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Abstract

We have extended a model for the γN → ππN reaction to virtual
photons and selected the diagrams which have a ∆ in the final state.
With this model we have evaluated cross sections for the virtual photon
cross section as a function of Q2 for different energies. The agreement
found with the γvp → ∆0π+ and γvp → ∆++π− reactions is good. The
sensitivity of the results to N∆ transition form factors is also studied.
The present reaction, selecting a particular final state, is an extra test
for models of the γvN → ππN amplitude. The experimental measure-
ment of the different isospin channels for this reaction are encouraged
as a means to unravel the dynamics of the two pions photoproduction
processes.
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1 Introduction

The γN → ππN reaction in nuclei has captured some attention recently and
has proved to be a source of information on several aspects of resonance forma-
tion and decay as well as a test for chiral perturbation theory at low energies.
A model for the γp → π+π−p reaction was developed in [1] containing 67 Feyn-
man diagrams by means of which a good reproduction of the cross section was
found up to about Eγ ≃ 1 GeV.

A more reduced set of diagrams, with 20 terms , was found sufficient to
describe the reaction up to Eγ ≃ 800 MeV [2] where the Mainz experiments
are done [3,4,5].

In the same work [2] the model was extended to the other charge channels of
(γ, 2π) and the agreement with the experiment is good except for the channel
γp → π+π0n where the theoretical cross section underestimates the experiment
in about 40 per cent.

Other models have also been recently proposed. The model of ref. [6]
contains the dominant terms of [1] and includes some extra resonances in
order to make predictions at high energies. A prescription to approximately
unitarize the model, of relevance at high energies, is also proposed. Revision
of this work is under consideration [7], so more about it should be known in
the future.

The model of [8] has fewer diagrams than the one of [1,2] but introduces
the N∗(1520) → Nρ decay mode. By fitting a few parameters to (γ, ππ) data
the cross sections are reproduced, including the γp → π+π0n reaction where
the model of [2] fails. The (γ, π0π0) channel is somewhat underpredicted. The
model of [8] fails to reproduce some invariant mass distributions where the
model of [1] shows no problems. A different version of the model of [8] is given
in [9], where the parameters of the model are changed in order to reproduce
the mass distribution, without spoiling the cross sections. One of the problems
in the fit of [9] is that the range parameter of the ρ coupling to baryons is very
small, around 200 MeV, which would not be easily accomodated in other areas
of the ρ phenomenology, like the isovector πN s−wave scattering amplitude.

On the other hand the model of [2] has no free parameters. All input
is obtained from known properties of resonances and their decay, with some
unknown sign borrowed from quark models. With all its global success in
the different isospin channels, the persistance of the discrepancy in the γp →
π+π0n channel indicates that further work is needed. The constraints provided
by the data in two pion electroproduction should be useful to further test
present models and learn more about the dynamics of the two pion production.

The (γ,2π) reaction has also been used to test chiral perturbation theory.
The threshold region is investigated in [10,11] with some discrepancies in the
results which are commented in [12,13]. The one loop corrections are shown
to be relevant in the γp → π0π0p reaction close to threshold [11]. In addition
the N∗(1440) excitation is shown to be very important at threshold in [2].

Another interesting information obtained from the γp → π+π−p reaction is
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information about the N∗(1520) decay into ∆π. Indeed, the photoexcitation
of the N∗(1520) followed by the decay into ∆π is a mechanism which interferes
with the dominant term, the γN∆π Kroll-Ruderman term, and offers infor-
mation on the q dependence and the sign of the s and d − wave amplitudes
of N∗(1520) → ∆N decay. This information is a good test of quark models
[14] which is passed by the ”relativised” constituent quark models [15,16,17].
In the γp → π0π0p reaction the γN → N∗(1520) → ∆π is shown to be an
important mechanism by itself (there is no ∆ Kroll-Ruderman term here), and
it is perfectly visible in the experimental invariant mass distribution [5].

The (γ,2π) reaction has also relevance in nuclear physics. Inclusive cross
section for the (γ,π+π−) have been calculated in [18] and the inclusive (γ,π0π0)
reaction is measured in [19]. Calculations for (γ,π+π−) and the (γ,π0π0) co-
herent two pion production in nuclei have been performed in [20] and the
cross sections are found to be very different in two different charge channels,
with patterns in the energy and angular distributions linked to isospin conser-
vation. Similarly, exchange currents for the (γ,π+) reaction are constructed
from (γ,ππ) when a pion is produced off-shell and absorbed by a second nu-
cleon. These exchange currents give an important contribution to the (γ,π+)
cross section at large momentum transfer [21].

The discussions above have served to show the relevance of the (γ,2π)
reaction and its implications in different processes. The extension of this
kind of work to virtual photons should complement the knowledge obtained
through the (γ,2π) and the related reactions. The coupling of the photons to
the resonances depends on q2 and the dependence can be different for different
resonances. Hence, the interference of different mechanisms pointed above
will depend on q2 and with a sufficiently large range of q2, one can pin down
the mechanism of (γ,2π) with real or virtual photons with more precision than
just with real photons, which would help settle the differences between present
theoretical models.

However, there are already interesting two pion electroproduction experi-
ments selecting ∆ in the final state. The reactions are, ep → e′π+∆++ and
ep → e′π+∆0 [22]. It is thus quite interesting to extend present models of
(γ, 2π) to the realm of virtual phtons and compare with existing data. In
the present paper we do so, extending the model of ref.[2] to deal with the
electroproduction process. This model is flexible enough and one can select
the diagrams which contain ∆π in the final state in order to compare directly
with the measured cross sections.

The extension of the model requires three new ingredients: the introduction
of the zeroth component of the photon coupling to resonances (calculations
where done in [2] in the Coulomb gauge, ǫ0, where the zeroth component is
not needed), the implementation of the q2 dependence of the amplitudes, which
will be discussed in forthcoming sessions, and the addition of the explicit terms
linked to the S1/2 helicity amplitudes which vanish for real photons.

Experiments on (γv,2π) are presently being done in the Thomas Jefferson
Laboratory [23], both for N∆ and Nππ production.
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The model presented here can serve to extract relevant information from
coming data, which will improve appreciably the precission of present experi-
ments.

There has been earlier work on the particular problem which we are dis-
cussing here. In [24] an approach for ∆π electroproduction close to threshold
was done with special emphasis in determining the axial transition form fac-
tors. The approach uses the current algebra formalism and some of the input
needed is obtained from the same electroproduction data. The delta is treated
as an elementary particle but the cross sections are folded with a Breit Wigner
distribution in order to take into account approximately the effects of the fi-
nite width of the ∆. The effects of the D13 resonance are also discussed and
introduced in an approximate way. The novelties here with respect to this
work would be the use of a different formalism, since we are relying on the
Feynman diagrammatic approach. On the other hand all information needed
here, some of which was not available at the time of ref.[24], is already known
such that clear predictions can be made. There is another important difference
with respect to [24] which is that the ∆ is not considered as a final state but
decays explicitly into πN in the Feynman diagrams considered. This means
that the ∆ is treated as a propagator and the sum over polarizations is done
in the amplitudes not in the cross sections as in [24]. This allows one to keep
track of angular correlations between the two pions which are lost if the ∆ is
considered as a final state. It also allows to take into account the delta width
in a natural way since it just comes as the imaginary part of the inverse of
the ∆ propagator. It also allows one to keep track of interference of different
pieces, in particular those between the ∆ Kroll Ruderman term and the ex-
citation of the N∗(1520) resonance followed by ∆π decay, which is one of the
important findings in the present reaction.

Our model bears more similarity to the work of [25] where also a diagram-
matic approach is followed. They introduce the minimal set of terms which are
gauge invariant as a block, including the important ∆ Kroll Ruderman term.
In our model we also include the four terms of [25] but we have in addition four
more terms, in particular the excitation of the N∗(1520) resonance followed by
∆π decay, which has a strong interference with the ∆ Kroll Ruderman term.
In [25] a formalism is used which respects Ward identities and leads to a gauge
invariant amplitude in the presence of different electromagnetic form factors
for the different terms of the model appearing for virtual photons. We have
also followed this formalism in our approach.

For the construction of the currents for resonance excitation we follow
closely the work of [26] and take the convention of [27] for the definition of
the helicity amplitudes. Altogether the formalism in the present paper diverts
somewhat from the one used for real photons in [1,2] where many simplifica-
tions could be done, but in the case of real photons we regain the results of
[1,2], although the use of new conventions forces the change of some sign. In
order to avoid confusion the Lagrangians used and new conventions are now
written in detail in a section.
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2 Model for eN → e′∆π.

We will evaluate cross sections of virtual photons integrated over all the vari-
ables of the pions and the outgoing nucleon. In this case the formalism is
identical to the one of inclusive eN → e′X scattering [28,29] or pion electro-
production after integrating over the pion variables [30,31]. The (e, e′) cross
section is given by

dσ

dΩ′dE ′ =
α2

q4

k′

k

−q2

1 − ǫ

1

2πe2
[(W xx + W yy) + (1)

2ǫ(
−q2

~q 2
)W 00]

where α = e2/4π is the fine structure constant, e the electron charge, qµ the
momentum of the virtual photon and k, k′ the momenta of the initial and the
final electron and ǫ the polarization parameter of the photon, which is given
by

ǫ = [1 − 2~q 2

q2
tg2 θe

2
]−1 (2)

with θe the angle of the scattered electron. All variables are given in the lab
frame and the z direction is taken along the direction of the virtual photon,
~q. Furthermore, the hadronic tensor is given here by

W µν =
∫

d3p2

(2π)3

M

E1

M

E2

∫

d3p4

(2π)3

1

2w4

∫

d3p5

(2π)3

1

2w5

(3)

∑ ∑

T µT ν∗(2π)4δ(q + p1 − p2 − p4 − p5)

where p1, p2, p4, p5 are the momenta of the initial, final nucleon, and the
two pions and T µ is the matrix element of the γvN1 → N2π4π5 process. Note
that the phase space accounts for the decay of the ∆ into Nπ explicitly, hence
the finite width of the ∆ is automatically taken into account. The terms
contributing to T µ are given below.

