠK̄(ω, ~q, ρ) , (26)

with ΠK̄(ω, ~q, ρ) = Πs
K̄

(ω, ~q, ρ) + Πp

K̄
(ω, ~q, ρ), determines the effective mass, m∗

K = Re ω(~q =
0), and decay width, Γ = −2 Im ω(~q = 0), of the K− meson in the medium.

For the pion self-energy we take that of Ref. [32] which consists of a small momentum
independent s-wave part, Πs

π(ρ), plus a p-wave part, Πp
π(q0, ~q, ρ). The latter, constructed

by allowing the pion to couple to particle-hole (1p1h), ∆-hole (∆h) and two-particle-hole
(2p2h) excitations, can be written as

Πp
π(q0, ~q, ρ) =

(

gπNN

2M

)2

~q 2F 2(q)(UN(q0, ~q, ρ) + U∆(q0, ~q, ρ) + U2p2h(q
0, ~q, ρ)) , (27)
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where F (q) is a monopole form factor with cut-off Λπ = 1.2 GeV, UN (U∆) is the Lindhard
function for 1p1h (∆h) excitations and U2p2h is a phenomenological function accounting for
2p2h excitations. The U2p2h contribution at (q0, ~q, ρ) = (mπ,~0, 0.75ρ0) was obtained from
fits to pionic atom data [31]. The extension to kinematical regions away from pionic atoms
was done by multiplying the imaginary part by the available phase space of 2p2h states for
the given q0, ~q values at density ρ. The explicit expression can be found in Ref. [32].

The pion self-energy is further modified to include the effect of nuclear short-range cor-
relations. This is accomplished by replacing the self-energy of Eq. (27) by

Πp
π(q0, ~q, ρ) =

(

gπNN

2M

)2

~q 2F 2(q)
Π(0)

π (q0, ~q, ρ)

1 −
(

gπNN

2M

)2
g′(q)Π

(0)
π (q0, ~q, ρ)

, (28)

where Π(0)
π is the sum of the U1p1h, U∆h and U2p2h functions, and g′ is the usual Landau-

Migdal parameter, which is taken slightly momentum dependent as in Ref. [32].
We have also considered the effects of including form factors at the K̄NY vertices of Eq.

(21). If a monopole form factor with ΛK = 1.3 GeV normalized to 1 as qµ → 0 is used, the
changes observed are very small, at the level of 2%. Since the value of ΛK for kaons is not
so well known and the changes induced by the form factor are so small, we simply ignore it
in the results presented below.

V. RESULTS

In this section we discuss the results of our calculations. To facilitate the comparison
with other works we will distinguish three types of approximations, all of which include the
binding effects on the baryons:

a) Pauli: The blocking of intermediate nucleon states below the Fermi momentum pF is
taken into account, but the mesons propagate as in free space. This approach uses the
meson-baryon propagator of Eq. (13) for the intermediate states involving nucleons
and has been the standard medium effect studied in the literature [9–11].

b) In-medium kaons: apart from Pauli blocking, the dressed K̄ propagator is included
in the loops in a self-consistent manner. This approach, which uses Eq. (18) for the
intermediate K̄N states, has recently been used in the study of the K− properties in
the medium [12].

c) In-medium pions and kaons: the dressing of the pions is also considered and, therefore,
Eq. (18) is used for the intermediate channels involving both K̄ and π mesons. This is
the main novelty of the present work, apart from considering also the baryon potentials.

To assess the importance of dressing the mesons, we show first their spectral density. In
Fig. 1 the spectral density of the π mesons in nuclear matter at density ρ = ρ0 is shown as
a function of energy for several momenta. Note that the scale has been adapted to the two
higher momenta such that the structure of the spectral density is more clearly seen. The
peak value of the q = 100 MeV/c spectral function is about 375 GeV−2. As the momentum
increases the position of the peak moves to higher energies. However, it increasingly deviates
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from the energy
√

~q 2 + m2
π at which a delta-type spectral density would be located if the

dressing of the π meson was ignored. The in-medium peak positions are at 158, 179 and
212 MeV for q = 100, 200 and 300 MeV/c, respectively, while the corresponding free values
are 172, 244 and 331 MeV. We also observe, to the left of the peaks, the typical structure
of the 1p1h excitations, which spreads the pionic strength over a wider energy range.