The expression of eq.(1) can be conveniently rewritten as [30]

dσ

dΩ′dE ′ = Γ(σT
γv

+ ǫσL
γv

) = Γσγv
(4)

where σT
γv

, σL
γv

are the transverse,longitudinal cross sections of the virtual
photons and Γ is given by

Γ =
α

2π2

1

−q2

k′

k

1

1 − ǫ
Kγ (5)

Kγ =
s − M2

2M
; s = (q0 + M)2 − ~q 2 (6)

The corresponding cross sections σT
γv

and σL
γv

are easily induced from eqs.
(1) and (4). The term with the combination W xx + W yy in eq. (1) gives rise
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to the transverse cross section while the term proportional to W 00 gives rise
to the longitudinal one.

In the limit of the real photons, when q2 ≃ 0, Kγ is the lab momentum of
the photon, and only the transverse cross section contributes, in which case
σT

γv
= σγ , the cross section of real photons.
For the model of the γvN → ∆π reaction we take the same diagrammatic

approach as in ref.[2] and select the diagrams which have a ∆ in the final
state. The diagrams which contribute to the process are depicted in fig.1.
The contribution of each one of the diagrams is readily evaluated from the
Lagrangians written in appendix A1. The Feynman rules for the diagrams are
collected in appendix A2. The coefficients, coupling constants and the form
factors are collected in appendix A3. Finally, the amplitudes for each one of
the terms are written in appendix A4 for each charge state.

Out of the 20 terms in [2] for the general (γ, 2π) reaction only 8 terms
contain a ∆ and a pion in the final state which are the terms collected in fig.1.

Fig.1
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Figure 1: Feynman diagrams used in the model for γvp → π∆

3 Electromagnetic transitions for Roper and

N*(1520) resonances

We follow the paper from Devenish et al. [26] in our approach to these tran-
sitions. As we are working with virtual photons we need to care about these
couplings and hence include terms which vanish for real photons. For the di-
agram D.8, which involves the Roper excitation as depicted in the fig. 1, we
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can write the corresponding electromagnetic current as :

Jµ
e.m. = ūN∗(p′)[

F̄2(q
2)iσµνqν

m + m∗ + F̄3(q
2)(qµ − q2

m∗ − m
γµ)]uN(p) (7)

where F̄2,3(q
2) are the electromagnetic form factors for the N −N∗ transition

(which already include the proton charge), qµ = (q0, ~q) is the momentum of
the virtual photon and the m, m∗ the masses of the nucleon and the N∗(1440)
respectively. We can rewrite these form factors in terms of F1, F2, defined as:
F1 = F̄3

m∗−m
and F2 = F̄2

m+m∗
. The current of eq. (7) coincides with the one

in [26] substituting there: G1 = −F1 and G2 = − 2F2

m∗−m
. We write our vertex

functions as V µǫµ=−iJµǫµ. By keeping terms up to (q/m) in a non relativistic
reduction of the matrix elements of the Dirac gamma matrices we find:

V µ
γNN∗ =

{

i ~q 2

2m
F2(q

2) − i~q 2(1 + q0

2m
)F1(q

2)

F2(q
2)[i~q q0

2m
+ (~σ × ~q)(1 + q0

2m
)] − F1(q

2)[i~qq0(1 + q0

2m
) + q2 1

2m
(~σ × ~q)]

}

(8)

Next we construct the helicity amplitudes for our transition. There are
many works where the helicity amplitudes are calculated [27, 32, 33, 34, 35].
In what follows we adjust to the formalism of ref. [27]. Then A1/2 and S1/2

can be written as:

AN∗

1/2 =

√

2πα

qR

1

e
〈N∗, Jz = 1/2|ǫ(+)

µ · Jµ|N, Sz = −1/2〉 (9)

SN∗

1/2 =

√

2πα

qR

|~q |√
Q2

1

e
〈N∗, Jz = 1/2|ǫ(0)

µ · Jµ|N, Sz = 1/2〉 (10)

where qR is the energy of an equivalent real photon, (W 2 −m2)/(2W ) and W
is the photon-proton center of mass energy.

The tranverse polarization vectors are:

ǫ(±)
µ =

(0,∓1,−i, 0)√
2

(11)

and ǫ0
µ = 1√

Q2
(q, 0, 0, q0) normalized to unity, satisfying ǫ0

µ ·qµ =gµνǫ0
µ ·ǫ(±)

ν = 0

with ~q in z direction and Q2 = −q2.
Using our electromagnetic current the helicity amplitudes are given by:

AN∗

1/2 =

√

2πα

qR

1

e
[F2(q

2)
√

2q(1 +
q0

2m
) + F1(q

2)Q2
√

2
q

2m
] (12)

and

SN∗

1/2 =

√

2πα

qR

~q 2

e
[−F2(q

2)
1

2m
+ F1(q

2)(1 +
q0

2m
)] (13)
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Inverting these equations we can get the electromagnetic form factors in
terms of the helicity amplitudes. The experimental helicity amplitudes Ap

1/2

and Sp
1/2 which we use are taken from [36] which uses data from [37].

In the case of the N∗(1520) resonance we can take the same steps as above.
Following [26] we write the relativistic current as:

Jµ
e.m. = G1(q

2)Jµ
1 + G2(q

2)Jµ
2 + G3(q

2)Jµ
3 (14)

with

Jµ
1 = ūβ(qβγµ − q/gβµ)u (15)

Jµ
2 = ūβ(qβp′µ − p′ · qgβµ)u (16)

Jµ
3 = ūβ(qβqµ − q2gβµ)u (17)

and G1,G2,G3 are the electromagnetic form factors for this vertex and p′ is the
momenta of the resonance.

Taking a non relativistic reduction as done before and using uµ Rarita-
Schwinger spinors in the c.m. of the resonance, the vertex takes an expression
given by:

Scalar part:

V 0
γNN ′∗ = i(G1 + G2p

′0 + G3q
0)~S† · ~q (18)

and the vector part:

V i
γNN ′∗ = −i[(

G1

2m
− G3)(~S

† · ~q) ~q − (19)

iG1

~S† · ~q
2m

(~σ × ~q) − ~S†{G1(q
0 +

~q 2

2m
) + G2p

′0q0 + G3q
2}]

Using again eqs.(9) and (10) we calculate the A1/2 and S1/2 helicity ampli-
tudes for the N∗(1520). In addition, in this case we also have the A3/2 helicity
amplitude which is given in [27] by:

AN∗

3/2 =

√

2πα

qR

1

e
〈N∗, Jz = 3/2|ǫ(+)

µ · Jµ|N, Sz = 1/2〉 (20)

The expressions for the helicity amplitudes obtained using the current in
eqs.(14-17) are:

AN ′∗

3/2 =

√

2πα

qR

1

e
[G1(q

0 +
~q 2

2m
) + G2q

0p′0 + G3q
2] (21)

AN ′∗

1/2 =

√

2πα

qR

1

e

1√
3
[G1(q

0 − ~q 2

2m
) + G2q

0p′0 + G3q
2] (22)
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SN ′∗

1/2 = −
√

2πα

qR

1

e

√

2

3
q[G1 + G2p

′0 + G3q
0] (23)

From these three equations we can get the G1, G2, G3 form factors in terms
of the helicity amplitudes. The data for S1/2 are taken from [27] and for A1/2

and A3/2 from [27, 38] 1.
The other important vertex in our model corresponds to the ∆−N electro-

magnetic transition. As discussed in [32, 33], the most important transition
is the magnetic dipole (M1+) transition while the electric quadrupole (E1+)
and scalar quadrupole (S1+) transitions are small at momentum transfers be-
tween the photon point to Q2=1.3 GeV2. The values given in [26] for the ratio
E1+/M1+ (S1+/M1+) are -0.02 to 0.02 (-0.025 to -0.06) for Q2=0 to 1.3 GeV2

respectively. We take the γN∆ transition current from [39] where the same
non relativistic expansion done here, keeping terms of order O(p/m) for the
Dirac matrix elements, is done. A good reproduction of the data for electro-
production of one pion was obtained there in a wide range of energies around
the ∆ resonance and different Q2. The vertex for this electroproduction tran-
sition is given by eq. (40) in appendix A2 and the form factor used is given
by eq. (61) in appendix A3.

4 Gauge invariance and form factors

Gauge invariance is one of the important elements in a model involving photons
and implies that

T µqµ = 0 (24)

The explicit expressions for T µ, keeping the four components, as given in
appendix A4, allow one to check explicitly the gauge invariance. The block of
diagrams D1, D2, D4 and D6 form together a gauge invariant set. The rest of
the diagrams in which the photon directly excites a resonance from a nucleon
are gauge invariant by themselves. However, some caution must be observed
when imposing eq. (24). Indeed, in diagram D2 the intermediate pion is off-
shell and induces a strong πN∆ transition form factor, Fπ(p2), for which we
take a usual monopole form factor (see eq.(53) appendix A3). The constraints
of eq.(24) forces this form factor to appear in the other terms of the block of
diagrams which are gauge invariant. However, as discussed in the study of
the eN → e′Nπ reaction in [39], and as can be easily seen by inspection of
the diagrams and the amplitudes, the constraint of eq. (24) still requires the
equality of four electromagnetic form factors,

F p
1 (q2) = F∆

1 (q2) = Fγππ = Fc(q
2) (25)

1We note that the formalism followed here for the vertices of the N∗(1520) is different
from that of [2], but the same results are obtained for real photons.
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The form factors of eq. (25), if the strict Feynmann rules of the appendix
A4 are followed, are respectively the γNN , γ∆∆, γππ and γ∆Nπ ones. These
form factors are usually parametrized in different forms, as seen in appendix
A3, except for F p

1 (q2) and F∆
1 (q2) which are taken equal, as it would come

from ordinary quark models.
Although the model is gauge invariant with the prescription of eq. (25)

there is the inconvenience that the results depend upon which one of the three
form factors we take for all of them.