The spectral funcion of a K− meson of zero momentum is shown in Fig. 2 as a function
of energy for the three types of approximations used in this work. The solid line shows
results for nuclear matter density ρ = ρ0, the short-dashed line for ρ0/2 and the long-dashed
line for ρ0/4.

The spectral functions shown in the upper panel correspond to the approximation in
which only Pauli blocking effects have been considered. For ρ0/4 a two-mode excitation is
clearly visible. The left peak corresponds to the K− pole branch, appearing at an energy
smaller than its mass, mK , due to the medium effects which, as we will see, are already
attractive at this density. The upper peak corresponds to the Λ(1405)-hole state, which is
located above mK because of the shifting of the Λ(1405) resonance to energies above the
K−p threshold due to the restrictions on phase space imposed by Pauli blocking. As density
increases, the K− feels an enhanced attraction and the K− pole peak moves to lower energies.
At the same time the reduced phase space for the intermediate nucleon states makes the
appearance of the resonance less likely. The Λ(1405)-hole peak moves to higher energies and
loses strength, a reflection of the tendency of the Λ(1405) to dissolve in the dense nuclear
medium. These results are in complete agreement with those obtained by Waas and Weise
[11].

When the K̄ spectral function displayed in Fig. 2 is insterted in the coupled-channel
Bethe-Salpeter equation, the intermediate K̄N states are more spread out over energies. As
a consequence, the resulting in-medium interaction, Teff , and the new self-energy calculated
from Eq. (19), become softened and distributed over a wider range of energies, affecting in
turn the distribution of the K̄ spectral strength. After a few iterations of this process, self-
consistency is achieved and the resulting K− spectral function is displayed in the middle
panel of Fig. 2. The two peak mode is barely visible now. As was noted by Lutz [12],
including the in-medium attraction felt by the K− through the use of the dressed propagator
lowers the threshold for the K̄N states that had been increased by the Pauli blocking on the
nucleon. This has a compensatory effect and the resonance barely moves with respect to its
free space value. The K− pole peak appears at similar or slightly smaller energies, but its
width is larger, due to the strength of the intermediate K̄N states being distributed over a
wider region of energies. Therefore the K− pole and the Λ(1405)-hole branches merge into
one another and can hardly be distinguished.

Finally, the self-consistent K− spectral function when the pions in the intermediate
loops are also dressed is shown in the bottom panel of Fig. 2. The essential difference with
respect to the other two approaches is the fact that the πY channels (Y = Λ or Σ) start
to be operative at lower energies due to the attraction felt by the pions in the medium. As
seen by the long-dashed line, even at very small densities one no longer distinguishes the
Λ(1405)-hole peak from the K− pole one. As density increases the attraction felt by the K−

is much more moderate and the K− pole peak appears at higher energies than in the other
two approaches. At normal nuclear matter density a peak starts to develop to the left of
that corresponding to the K− pole. As will be shown next, this structure is associated to a
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cusp in the imaginary part of the K− self-energy at an energy corresponding to the position
of the new in-medium πΣ threshold.

The K− self-energy at zero momentum, ΠK−(q0, 0, ρ), is displayed in Fig. 3 as a function
of the K− energy for several densities and for the three approximations discussed here. The
graphs on the left show the real part and those on the right the imaginary part. We have seen
that the K̄ spectral strength is distributed over a wider range of energies and incorporates
the attractive medium effects felt by the K̄. This is why the self-energy shown in the middle
panels (In-medium kaons) is smoother and wider than that displayed on the top (Pauli)
ones. Note that Im ΠK− in the middle panel is non-zero at energies as low as 300 MeV.
This corresponds to the N(Λh) and N(Σh) many-body channels that are opened at these
energies and which are incoporated in the calculation via the K− p-wave self-energy. In the
lower panels, where the pions are also dressed, we see that ImΠK− has bigger strength at
these low energies. This can be understood in the following way: the πΣ channel is one of
the important building blocks of the Λ(1405) strength below the K̄N threshold. When the
pions are dressed in the medium they couple strongly to 1p1h and 2p2h components, so that
the K− is effectively coupling to intermediate 1p1hΣ, 2p2hΣ states with lower threshold
than the πΣ channel. Actually, the opening of this latter channel on top of the already
existing 1p1hΣ and 2p2hΣ is visible through a cusp in Im ΠK− around q0 ≃ 400 MeV.