In the next section we discuss the uncertainties which come from this arbi-
trary choice of form factor. We should note however, that the dominant term,
by large, is the ∆ Kroll Ruderman and pion pole terms. This is also so in the
test of gauge invariance where the two terms involving the F p

1 (q2) form factor
in diagrams D4, D6 give only recoil contributions of the order of O(pπ/m) in
eq. (24). This justifies the use of Fc(q

2) or Fγππ(q2) for all the form factors.
There is, however, another way to respect gauge invariance, while at the

same time using different form factors which is proposed in [25] and to which
we refer in what follows as Berends et al. approach. In the next section we
will show the results from both approaches and will discuss them.

There are many papers in the literature following the Berends et al. ap-
proach in order to explain the experimental results with this gauge invariant
set of diagrams [40, 41, 42, 43].

Another of the common approaches to this problem in the past has been
the use of current algebra [44, 45, 46]. In this case, close to threshold of ∆π
production, the axial vector current 〈∆|Aµ|N〉 is the dominant term. In the
soft pion limit this axial vector current is shown to be equivalent [45] to the
one of the nucleon. The π∆ electroproduction data are hence used in those
works to determine the nucleon axial form factor.

Our model is more general since one obtains explicit pµ
π dependence, for

instance from the pion pole term (diagram D.2 fig. 1). The dominance of
the ∆Nπγ Kroll Ruderman at threshold (independent of pµ

π) offers however
some support to the assumptions made in those works, as quoted in [30]. The
diagrammatic approach relies however on the explicit use of the four form
factors of eq. (25). We shall see in the next section the influence of the
different terms close to threshold.

In [47], following the diagrammatic approach with the minimal set of gauge
invariant terms, fits to the data are carried fixing Fγππ from ρ vector meson
dominance and setting the other three form factors equal in order to determine
this latter common form factor. A qualitative agreement with the F p

1 (q2) form
factor obtained from others sources is found.

With the gauge invariant prescription of [25] using different form factors,
different fits to the data are carried fixing some of the form factors and deter-
mining others. We shall follow this latter approach , but with our enlarged
set of Feynman diagrams including the explicit decay of the ∆ into πN , which
allows one to keep track of correlations between the pions if wished. We will
show the sensitivity of the results to different form factors and the weight of
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the different terms as a function of energy and Q2.
The explicit formulas of the gauge invariant set in the presence of the

different form factors are taken from eq. (17) of ref. [25] and, after the non
relativistic reduction is done, the expressions used here are shown in appendix
A5.

5 Results and discussion

We have tested our results with the experimental data of refs. [22,30]. We
show the cross section of γvp → ∆++π− and γvp → ∆0π+ (∆0 → π−p), as a
function of W, the virtual photon-proton (γvp) center of mass energy, and for
different values of Q2. We have

W 2 = −Q2 + M2 + 2Mν ; ν = E − E ′ (26)

with

Q2 = −q2 = 4EE ′sin2(
θe

2
) (27)

We compare in fig. 2 the results for delta photoproduction (real photons)
with the experimental data [48] and we see that the agreement found is quite
satisfactory.
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Figure 2: Cross section for the γp → ∆++π− reaction. Experimental data from
[48].

In order to compare our results with experiment for virtual photons we
calculate first the cross sections at Q2 = 0.6 GeV 2.

Figure 3 contains three different calculations. Two of them correspond to
using all form factors equal (which we set to Fγππ) with two different values
of λ2

π, 0.5 GeV 2 and 0.6 GeV 2. We see that the cross section increases by
about 10 % when going from λ2

π=0.5 GeV 2 and λ2
π=0.6 GeV 2. We also show

the results taking F p
1 , F∆

1 with their values given in appendix A3 and setting
Fc = Fγππ with λ2

π=0.6 GeV 2. This latter calculation is not gauge invariant.
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However we see that the deviation with respect to the gauge invariant one
assuming all form factors equal is very small. This reflects the fact that the
relevant terms in the model are those involving Fγππ and Fc, the pion pole and
∆ Kroll Ruderman terms.

DESY (1978)

0.

10.

20.

30.

1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600.

fig. 2d

Figure 3: Cross section for γvp → π−∆++ as a function of the γvp center of mass
energy. The curves correspond to Q2 = 0.6 GeV 2. Dashed line: F

p
1 , F∆

1 , from
appendix A3 and Fc=Fγππ with λ2

π = 0.6 GeV 2. Continuous line: F
p
1 = F∆

1 = Fc =
Fγππ with λ2

π = 0.6 GeV 2. Dotted line: same as continuous line with λ2
π = 0.5 GeV 2
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fig. 2d

Figure 4: Continuous line: Cross section for γvp → π−∆++ at Q2= 0.6 GeV 2 using
F

p
1 = F∆

1 = Fγππ = Fc with λ2
π=0.6 GeV 2 and f̃N∗′∆π = −0.911, g̃N∗′∆π=0.552.

Dotted line: same as continuous line but with f̃N∗′∆π=0.911 and g̃N∗′∆π = −0.552.
See appendices A1 and A2 for the vertices and coupling constants used.

In refs. [2,14], two solutions for the coupling of the N∗(1520) to the ∆ in s
and d−waves, differring only in a global sign, were found from the respective
decay widths. Only a sign was compatible with the experimental (γ, ππ) data,
because of the strong interference between the γN → N∗(1520) → ∆π term
and the Kroll Rudermam one. Here, in the new formalism the amplitude of
the γN → N∗(1520) transition changes sign and consequently the signs of the
former N∗(1520) → ∆π couplings must be changed. In fig. 4 we show the
results of γvp → π−∆++ at Q2=0.6 GeV 2 using the two different signs for these
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Figure 5: Cross sections from γvp → ∆++π− with Berends formalism included.
Continuous line: F

p
1 , F∆

1 , Fγππ = Fc with λ2
π = 0.5 GeV 2. Dotted line: same as

continuous line with the parameter for Fγππ 0.5 GeV 2 and for Fc is 0.8 GeV 2.

couplings. We can see that the data favour clearly one of the signs. This was
also observed in the γp → π+π−p reaction in [14]. Fig. 4 shows the magnitude
of the interference between those terms. Neglecting the γp → N∗(1520) → ∆π
process leads to results in between the two curves shown in the figure where
one does not see any peak. The peak shown by the data around W=1480
MeV is hence not reminiscent of a ∆ but a peak coming from the constructive
interference of the terms mentioned above.

Now we evaluate the cross section using Berends gauge invariant approach
with different form factors [25] using the formulae of appendix A5 for the set of
the four gauge invariant terms. We show the results in fig. 5. The continuous
line in the figure is obtained with this prescription using the form factors of
appendix A3 for the F p

1 , F∆
1 but setting Fc = Fγππ with λ2

π = 0.5 GeV 2.
We can see that these results are remarkably similar to those of the dotted

line in fig. 3 where Fc and Fγππ had the same values as here but F p
1 , F∆

1 were
set equal to Fγππ in order to preserve gauge invariance.

Once again we can see that the terms involving F p
1 and F∆

1 are relatively
unimportant, or in any case that setting these form factors equal to Fγππ

provide a gauge invariant result very close to the one obtained with the more
general Berends prescription of [25].

The dotted line in fig. 5 corresponds to the same parametrization for Fc

as for Fγππ but parameter λ2
c= 0.8 GeV 2. This shows the sensitivity of the

results to Fc which appears in the dominant Kroll-Ruderman term.
Given the dominance of the Kroll Ruderman term close to threshold pro-

duction of ∆π in our model and the dominance of the terms involving the
axial form factor in the current algebra approaches, we now show in fig. 6 the
results taking for Fc the parametrization of the axial vector form factor (see
appendix A3), varying the value of MA. The Berends formalism with different
form factors is used, and F p

1 , F∆
1 , Fγππ are taken as in appendix A3. We can

see that the experimental data favour values of MA ≃ 1.16-1.23 GeV very
similar to the values determined in [30] (1.16± 0.03) GeV or [44] (1.18± 0.07)
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Figure 6: Cross sections for γvp → π−∆++ within Berends formalism. We use
different form factors for F

p
1 , F∆

1 , Fγππ from appendix A3. We take for the axial
form factor, FA, form the contact term. The parameter MA is changed from up to
down :1.32, 1.23, 1.16, 0.89 in GeV.
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Figure 7: Cross section for γvp → π+∆0 within Berends formalism. We use
F

p
1 , F∆

1 , Fγππ from appendix A3 and FA with MA=1.16 GeV.

In fig. 7 we show the cross section for γvp → ∆0π+ with Berends scheme
and with a value of the axial form factor parameter of MA = 1.16 GeV. We
find a good agreement with the scarce experimental data but more data would
be required to further check this channel.

In all these sets of figures for ∆++ electroproduction we find a good agree-
ment with the experimental results around the peak region 1460 MeV≤ W ≤
1600 MeV in c.m. energy at Q2=0.6 GeV 2. As commented above, this peak
comes from the interference between the ∆ Kroll Ruderman and the N∗(1520)
excitation terms, which was also found for real photons in [1,2,14]. A priori
this interference pattern could change for virtual photons since these two terms
are affected by different form factors, Fc(q

2) for the contact term and the form

14



factors G1(q
2), G2(q

2), G3(q
2) that appear for the γN → N∗(1520) transition.

In practice we see that the interference survives in the case of virtual photons.
The N∗(1520) excitation has a longitudinal coupling and so has the ∆.

The inclusion of this longitudinal contribution could also blur the interference
found with these two terms for real photons. However, the results shown for
virtual photons show that the interference remains also in this latter case. We
have checked that if we go up to higher Q2 the interference still exists but the
shape becomes flatter.

DESY (1978)
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30.

1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600.

Figure 8: Continuous line: cross section for γvp → ∆++π− within Berends formal-
ism and with the parameter MA=1.23 GeV at Q2=0.6 GeV 2. Dotted lines: From
up to down we show the tranverse σT and longitudinal ǫσL cross section at Q2=0.6
GeV 2 respectively. Short-dashed lines: From up to down the same as in dotted line
for Q2=1.2 GeV 2.