The effect on the K− self-energy of the baryon binding potentials is basically a shift in
the scale of energies, corresponding to the difference of potentials between the nucleon and
the Σ hyperon, which amounts to 20 MeV at ρ = ρ0.

The scattering properties of a K̄ in the nuclear medium will depend on the characteristics
of the in-medium K̄N scattering amplitude. In particular, it is interesting to see if the
resonant shape of the free K−p scattering amplitude remains when the medium effects are
incorporated. Fig. 4 shows the real part (on the left) and imaginary part (on the right) of
the K−p → K−p scattering amplitude for a total momentum | ~pK + ~pN |= 0 as a function
of

√
s. Results are shown for several densities and for the three types of approximations.

On the top panels we can see how, as density increases, the Pauli blocking effects merely
shift the resonance to higher energies, hence changing from being 27 MeV below the K−p
threshold to being above it from a certain density on. Note, however, that the resonance
still appears, for each density, below the new threshold imposed by the Pauli principle, i.e.
mK +M +p2

F /2M . On the other hand, the resonance shape remains pretty much unaltered.
When the dressing of the K̄ meson is also incorporated, we observe how the resonant shape
smears out quite fast with increasing density. Moreover, the resonance does not move up
to higher energies but stays close to the free space value due to a cancellation between the
repulsive Pauli blocking effects and the attractive medium effects on the K̄. These results
are in qualitative agreement with the self-consistent calculation of Lutz [12], although we
seem to observe a faster dilution of the resonance with the medium density. Finally, when
the in-medium dressing of the pions are also included we obtain a quite similar pattern. The
resonance dissolves very fast although it shows a tendency to move to higher energies.

The isospin averaged in-medium scattering length defined as

aeff = − 1

4π

M

mK+ < EN >

ΠK̄(mK , ~q = 0, ρ)

ρ
, (29)
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with < EN >= M+UN (ρ)+
3

5

(

p2
F

2M

)

, is shown if Fig. 5. The change of Re aeff from negative

to positive values indicates the transition from a repulsive interaction in free space to an
attractive interaction in the medium. As shown by the dotted line, this transition happens at
a density of about ρ ∼ 0.1ρ0 when only Pauli effects are considered, in agreement with what
was found in Ref. [10]. However, this transition occurs at even lower densities (ρ ∼ 0.04ρ0)
when one considers the dressing of the mesons in the description, as seen from the dashed
(In-medium kaons) and full (In-medium pions and kaons) lines. The deviations from the
approach including only Pauli blocking or those dressing the mesons are quite appreaciable
over a wide range of densities.

The effective K− mass is shown in Fig. 6 as a function of ρ/ρ0 for the different approxi-
mations. Note that the effective mass, defined as the solution of Eq. (26) for ~q = 0, gives the
position of the K− pole peak in the spectral function assuming a weak energy dependence
of Im ΠK−(q0, 0, ρ). In addition, one can only think of the K− as a quasi-meson moving
with the modified m∗

K− mass if the spectral function shows a clear and narrow enough K−

pole peak, which happens when Im ΠK−(q0, 0, ρ) is sufficiently small. By looking at the K−

spectral function of Fig. 2 one sees that these conditions are not always fulfilled, especially
when the dressing of the mesons is incorporated. Keeping this in mind, we can still analyze
the effective mass as a simplified way to assess how important is the attraction felt by the
K− meson in the medium. Morover, this analysis will allow to compare our results with
those obtained by other calculations. As can be seen in the zoomed area on the top right of
the figure, the in-medium K− mass increases slightly from the free value but quickly gains
attraction as density increases. The transition from repulsion to attraction occurs around
0.1ρ0 for the Pauli approximation (dotted line) while the two other approximations that
incorporate the dressing of the K̄ (dashed line) and also that of the pion (full line) show
attraction already at around 0.04ρ0. However, the density dependence is stronger with the
Pauli approximation which gives rise to a lower value of m∗

K− from 0.11ρ0 onwards. It turns
out that, in spite of the essentially different shapes of the K− spectral function, the position
of the K− pole is very similar for the Pauli and the In-medium kaons approximations for
densities higher than ρ0. Consequently, the calculated effective masses decrease similarly.
However, when the dressing of the pions is also included, the attraction is substantially
more moderate and the effective mass seems to level off at high densities around the value
achieved already at ρ0 of m∗