Figure 9: Cross section γvp → ∆++π− as a function of the Q2.

It is interesting to show separate contributions for the longitudinal and
transverse cross sections which are likely to be also measured at TJNAF. We
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Figure 10: Continuous line: Total cross section from γv → π−∆++ within Berens
formalism restricting mπ ≤ ωπ− ≤ mπ + 10 MeV. We use F

p
1 , F∆

1 from appendix
A3 and Fγππ with λ2

π= 0.5 GeV 2. Dotted lined: Contribution of ∆ Kroll Ruderman
term using FA with MA=1.16 GeV. Short-dashed line: Contribution of ∆ Kroll
Ruderman term plus the interference with the N∗(1520) term.

.

find in fig. 8 that the shape of the curves for the transverse contribution is the
same as for real photons and for the sum of the longitudinal and transverse
cross sections for the virtual ones. We observe that the longitudinal contribu-
tion gives only a small background. This pattern appears for any intermediate
values of Q2 between those shown in the figure.

In fig. 9 we show a cross section as a function of the momentum transfer
Q2 and we compare with the experimental data from [22,30].

We have made an average of the cross sections between 1300 to 1500 MeV
c.m. energy in order to compare with the experiment. We observe that the
trend of the data is well reproduced, but the absolute value is a little lower
reflecting the discrepances with the data in fig. 8 in that range of energies.

In fig. 10 we show some results which can be a guideline for an experimental
analysis. We concentrate on a hypothetical measurement that strengtens the
contribution of the Kroll Ruderman term in order to optimize the chances
to obtain an accurate value for the contact form factor Fc(q

2). This can be
accomplished by fixing the energy of the π− and hence putting the ∆++ on
shell in the diagram D.1 of fig. 1. In fig. 10 we take mπ ≤ ωπ− ≤ mπ + 10 MeV
and show the results obtained for different Q2 selecting the Kroll Ruderman
term alone, this term plus the interference with the N∗(1520) and the total
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contribution. We see indeed that this magnitude is largely dominated by the
Kroll Ruderman term. However the interference with the N∗(1520) term is
always present. Since the weight of the N∗(1520) propagator is smaller at lower
energies, we can also see that the region to the left of the ∆ peak which appears
in the figure is more suited to pin down the contribution of the Kroll Ruderman
term. Yet, even at this lower energies the contribution of the interference term
is still of the order of 20 per cent. This means that the accurate evaluation of
Fc(q

2) at level better than 20 per cent requires a careful analysis in which the
interference term is explicitly considered.

6 Conclusions

We have calculated cross sections for the γvp → ∆++π− and γvp → ∆0π+

reactions, extending the model of ref. [2] to virtual photons and selecting the
diagrams which have a ∆ in the final state.

The present calculations and comparison with the scarce experimental data
are sufficient to establish the fairness of the present model to deal with the
∆π production process. In summary we could remark the following points:

Even if the data are scarce the agreement with them is good up to W≃ 1.6
GeV and Q2 ≃ 1.4 GeV 2 for the ∆++ channel. However, it would be desirable
to have data for different values of Q2. In the future such experiments are
bound to be made in Thomas Jefferson Laboratory and other experimental
facilities. Also other channels should be measured as well as total cross sections
for γvN → ππN where the πN are not in a ∆ state.

We have also shown that the peak in the cross section is due to an interfer-
ence between the ∆ Kroll Ruderman term and the N∗(1520) excitation process
followed by ∆π decay. This interference appeared in real photons and is not
destroyed for virtual ones in spite of the fact that the electromagnetic form
factors of the respective mechanisms are not exactly the same. In addition,
the contribution from the longitudinal couplings in the terms involved in the
interference does not destroy this effect. The experiments show clearly that
interference of the two mechanisms is contructive below the N∗(1520) pole,
which is consistent with the findings in real photons and predictions of the
relativized quark models.

Different sets of form factors have been used in our model in order to show
the sensitivity of the results to these changes. These tests should be useful
in view of the coming data and the possibility to extract relevant information
from them.

Some plots can be useful for the experimental task. We have shown the
separation of the transverse and longitudinal cross sections and found that the
transverse one largely dominates the cross sections.

We have also shown a method aimed at obtaining the form factor for the
Kroll Ruderman term selecting a kinematics which maximizes its importance.
Even then we saw that an accurate extraction of this form factor requires the
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explicit inclusion of the N∗(1520) term in the analysis because of the important
interference of this term with the Kroll Ruderman one.

Finally, it is also interesting to note that the present model is just part of a
more general γvN → ππN model which selects only the terms where a πN pair
of the final state appears forming a ∆ state. Both experiments and theoretical
calculations on the different (γv, ππ) channels should be encouraged.
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partial financial support for DGICYT contract number PB96-0753. One of us,
J.C.N. would like to acknowledge the support from the Ministerio de Educacion
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APPENDIX

A1. Lagrangians.

LπNN = −f

µ
Ψγµγ5∂µ

~φ · ~τΨ (28)

L∆πN = −f ∗

µ
Ψ†

∆S†
i (∂iφ

λ)T λ†ΨN + h.c. (29)

L∆∆π = −f∆

µ
Ψ†

∆S∆i(∂iφ
λ)T λ

∆Ψ∆ + h.c. (30)

LN∗∆π = −gN∗∆π

µ
Ψ†

∆S†
i (∂iφ

λ)T λ†ΨN∗ + h.c. (31)

LN∗′∆π = iΨN∗′(f̃N∗′∆π − g̃N∗′∆π

µ2
S†

i ∂iSj∂j)φ
λT λ†Ψ∆ + h.c. (32)

LNNγ = −eΨN(γµAµ − χN

2m
σµν∂νAµ)ΨN (33)

Lππγ = ie(φ+∂µφ− − φ−∂µφ+)Aµ (34)

Instead of writing the explicit expressions for the terms involving the pho-
ton and the excitation of resonances like L∆Nγ, LN∗Nγ , L∆πγN and LN∗′Nγ, we
address the reader directly to eqs. (40, 43-44, 50, 51-52) respectively which
provide the vertex function (L → −V µǫµ).

In the former expressions ~φ, Ψ, Ψ∆, ΨN∗ , ΨN ′∗ and Aµ stand for the pion,
nucleon, ∆, N∗, N ′∗ and photon fields, respectively ; N∗ and N ′∗ stand for
the N∗(1440) and N∗(1520); resonances m and µ are the nucleon and the pion

masses; ~σ and ~τ are the spin and isospin 1/2 operators; ~S† and ~T † are the
transition spin and isospin operators from 1/2 to 3/2 with the normalization

〈3
2
, M |S†

ν |
1

2
, m〉 = C(

1

2
, 1,

3

2
; m, ν, M) (35)

with ν in spherical base, and the same for T †. The operators ~S∆ and ~T∆ are
the ordinary spin and isospin matrices for the a spin and isospin 3/2 object.
For the pion fields we used the Bjorken and Drell convention :

φ+ =
1√
2
(φ1 − iφ2) destroys π+, creates π− (36)

φ− =
1√
2
(φ1 + iφ2) destroys π−, creates π+ (37)

φ0 = φ3 destroys π0, creates π0 (38)
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Hence the |π+〉 state corresponds to −|11〉 in isospin base.
In all formulae we have assumed that σi ≡ σi, Si ≡ Si, T i ≡ Ti are Euclidean
vectors. However for ∂i, Ai, pi, etc, we have respected their covariant meaning.

A2. Feynman Rules.

Here we write the Feynman rules for the different vertices including already
the electromagnetic form factors. We assumed the photon with momenta q as
an incoming particle while the pion with momentum k is an outgoing particle
in all vertices. The momentum p, p′ are those of the baryonic states just before
and after the photon absorption vertex (or pion production vertex in eq. (42)).

V µ
γNN = −ie

{

F N
1 (q2)

F N
1 (q2)[ ~p+~p ′

2m
] + i~σ×~q

2m
GN

M(q2)

}

(39)

V µ
γN∆ =

√

2

3

fγ(q
2)

mπ

√
s

m∆







~p∆√
s
( ~S† × ~q)

p0
∆√
s
[ ~S† × (~q − q0

p0
∆

~p∆)]







(40)

VπN∆ = −f ∗

µ
~S† · (~k − k0

√
s

~p∆)T λ† (41)

VπNN = −f

µ
(~σ~k − k0~σ(~p + ~p ′)

2m
)τλ (42)

V 0
N∗Nγ = i

~q 2

2m
F2(q

2) − i~q 2(1 +
q0

2m
)F1(q

2) (43)

V i
N∗Nγ = F2(q

2)[i~q
q0

2m
+ (~σ × ~q)(1 +

q0

2m
)] (44)

−F1(q
2)[i~qq0(1 +

q0

2m
) + q2 1

2m
(~σ × ~q)]

VN∗∆π = −gN∗∆π

µ
~S† · ~kT λ† (45)

V∆∆π = −f∆

µ
~S∆ · ~k T λ

∆ (46)

VN∗′∆π = −(f̃N∗′∆π +
g̃N∗′∆π

µ2
~S† · ~k~S · ~k)T λ† (47)

V µ
γ∆∆ = −i

{

e∆F∆
1 (q2)

e∆F∆
1 (q2)[ ~p+~p′

2m∆
] + i

~S∆×~q
3m

eG∆
M(q2)

}

(48)

V µ
ππγ = −iqπ(kµ + k′µ)Fγππ(q2) (49)
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V µ
∆Nγπ = −qπ

f ∗

mπ

T λ†







~S† ~p∆√
s

~S†







Fc(q
2) (50)

V 0
γNN ′∗ = i(G1(q

2) + G2(q
2)p′0 + G3(q

2)q0)~S† · ~q (51)

V i
γNN ′∗ = −i[(

G1(q
2)

2m
− G3(q

2))(~S† · ~q) ~q − iG1(q
2)

~S† · ~q
2m

(~σ × ~q) (52)

−~S†{G1(q
2)(q0 +

~q 2

2m
) + G2(q

2)p′0q0 + G3(q
2)q2}]
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A3. Coupling and form factors

Coupling constants :

f = 1 f ∗ = 2.13

f∆Nγ = 0.122 f∆ = 0.802

e = 0.3027

f̃N∗′∆π = −0.911 g̃N∗′∆π = 0.552

gN∗∆π = 2.07

Form factors :

For the off-shell pions we use a form factor of the monopole type :

Fπ(p2) =
Λ2

π − µ2

Λ2
π − p2

; Λπ ∼ 1250 MeV (53)

The Sachs’s form factors are given by

GN
M(q2) =

µN

(1 − q2

Λ2 )2
; GN

E (q2) =
1

(1 − q2

Λ2 )2
(54)

with Λ2 = 0.71 GeV 2; µp = 2.793; µn = −1.913.

The relation between F p
1 (q2) (Dirac’s form factor) and Gp

E(q2) is :

F p
1 (q2) = Gp

E(q2)
(1 − q2µp

4m2
N

)

(1 − q2

4m2
N

)
(55)

and F n
1 = 0.

For the delta resonance we use

F∆
1 = F p

1 (q2) (56)

G∆
M(q2) =

µ∆

(1 − q2

Λ2 )2
(57)

In the case of the ∆++ we make use of the experimental value µ∆++ = 1.62
µp and for the other charge states we make use of the ratio (e > 0):

µ∆

µp
=

e∆

e
(58)
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For the γππ vertex in diagram D2, we take the form factor:

Fγππ(q2) =
1

(1 − q2

λ2
π
)

(59)

with λ2
π = 0.5 GeV 2.

The axial nucleon form factor is given by:

FA(q2) =
1

(1 − q2

M2
A

)2
(60)

with MA = 1.16 GeV. This form factor is used for the contact form factor,
Fc(q

2), in some of the results reported here. Some others results use Fc(q
2) =

Fγππ(q2).

The form factor for the γ∆N transition is taken as:

fγ(q
2) = fγ(0)

(1 − q2

(m∆+m)2
)

(1 − q2µp

4m2
N

)

Gp
M(q2)

µp

(m∆ + m)2

(m∆ + m)2 − q2
(61)

where fγ(0) = 0.122

A4. Amplitudes for the reaction

In this appendix we write the explicit expressions for the amplitudes of
the Feynman diagrams used in the model. The isospin coefficients and some
constant factors are collected in the coefficients C which are written in the
table A4.

Reaction D1 D2 D3 D4 D5 D6 D7 D8

γvp → π−∆++ -i/3 -i/3 0 i/3 1 i/3 i -1
γvp → π+∆0 i/9 i/9 -2i/9 i/9 -2/3 0 i/3 -1/3

Table A4: Coefficients of the amplitudes for the ∆++ and ∆0 (∆0 → π−p)
reactions, accounting for isospin and constant factors.

In the following expressions q, p1, p2, p4, and p5 are the momentum of the
photon,the incoming nucleon, the outgoing nucleon and the two pions :

γ p π+ π− p

q p1 p5 p4 p2

We write only the amplitude when the pion labelled p5 is emitted before
the pion labelled p4(∆

0 case), except in the case of the D6 where the only
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possibility is the ∆++ and the explicit amplitude for this case is written. We
have also evaluated the crossed diagrams when the pion labelled p5 is emitted
after the pion called p4(∆

++ case). Such amplitudes are exactly the same
than the others written before, but exchanging the momenta p4 and p5 and
changing some isospin coefficient. This latter change is taken into account by
the factor C written in table A4.

We should note that in the vertex ∆Nπ, when ~p∆ is not zero, we must
change ~pπ by ~pπ − p0

√
s
~p∆ for the final pion.

In the formulae, Dπ, G∆, GN , GN∗ , GN ′∗ are the propagator of the pion,
delta, nucleon, N∗(1440), N∗(1520) respectively. Expressions for them and for
the width of the resonances can be found in [1, 2, 14].

− iT µ
1 = Ce(

f ∗

µ
)2G∆(p2 + p4)Fπ((p5 − q)2)Fc(q

2) (62)

×
{

[2~p4 · ~p5 − i(~p4 × ~p5) · ~σ] −1√
s∆

2~p4 − i(~σ × ~p4)

}

− iT µ
2 = Ce(

f ∗

µ
)2G∆(p2 + p4)Dπ(p5 − q)Fπ((p5 − q)2)Fγππ(q2) (63)

×[2~p4 · (~p5 − ~q) − i(~p4 × (~p5 − ~q)) · ~σ]

×
{

2p5 − q
}µ

− iT µ
3 = C

f

µ

f ∗

µ

fγ(q
2)

µ
GN (p2 + p4)G∆(p1 + q) (64)

×






[−2i(~p4 × ~q) − (~σ · ~q)~p4 + (~p4 · ~q)~σ] ~p∆

m∆

[−2i(~p4 × ~q ′) − (~σ · ~q ′)~p4 + (~p4 · ~q ′)~σ]
p0
∆

m∆







×[−p0
5

~σ(2~p1 − ~p5)

2m
+ ~σ ~p5]

with ~q ′ = (~q − q0

p0
∆

~p∆)

− iT µ
4 = Ce(

f ∗

µ
)2GN(p1 + k)G∆(p2 + p4)Fπ((p5 − q)2) (65)

×[2~p4 · ~p5 − i(~p4 × ~p5) · ~σ]

×
{

F p
1 (q2)

F p
1 (q2)[ ~p+~p ′

2m
] + iGp

M (q2)~σ×~q
2m

}

− iT 0
5 = 0 in γ − p CM frame (66)

− iT i
5 = C

f ∗

µ

f∆

µ

fγ(q
2)

µ
G∆(p2 + p4)G∆(p1 + q) (67)

×[i
5

6
(~p4 · ~q)~p5 − i

5

6
(~p5 · ~q)~p4 −

1

6
(~p4 · ~p5)(~σ × ~q) −

1

6
(~p4 · ~σ)(~p5 × ~q) +

2

3
(~p5 · ~σ)(~p4 × ~q)]
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− iT 0
6 = C(

f ∗

µ
)2G∆(p2 + p5)G∆(p1 − p4)Fπ((p5 − q)2){e∆F∆

1 (q2) (68)

×[2~p5 · ~p4 − i(~p5 × ~p4) · ~σ]}

− iT i
6 = C(

f ∗

µ
)2G∆(p2 + p5)G∆(p1 − p4)Fπ((p5 − q)2) (69)

×{e∆F∆
1 (q2)

2

(~p1 − 2~p4)

m∆

[2~p5 · ~p4 − i(~p5 × ~p4) · ~σ] +

i
eG∆

M(q2)

m
[i

5

6
(~p4 · ~q)~p5 − i

5

6
(~p5 · ~q)~p4 −

1

6
(~p5 × ~q)(~p4 · ~σ) −

1

6
(~p5 · ~σ)(~p4 × ~q) +

2

3
(~p5 · ~p4)(~σ × ~q)]}

Amplitude of N ′∗(1520):
Vector part :

− iT i
7 = C

f ∗

µ
G∆(p2 + p4)GN ′∗(p1 + q) (70)

×~S · ~p4[f̃N ′∗∆π +
g̃N ′∗∆π

µ2
~S† · ~p5

~S · ~p5]

×{(G1(q
2)

2m
− G3(q

2))(~S† · ~q) ~q − iG1(q
2)

~S† · ~q
2m

(~σ × ~q)

−~S†[G1(q
2)(q0 +

~q 2

2m
) + G2(q

2)p′0q0 + G3(q
2)q2]}

scalar part:

− iT 0
7 = −C

f ∗

µ
G∆(p2 + p4)GN ′∗(p1 + q) (71)

×~S · ~p4[f̃N ′∗∆π +
g̃N ′∗∆π

µ2
~S† · ~p5

~S · ~p5]

×[G1(q
2) + G2(q

2)p′0 + G3(q
2)q0]~S† · ~q

Amplitude of N∗(1440):
Vector part :

− iT i
8 = C

f ∗

µ

gN∗∆π

µ
G∆(p2 + p4)GN∗(p1 + q)~S · ~p4

~S† · ~p5 (72)

× {F2(q
2)[i~q

q0

2m
+ (~σ × ~q)(1 +

q0

2m
)]

−F1(q
2)[i~qq0(1 +

q0

2m
) + q2 1

2m
(~σ × ~q)]}
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scalar part:

− iT 0
8 = C

f ∗

µ

gN∗∆π

µ
G∆(p2 + p4)GN∗(p1 + q)~S · ~p4

~S† · ~p5 (73)

× {i ~q 2

2m
F2(q

2) − i~q 2(1 +
q0

2m
)F1(q

2)}

A5. Amplitudes for the gauge invariant set
within Berends formalism.

The explicit amplitudes for the gauge invariant set of the 4 diagrams D1,
D2, D4 and D6, in the presence of different form factors are made according to
eq. (17) of [25]. We implement them in our formalism by making the following
substitutions in the amplitudes shown in the appendix A4. The form factor
in the zeroth component of each amplitude is changed as:

T µ
1 :

~S† · ~p∆√
s∆

Fc →
~S† · ~p∆√

s∆
Fc − (Fc − 1)(

~S† · ~p∆√
s∆

q0 − ~S† · ~q)q
0

q2
(74)

T µ
2 :

Fγππ{2p5 − q}0 → Fγππ{2p5 − q}0 + (Fγππ − 1)D−1
π

q0

q2
(75)

T µ
4 :

F p
1 → F p

1 + (F p
1 − 1)G−1

N

q0

q2
(76)

T µ
6 :

F∆++

1 → F∆++

1 + (F∆++

1 − 1)G−1
∆

q0

q2
(77)

where GN , G∆ are the non relativistic propagator of the nucleon and the ∆
resonance and Dπ the ordinary relativistic pion propagator.

A6. Miscellaneous Formulae.