K− = 0.9mK = 445 MeV. This would correspond to a K− optical
potential of UK− = Re ΠK−(m∗

K−,~0, ρ0)/(2m∗
K−) ∼ −50 MeV. The Pauli and In-medium

kaons approximations give rise to a a more attractive value of the effective mass at ρ0,
namely m∗

K− = 415 MeV which corresponds to a UK− = −86 MeV. It is worth mentioning
that all the calculations, either microscopic [10,11] or based on mean field theories [4,14–16]
predict effective masses at ρ0 which range between 375 MeV and 425 MeV. The correspond-
ing K− potential at the center of the nucleus would then be in between −140 and −75
MeV. Therefore, no theory is able to explain the large attraction of −200 obtained from
the best available fit to kaonic atom data [5]. However, we should warn that the data of
K− atoms are only sensitive to the K− self-energy at the low effective densities felt by the
kaons that explore basically the nuclear surface. The values obtained by the fit in Ref. [5]
at ρ = ρ0 are an extrapolation of a preassumed functional dependence on ρ. It is possible to
obtain equally good fits with other functionals that give the same value for the low densities
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explored by the kaons but different extrapolations at ρ = ρ0. In fact, quite good fits to the
K− atoms data are also obtained with the Batty potential of Ref. [33] which is of the order
of −50ρ/ρ0 MeV. We also note that the Brueckner-type calculations of Ref. [13] obtained a
shallow K−-nucleus potential, of the order of −40 MeV at the center of 12C, and predicted
reasonably well the data available at that time.

With the values obtained here for m∗
K− and similar ones that we obtain for neutron

matter the phenomenon of K− condensation appears very unlikely, since there is not enough
attraction for the K− energy to become smaller than the electron chemical potential in beta
stable neutron star matter.

The implications of our results for the in-medium K− self-energy on kaonic atoms is
currently being analyzed [34] and gives results compatible with the existing kaonic atom
data. That analysis, based on a local density approximation, requires the knowledge of the
optical potential, defined as

UK−(ω, ρ) =
ΠK−(ω, qon, ρ)

2ω
, (30)

where qon is the on-shell momentum value that fulfills Eq. (26) for a given value of ω.
The real and imaginary parts of the optical potential for the In-medium pions and kaons

approximation are shown in Fig. 7 for three energy values: mK − 45 MeV (dotted line),
mK (solid line) and mK + 25 MeV (dashed line). The self-energy shown by the solid lines
is the relevant one for studies of low lying K− atomic states, while the results displayed by
the dotted line would be the ones to use for very deeply bound states in the Pb region. The
dashed lines show an example of the K− optical potential at positive energies and would be
the one to consider to treat the K− distortions in K−-nucleus scattering reactions around
25 MeV. While the real part of the optical potential becomes less attractive with increasing
energy, the imaginary part does not show a too strong energy dependence in the range of
energies explored. This behavior can be easily inferred from the K− self-energies shown at
the bottom of Fig. 3.

VI. CONCLUSIONS

In this work we have studied the K− properties in nuclear matter using a chiral unitary
approach for the K−N interaction in s-wave that incorporates the medium effects micro-
scopically.

Pauli blocking acting on the intermediate nucleon states modifies the K−N interaction
from that in free space and gives rise to a K− spectral function that shows two distinctive
peaks at very low density. The lower one corresponds to the the position of the new K− pole,
located below the K− mass from already quite low densities on, which indicates that the K−

feels an attraction in the medium. The higher peak is associated to the in-medium Λ(1405)
resonance that appears above the free K−p threshold due to the repulsive effect induced by
blocking the intermediate nucleon states below the Fermi momentum. As density increases,
the K− feels more attraction and the Λ(1405) keeps moving to higher energies.

When the K− self-energy is incorporated self-consistently into the scheme, there is a
compensation between the attraction felt by the K− and the repulsive Pauli blocking shift.
As a result, the resonance appears at a similar location as that in free space. However,
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its width is much larger and it tends to dissolve with increasing density due to a weaker
in-medium K−N interaction which now is determined from dressed K̄ propagators which
are more spread out over energies.