In order to obtain our amplitudes we have employed some useful relations:

∑

M

Si|M〉〈M |S†
j =

2

3
δij −

i

3
ǫijkσk = δij −

1

3
σiσj (78)
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∑

MM ′

Si|M〉〈M |S∆j |M ′〉〈|M ′|S†
k =

5

6
iǫijk −

1

6
δijσk + (79)

2

3
δikσj −

1

6
δjkσi

From eqs. (78) and (79). we can prove the following relations,which are
used in the calculation of the amplitudes:

~S · ~p ~S† · ~q =
1

3
[2~p · ~q − i(~p × ~q) · ~σ] (80)

~S · ~p( ~S∆ × ~k) · ~ǫ ~S† · ~q = [
5

6
i~p · ~ǫ~q · ~k − 5

6
i~p · ~k~q · ~ǫ − (81)

1

6
(~p × ~k) · ~ǫ~σ · ~q − 1

6
~σ · ~p(~q × ~k) · ~ǫ +

2

3
~p · ~q(~σ × ~k) · ~ǫ]

where we have omitted the sum over intermediate states.
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[2] J.A. Gómez-Tejedor and E. Oset, Nucl. Phys. A600 (1996) 413.

[3] A. Braghieri et al., Phys. Lett. B363 (1995) 46.

[4] A. Zabrodin et al., Phys. Rev. C55 (1997) 1617.

[5] F. Härter et al., Phys. Lett. B401 (1997) 229.

[6] L.Y. Murphy and J.M. Laget, DAPHNIA/sphN 95-42, preprint.

[7] J.M. Laget, private communication

[8] K. Ochi, M. Hirata and T. Takaki, Phys. Rev. C56 (1997) 1472.

[9] M. Hirata, K. Ochi and T. Takaki, nucl-th/9711017.

[10] M. Benmerrouche and E. Tomusiak, Phys. Rev. Lett. 73 (1994) 400.

[11] V. Bernard, N. Kaiser, Ulf-G. Meissner and A. Schmidt, Nucl. Phys. A
580. (1994) 475.

[12] V. Bernard, N. Kaiser, and Ulf-G. Meissner, Phys. Rev. Lett.74 (1995)
1036.

[13] M. Benmerrouche and E. Tomusiak, Phys. Rev. Lett. 74 (1995) 1037.
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Abstrat

We have extended a model for the N ! ��N reation to virtual

photons and seleted the diagrams whih have a � in the �nal state.

With this model we have evaluated ross setions for the virtual photon

ross setion as a funtion of Q

2

for di�erent energies. The agreement

found with the 

v

p! �

0

�

+

and 

v

p! �

++

�

�

reations is good. The

sensitivity of the results to N� transition form fators is also studied.

The present reation, seleting a partiular �nal state, is an extra test

for models of the 

v

N ! ��N amplitude. The experimental measure-

ment of the di�erent isospin hannels for this reation are enouraged

as a means to unravel the dynamis of the two pions photoprodution

proesses.
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1 Introdution

The N ! ��N reation in nulei has aptured some attention reently and

has proved to be a soure of information on several aspets of resonane forma-

tion and deay as well as a test for hiral perturbation theory at low energies.

A model for the p! �

+

�

�

p reation was developed in [1℄ ontaining 67 Feyn-

man diagrams by means of whih a good reprodution of the ross setion was

found up to about E



' 1 GeV.

A more redued set of diagrams, with 20 terms , was found suÆient to

desribe the reation up to E



' 800 MeV [2℄ where the Mainz experiments

are done [3,4,5℄.

In the same work [2℄ the model was extended to the other harge hannels of

(; 2�) and the agreement with the experiment is good exept for the hannel

p! �

+

�

0

n where the theoretial ross setion underestimates the experiment

in about 40 per ent.

Other models have also been reently proposed. The model of ref. [6℄

ontains the dominant terms of [1℄ and inludes some extra resonanes in

order to make preditions at high energies. A presription to approximately

unitarize the model, of relevane at high energies, is also proposed. Revision

of this work is under onsideration [7℄, so more about it should be known in

the future.

The model of [8℄ has fewer diagrams than the one of [1,2℄ but introdues

the N

�

(1520)! N� deay mode. By �tting a few parameters to (; ��) data

the ross setions are reprodued, inluding the p ! �

+

�

0

n reation where

the model of [2℄ fails. The (; �

0

�

0

) hannel is somewhat underpredited. The

model of [8℄ fails to reprodue some invariant mass distributions where the

model of [1℄ shows no problems. A di�erent version of the model of [8℄ is given

in [9℄, where the parameters of the model are hanged in order to reprodue

the mass distribution, without spoiling the ross setions. One of the problems

in the �t of [9℄ is that the range parameter of the � oupling to baryons is very

small, around 200 MeV, whih would not be easily aomodated in other areas

of the � phenomenology, like the isovetor �N s�wave sattering amplitude.

On the other hand the model of [2℄ has no free parameters. All input

is obtained from known properties of resonanes and their deay, with some

unknown sign borrowed from quark models. With all its global suess in

the di�erent isospin hannels, the persistane of the disrepany in the p!

�

+

�

0

n hannel indiates that further work is needed. The onstraints provided

by the data in two pion eletroprodution should be useful to further test

present models and learn more about the dynamis of the two pion prodution.

The (,2�) reation has also been used to test hiral perturbation theory.

The threshold region is investigated in [10,11℄ with some disrepanies in the

results whih are ommented in [12,13℄. The one loop orretions are shown

to be relevant in the p! �

0

�

0

p reation lose to threshold [11℄. In addition

the N

�

(1440) exitation is shown to be very important at threshold in [2℄.

Another interesting information obtained from the p! �

+

�

�

p reation is

2



information about the N

�

(1520) deay into ��. Indeed, the photoexitation

of the N

�

(1520) followed by the deay into �� is a mehanism whih interferes

with the dominant term, the N�� Kroll-Ruderman term, and o�ers infor-

mation on the q dependene and the sign of the s and d � wave amplitudes

of N

�

(1520) ! �N deay. This information is a good test of quark models

[14℄ whih is passed by the "relativised" onstituent quark models [15,16,17℄.

In the p ! �

0

�

0

p reation the N ! N

�

(1520) ! �� is shown to be an

important mehanism by itself (there is no � Kroll-Ruderman term here), and

it is perfetly visible in the experimental invariant mass distribution [5℄.

The (,2�) reation has also relevane in nulear physis. Inlusive ross

setion for the (,�

+

�

�

) have been alulated in [18℄ and the inlusive (,�

0

�

0

)

reation is measured in [19℄. Calulations for (,�

+

�

�

) and the (,�

0

�

0

) o-

herent two pion prodution in nulei have been performed in [20℄ and the

ross setions are found to be very di�erent in two di�erent harge hannels,

with patterns in the energy and angular distributions linked to isospin onser-

vation. Similarly, exhange urrents for the (,�

+

) reation are onstruted

from (,��) when a pion is produed o�-shell and absorbed by a seond nu-

leon. These exhange urrents give an important ontribution to the (,�

+

)

ross setion at large momentum transfer [21℄.

The disussions above have served to show the relevane of the (,2�)

reation and its impliations in di�erent proesses. The extension of this

kind of work to virtual photons should omplement the knowledge obtained

through the (,2�) and the related reations. The oupling of the photons to

the resonanes depends on q

2

and the dependene an be di�erent for di�erent

resonanes. Hene, the interferene of di�erent mehanisms pointed above

will depend on q

2

and with a suÆiently large range of q

2

, one an pin down

the mehanism of (,2�) with real or virtual photons with more preision than

just with real photons, whih would help settle the di�erenes between present

theoretial models.

However, there are already interesting two pion eletroprodution experi-

ments seleting � in the �nal state. The reations are, ep ! e

0

�

+

�

++

and

ep ! e

0

�

+

�

0

[22℄. It is thus quite interesting to extend present models of

(; 2�) to the realm of virtual phtons and ompare with existing data. In

the present paper we do so, extending the model of ref.[2℄ to deal with the

eletroprodution proess. This model is exible enough and one an selet

the diagrams whih ontain �� in the �nal state in order to ompare diretly

with the measured ross setions.

The extension of the model requires three new ingredients: the introdution

of the zeroth omponent of the photon oupling to resonanes (alulations

where done in [2℄ in the Coulomb gauge, �

0

, where the zeroth omponent is

not needed), the implementation of the q

2

dependene of the amplitudes, whih

will be disussed in forthoming sessions, and the addition of the expliit terms

linked to the S

1=2

heliity amplitudes whih vanish for real photons.

Experiments on (

v

,2�) are presently being done in the Thomas Je�erson

Laboratory [23℄, both for N� and N�� prodution.

3



The model presented here an serve to extrat relevant information from

oming data, whih will improve appreiably the preission of present experi-

ments.

There has been earlier work on the partiular problem whih we are dis-

ussing here. In [24℄ an approah for �� eletroprodution lose to threshold

was done with speial emphasis in determining the axial transition form fa-

tors. The approah uses the urrent algebra formalism and some of the input

needed is obtained from the same eletroprodution data. The delta is treated

as an elementary partile but the ross setions are folded with a Breit Wigner

distribution in order to take into aount approximately the e�ets of the �-

nite width of the �. The e�ets of the D

13

resonane are also disussed and

introdued in an approximate way. The novelties here with respet to this

work would be the use of a di�erent formalism, sine we are relying on the

Feynman diagrammati approah. On the other hand all information needed

here, some of whih was not available at the time of ref.[24℄, is already known

suh that lear preditions an be made. There is another important di�erene

with respet to [24℄ whih is that the � is not onsidered as a �nal state but

deays expliitly into �N in the Feynman diagrams onsidered. This means

that the � is treated as a propagator and the sum over polarizations is done

in the amplitudes not in the ross setions as in [24℄. This allows one to keep

trak of angular orrelations between the two pions whih are lost if the � is

onsidered as a �nal state. It also allows to take into aount the delta width

in a natural way sine it just omes as the imaginary part of the inverse of

the � propagator. It also allows one to keep trak of interferene of di�erent

piees, in partiular those between the � Kroll Ruderman term and the ex-

itation of the N

�

(1520) resonane followed by �� deay, whih is one of the

important �ndings in the present reation.

Our model bears more similarity to the work of [25℄ where also a diagram-

mati approah is followed. They introdue the minimal set of terms whih are

gauge invariant as a blok, inluding the important � Kroll Ruderman term.

In our model we also inlude the four terms of [25℄ but we have in addition four

more terms, in partiular the exitation of the N

�

(1520) resonane followed by

�� deay, whih has a strong interferene with the � Kroll Ruderman term.

In [25℄ a formalism is used whih respets Ward identities and leads to a gauge

invariant amplitude in the presene of di�erent eletromagneti form fators

for the di�erent terms of the model appearing for virtual photons. We have

also followed this formalism in our approah.

For the onstrution of the urrents for resonane exitation we follow

losely the work of [26℄ and take the onvention of [27℄ for the de�nition of

the heliity amplitudes. Altogether the formalism in the present paper diverts

somewhat from the one used for real photons in [1,2℄ where many simpli�a-

tions ould be done, but in the ase of real photons we regain the results of

[1,2℄, although the use of new onventions fores the hange of some sign. In

order to avoid onfusion the Lagrangians used and new onventions are now

written in detail in a setion.
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2 Model for eN ! e

0

��.

We will evaluate ross setions of virtual photons integrated over all the vari-

ables of the pions and the outgoing nuleon. In this ase the formalism is

idential to the one of inlusive eN ! e

0

X sattering [28,29℄ or pion eletro-

prodution after integrating over the pion variables [30,31℄. The (e, e

0

) ross

setion is given by

d�

d


0

dE

0

=

�

2

q

4

k

0

k

�q

2

1� �

1

2�e

2

[(W

xx

+W

yy

) + (1)

2�(

�q

2

~q

2

)W

00

℄

where � = e

2

=4� is the �ne struture onstant, e the eletron harge, q

�

the

momentum of the virtual photon and k, k

0

the momenta of the initial and the

�nal eletron and � the polarization parameter of the photon, whih is given

by

� = [1�

2~q

2

q

2

tg

2

�

e

2

℄

�1

(2)

with �

e

the angle of the sattered eletron. All variables are given in the lab

frame and the z diretion is taken along the diretion of the virtual photon,

~q. Furthermore, the hadroni tensor is given here by

W

��

=

Z

d

3

p

2

(2�)

3

M

E

1

M

E

2

Z

d

3

p

4

(2�)

3

1

2w

4

Z

d

3

p

5

(2�)

3

1

2w

5

(3)

XX

T

�

T

��

(2�)

4

Æ(q + p

1

� p

2

� p

4

� p

5

)

where p

1

, p

2

, p

4

, p

5

are the momenta of the initial, �nal nuleon, and the

two pions and T

�

is the matrix element of the 

v

N

1

! N

2

�

4

�

5

proess. Note

that the phase spae aounts for the deay of the � into N� expliitly, hene

the �nite width of the � is automatially taken into aount. The terms

ontributing to T

�

are given below.

The expression of eq.(1) an be onveniently rewritten as [30℄

d�

d


0

dE

0

= �(�

T



v

+ ��

L



v

) = ��



v

(4)

where �

T



v

, �

L



v

are the transverse,longitudinal ross setions of the virtual

photons and � is given by

� =

�

2�

2

1

�q

2

k

0

k

1

1� �

K



(5)

K



=

s�M

2

2M

; s = (q

0

+M)

2

� ~q

2

(6)

The orresponding ross setions �

T



v

and �

L



v

are easily indued from eqs.

(1) and (4). The term with the ombination W

xx

+ W

yy

in eq. (1) gives rise

5



to the transverse ross setion while the term proportional to W

00

gives rise

to the longitudinal one.

In the limit of the real photons, when q

2

' 0, K



is the lab momentum of

the photon, and only the transverse ross setion ontributes, in whih ase

�

T



v

= �



, the ross setion of real photons.

For the model of the 

v

N ! �� reation we take the same diagrammati

approah as in ref.[2℄ and selet the diagrams whih have a � in the �nal

state. The diagrams whih ontribute to the proess are depited in �g.1.

The ontribution of eah one of the diagrams is readily evaluated from the

Lagrangians written in appendix A1. The Feynman rules for the diagrams are

olleted in appendix A2. The oeÆients, oupling onstants and the form

fators are olleted in appendix A3. Finally, the amplitudes for eah one of

the terms are written in appendix A4 for eah harge state.

Out of the 20 terms in [2℄ for the general (; 2�) reation only 8 terms

ontain a � and a pion in the �nal state whih are the terms olleted in �g.1.

Fig.1

N*(1520) N*(1440)

∆ ∆ ∆ ∆

∆

∆

∆

∆
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γ

π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

γ
γ

γ

γ

γ

γ γ

v
v

v
v

v

v

v v

D.1 .D.2 D.3 D.4
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nucl-th/9804006   1 A
pr 1998

Figure 1: Feynman diagrams used in the model for 

v

p! ��

3 Eletromagneti transitions for Roper and

N*(1520) resonanes

We follow the paper from Devenish et al. [26℄ in our approah to these tran-

sitions. As we are working with virtual photons we need to are about these

ouplings and hene inlude terms whih vanish for real photons. For the di-

agram D.8, whih involves the Roper exitation as depited in the �g. 1, we
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an write the orresponding eletromagneti urrent as :

J

�

e:m:

= �u

N

�

(p

0

)[

�

F

2

(q

2

)i�

��

q

�

m+m

�

+

�

F

3

(q

2

)(q

�

�

q

2

m

�

�m



�

)℄u

N

(p) (7)

where

�

F

2;3

(q

2

) are the eletromagneti form fators for the N �N

�

transition

(whih already inlude the proton harge), q

�

= (q

0

; ~q) is the momentum of

the virtual photon and the m, m

�

the masses of the nuleon and the N

�

(1440)

respetively. We an rewrite these form fators in terms of F

1

, F

2

, de�ned as:

F

1

=

�

F

3

m

�

�m

and F

2

=

�

F

2

m+m

�

. The urrent of eq. (7) oinides with the one

in [26℄ substituting there: G

1

= �F

1

and G

2

= �

2F

2

m

�

�m

. We write our vertex

funtions as V

�

�

�

=�iJ

�

�

�

. By keeping terms up to (q=m) in a non relativisti

redution of the matrix elements of the Dira gamma matries we �nd:

V

�

NN

�

=

(

i

~q

2

2m

F

2

(q

2

)� i~q

2

(1 +

q

0

2m

)F

1

(q

2

)

F

2

(q

2

)[i~q

q

0

2m

+ (~� � ~q)(1 +

q

0

2m

)℄� F

1

(q

2

)[i~qq

0

(1 +

q

0

2m

) + q

2

1

2m

(~� � ~q)℄

)

(8)

Next we onstrut the heliity amplitudes for our transition. There are

many works where the heliity amplitudes are alulated [27, 32, 33, 34, 35℄.

In what follows we adjust to the formalism of ref. [27℄. Then A

1=2

and S

1=2

an be written as:

A

N

�

1=2

=

s

2��

q

R

1

e

hN

�

; J

z

= 1=2j�

(+)

�

� J

�

jN; S

z

= �1=2i (9)

S

N

�

1=2

=

s

2��

q

R

j~q j

p

Q

2

1

e

hN

�

; J

z

= 1=2j�

(0)

�

� J

�

jN; S

z

= 1=2i (10)

where q

R

is the energy of an equivalent real photon, (W

2

�m

2

)=(2W ) and W

is the photon-proton enter of mass energy.

The tranverse polarization vetors are:

�

(�)

�

=

(0;�1;�i; 0)

p

2

(11)

and �

0

�

=

1

p

Q

2

(q; 0; 0; q

0

) normalized to unity, satisfying �

0

�

�q

�

=g

��

�

0

�

��

(�)

�

= 0

with ~q in z diretion and Q

2

= �q

2

.

Using our eletromagneti urrent the heliity amplitudes are given by:

A

N

�

1=2

=

s

2��

q

R

1

e

[F

2

(q

2

)

p

2q(1 +

q

0

2m

) + F

1

(q

2

)Q

2

p

2

q

2m

℄ (12)

and

S

N

�

1=2

=

s

2��

q

R

~q

2

e

[�F

2

(q

2

)

1

2m

+ F

1

(q

2

)(1 +

q

0

2m

)℄ (13)
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Inverting these equations we an get the eletromagneti form fators in

terms of the heliity amplitudes. The experimental heliity amplitudes A

p

1=2

and S

p

1=2

whih we use are taken from [36℄ whih uses data from [37℄.

In the ase of the N

�

(1520) resonane we an take the same steps as above.

Following [26℄ we write the relativisti urrent as:

J

�

e:m:

= G

1

(q

2

)J

�

1

+G

2

(q

2

)J

�

2

+G

3

(q

2

)J

�

3

(14)

with

J

�

1

= �u

�

(q

�



�

� q=g

��

)u (15)

J

�

2

= �u

�

(q

�

p

0�

� p

0

� qg

��

)u (16)

J

�

3

= �u

�

(q

�

q

�

� q

2

g

��

)u (17)

and G

1

,G

2

,G

3

are the eletromagneti form fators for this vertex and p

0

is the

momenta of the resonane.