In the present work we also include the dressing of the pions in the intermediate πΛ,
πΣ states to which the K̄N system can couple. We use a pion self-energy that includes
the coupling to 1p1h, ∆h and 2p2h excitations modified by the effect of short-range NN
correlations. The fact that now the pions also have a spreading width makes the in-medium
K̄N interaction even smoother. The K− feels less attraction and the Λ(1405) resonance,
which is shifted slighty upwards from its free space position, dissolves even faster with
density.

Our approach gives rise to a K− self-energy at normal nuclear density which has about
half the attraction of that obtained with other theories and approximation schemes and
would make the phenomenon of kaon condensation very unlikely. The self-energy obtained
is, however, compatible with the existing data on kaonic atoms.
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Rev. C, in press. nucl-th/9806068
[15] J. Schaffner and I.N. Mishustin, Phys. Rev. C53 (1996) 1416;

J. Schaffner-Bielich, I.N. Mishustin and J. Bondorf, Nucl. Phys. A625 (1997) 325
[16] K. Tsushima, K. Saito, A.W. Thomas and S.V. Wright, Phys. Lett. B429 (1998) 239
[17] J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465
[18] A. Pich, Rep. Prog. Phys. 58 (1995) 563
[19] G. Ecker, Prog. Part. Nucl. Phys. 35 (1995) 1
[20] V. Bernard, N. Kaiser and U.G. Meissner, Int. J. Mod. Phys. E4 (1995) 193
[21] J.A. Oller, E. Oset and J.R. Peláez, Phys. Rev. Lett. 80 (1998) 2452
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TABLES

TABLE I. K−p threshold ratios and K−N scattering lengths

This work Exp.

γ =
Γ(K−p → π+Σ−)

Γ(K−p → π−Σ+)
2.32 2.36 ± 0.04 [22,23]

Rc =
Γ(K−p → charged particles)

Γ(K−p → all)
0.627 0.664 ± 0.011 [22,23]

Rn =
Γ(K−p → π0Λ)

Γ(K−p → neutral states)
0.213 0.189 ± 0.015 [22,23]

aK−p (fm) −1.00 + i0.94 −0.67 + i0.64 [24]

−0.98 (from Re(a)) [24]

(−0.78 ± 0.18) + i(0.49 ± 0.37) [25]

aK−n (fm) 0.53 + i0.62 0.37 + i0.60 [24]

0.54 (from Re(a)) [24]

TABLE II. SU(3) coupling constants defined in Eq. (20)

K− K̄0

αMBB′ βMBB′ αMBB′ βMBB′

pΛ − 2√
3

1√
3

nΛ − 2√
3

1√
3

pΣ0 0 1 nΣ0 0 −1

nΣ− 0
√

2 pΣ+ 0
√

2
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FIG. 1. Pion spectral density at normal nuclear matter density as a function of energy for

several pion momenta: q = 100 MeV/c (solid line), q = 200 MeV/c (dashed line) and q = 300

MeV/c (dotted line).
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FIG. 2. K− spectral density for zero momentum as a function of energy at several densities:

ρ0 (solid line), ρ0/2 (short-dashed line) and ρ0/4 (long-dashed line). Results are shown for the

three approximations discussed in the text: a) Pauli (top panels), b) In-medium kaons (middle

panels) and c) In-medium pions and kaons (bottom panels).
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FIG. 3. Real (left) and imaginary (right) parts of the zero momentum K− self-energy as a

function of energy, for several nuclear matter densities. Results are shown for the three approxi-

mations discussed in the text: a) Pauli (top panels), b)In-medium kaons (middle panels) and c)

In-medium pions and kaons (bottom panels).

19



1400 1500
s

1/2
 [MeV]

−0.15

0.00

0.15

−0.15

0.00

0.15

−0.15

0.00

0.15

−Re TK
−

p [MeV
−1

]

1400 1500
s

1/2
 [MeV]

0.0

0.1

0.2

free
ρ=ρ0/4
ρ=ρ0/2
ρ0

0.0

0.1

0.2

0.0

0.1

0.2

−Im TK
−

p [MeV
−1

]

(a) Pauli

(b) In−medium K

(c) In−medium π and K

FIG. 4. Real (left) and imaginary (right) parts of the in-medium K−p scattering amplitude

as a function of the invariant energy
√

s for | ~pK− + ~pN |= 0 and several densities. Results are
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