Taking a non relativisti redution as done before and using u

�

Rarita-

Shwinger spinors in the .m. of the resonane, the vertex takes an expression

given by:

Salar part:

V

0

NN

0�

= i(G

1

+G

2

p

00

+G

3

q

0

)

~

S

y

� ~q (18)

and the vetor part:

V

i

NN

0�

= �i[(

G

1

2m

�G

3

)(

~

S

y

� ~q) ~q � (19)

iG

1

~

S

y

� ~q

2m

(~� � ~q)�

~

S

y

fG

1

(q

0

+

~q

2

2m

) +G

2

p

00

q

0

+G

3

q

2

g℄

Using again eqs.(9) and (10) we alulate the A

1=2

and S

1=2

heliity ampli-

tudes for the N

�

(1520). In addition, in this ase we also have the A

3=2

heliity

amplitude whih is given in [27℄ by:

A

N

�

3=2

=

s

2��

q

R

1

e

hN

�

; J

z

= 3=2j�

(+)

�

� J

�

jN; S

z

= 1=2i (20)

The expressions for the heliity amplitudes obtained using the urrent in

eqs.(14-17) are:

A

N

0�

3=2

=

s

2��

q

R

1

e

[G

1

(q

0

+

~q

2

2m

) +G

2

q

0

p

00

+G

3

q

2

℄ (21)

A

N

0�

1=2

=

s

2��

q

R

1

e

1

p

3

[G

1

(q

0

�

~q

2

2m

) +G

2

q

0

p

00

+G

3

q

2

℄ (22)
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S

N

0�

1=2

= �

s

2��

q

R

1

e

s

2

3

q[G

1

+G

2

p

00

+G

3

q

0

℄ (23)

From these three equations we an get the G

1

; G

2

; G

3

form fators in terms

of the heliity amplitudes. The data for S

1=2

are taken from [27℄ and for A

1=2

and A

3=2

from [27, 38℄

1

.

The other important vertex in our model orresponds to the ��N eletro-

magneti transition. As disussed in [32, 33℄, the most important transition

is the magneti dipole (M

1

+

) transition while the eletri quadrupole (E

1

+

)

and salar quadrupole (S

1

+

) transitions are small at momentum transfers be-

tween the photon point to Q

2

=1.3 GeV

2

. The values given in [26℄ for the ratio

E

1

+

=M

1

+

(S

1

+

=M

1

+

) are -0.02 to 0.02 (-0.025 to -0.06) for Q

2

=0 to 1.3 GeV

2

respetively. We take the N� transition urrent from [39℄ where the same

non relativisti expansion done here, keeping terms of order O(p=m) for the

Dira matrix elements, is done. A good reprodution of the data for eletro-

prodution of one pion was obtained there in a wide range of energies around

the � resonane and di�erent Q

2

. The vertex for this eletroprodution tran-

sition is given by eq. (40) in appendix A2 and the form fator used is given

by eq. (61) in appendix A3.

4 Gauge invariane and form fators

Gauge invariane is one of the important elements in a model involving photons

and implies that

T

�

q

�

= 0 (24)

The expliit expressions for T

�

, keeping the four omponents, as given in

appendix A4, allow one to hek expliitly the gauge invariane. The blok of

diagrams D1, D2, D4 and D6 form together a gauge invariant set. The rest of

the diagrams in whih the photon diretly exites a resonane from a nuleon

are gauge invariant by themselves. However, some aution must be observed

when imposing eq. (24). Indeed, in diagram D2 the intermediate pion is o�-

shell and indues a strong �N� transition form fator, F

�

(p

2

), for whih we

take a usual monopole form fator (see eq.(53) appendix A3). The onstraints

of eq.(24) fores this form fator to appear in the other terms of the blok of

diagrams whih are gauge invariant. However, as disussed in the study of

the eN ! e

0

N� reation in [39℄, and as an be easily seen by inspetion of

the diagrams and the amplitudes, the onstraint of eq. (24) still requires the

equality of four eletromagneti form fators,

F

p

1

(q

2

) = F

�

1

(q

2

) = F

��

= F



(q

2

) (25)

1

We note that the formalism followed here for the verties of the N

�

(1520) is di�erent

from that of [2℄, but the same results are obtained for real photons.

9



The form fators of eq. (25), if the strit Feynmann rules of the appendix

A4 are followed, are respetively the NN , ��, �� and �N� ones. These

form fators are usually parametrized in di�erent forms, as seen in appendix

A3, exept for F

p

1

(q

2

) and F

�

1

(q

2

) whih are taken equal, as it would ome

from ordinary quark models.

Although the model is gauge invariant with the presription of eq. (25)

there is the inonveniene that the results depend upon whih one of the three

form fators we take for all of them.

In the next setion we disuss the unertainties whih ome from this arbi-

trary hoie of form fator. We should note however, that the dominant term,

by large, is the � Kroll Ruderman and pion pole terms. This is also so in the

test of gauge invariane where the two terms involving the F

p

1

(q

2

) form fator

in diagrams D4, D6 give only reoil ontributions of the order of O(p

�

/m) in

eq. (24). This justi�es the use of F



(q

2

) or F

��

(q

2

) for all the form fators.

There is, however, another way to respet gauge invariane, while at the

same time using di�erent form fators whih is proposed in [25℄ and to whih

we refer in what follows as Berends et al. approah. In the next setion we

will show the results from both approahes and will disuss them.

There are many papers in the literature following the Berends et al. ap-

proah in order to explain the experimental results with this gauge invariant

set of diagrams [40, 41, 42, 43℄.

Another of the ommon approahes to this problem in the past has been

the use of urrent algebra [44, 45, 46℄. In this ase, lose to threshold of ��

prodution, the axial vetor urrent h�jA

�

jNi is the dominant term. In the

soft pion limit this axial vetor urrent is shown to be equivalent [45℄ to the

one of the nuleon. The �� eletroprodution data are hene used in those

works to determine the nuleon axial form fator.

Our model is more general sine one obtains expliit p

�

�

dependene, for

instane from the pion pole term (diagram D.2 �g. 1). The dominane of

the �N� Kroll Ruderman at threshold (independent of p

�

�

) o�ers however

some support to the assumptions made in those works, as quoted in [30℄. The

diagrammati approah relies however on the expliit use of the four form

fators of eq. (25). We shall see in the next setion the inuene of the

di�erent terms lose to threshold.

In [47℄, following the diagrammati approah with the minimal set of gauge

invariant terms, �ts to the data are arried �xing F

��

from � vetor meson

dominane and setting the other three form fators equal in order to determine

this latter ommon form fator. A qualitative agreement with the F

p

1

(q

2

) form

fator obtained from others soures is found.

With the gauge invariant presription of [25℄ using di�erent form fators,

di�erent �ts to the data are arried �xing some of the form fators and deter-

mining others. We shall follow this latter approah , but with our enlarged

set of Feynman diagrams inluding the expliit deay of the � into �N , whih

allows one to keep trak of orrelations between the pions if wished. We will

show the sensitivity of the results to di�erent form fators and the weight of

10



the di�erent terms as a funtion of energy and Q

2

.

The expliit formulas of the gauge invariant set in the presene of the

di�erent form fators are taken from eq. (17) of ref. [25℄ and, after the non

relativisti redution is done, the expressions used here are shown in appendix

A5.

5 Results and disussion

We have tested our results with the experimental data of refs. [22,30℄. We

show the ross setion of 

v

p ! �

++

�

�

and 

v

p ! �

0

�

+

(�

0

! �

�

p), as a

funtion of W, the virtual photon-proton (

v

p) enter of mass energy, and for

di�erent values of Q

2

. We have

W

2

= �Q

2

+M

2

+ 2M� ; � = E � E

0

(26)

with

Q

2

= �q

2

= 4EE

0

sin

2

(

�

e

2

) (27)

We ompare in �g. 2 the results for delta photoprodution (real photons)

with the experimental data [48℄ and we see that the agreement found is quite

satisfatory.

0

10

20

30

40

50

60

70

80

400 450 500 550 600 650 700 750 800 850

Figure 2: Cross setion for the p ! �

++

�

�

reation. Experimental data from

[48℄.

In order to ompare our results with experiment for virtual photons we

alulate �rst the ross setions at Q

2

= 0.6 GeV

2

.

Figure 3 ontains three di�erent alulations. Two of them orrespond to

using all form fators equal (whih we set to F

��

) with two di�erent values

of �

2

�

, 0.5 GeV

2

and 0.6 GeV

2

. We see that the ross setion inreases by

about 10 % when going from �

2

�

=0.5 GeV

2

and �

2

�

=0.6 GeV

2

. We also show

the results taking F

p

1

, F

�

1

with their values given in appendix A3 and setting

F



= F

��

with �

2

�

=0.6 GeV

2

. This latter alulation is not gauge invariant.

11



However we see that the deviation with respet to the gauge invariant one

assuming all form fators equal is very small. This reets the fat that the

relevant terms in the model are those involving F

��

and F



, the pion pole and

� Kroll Ruderman terms.

DESY (1978)

0.

10.

20.

30.

1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600.

fig. 2d

Figure 3: Cross setion for 

v

p ! �

�

�

++

as a funtion of the 

v

p enter of mass

energy. The urves orrespond to Q

2

= 0.6 GeV

2

. Dashed line: F

p

1

; F

�

1

, from

appendix A3 and F



=F

��

with �

2

�

= 0.6 GeV

2

. Continuous line: F

p

1

= F

�

1

= F



=

F

��

with �

2

�

= 0.6 GeV

2

. Dotted line: same as ontinuous line with �

2

�

= 0.5 GeV

2

DESY (1978)

0.

10.

20.

30.

1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600.

fig. 2d

Figure 4: Continuous line: Cross setion for 

v

p! �

�

�

++

at Q

2

= 0.6 GeV

2

using

F

p

1

= F

�

1

= F

��

= F



with �

2

�

=0.6 GeV

2

and

~

f

N

�0

��

= �0:911, ~g

N

�0

��

=0.552.

Dotted line: same as ontinuous line but with

~

f

N

�0

��

=0.911 and ~g

N

�0

��

= �0:552.

See appendies A1 and A2 for the verties and oupling onstants used.

In refs. [2,14℄, two solutions for the oupling of the N

�

(1520) to the � in s

and d�waves, di�erring only in a global sign, were found from the respetive

deay widths. Only a sign was ompatible with the experimental (; ��) data,

beause of the strong interferene between the N ! N

�

(1520) ! �� term

and the Kroll Rudermam one. Here, in the new formalism the amplitude of

the N ! N

�

(1520) transition hanges sign and onsequently the signs of the

former N

�

(1520) ! �� ouplings must be hanged. In �g. 4 we show the

results of 

v

p! �

�

�

++

atQ

2

=0.6 GeV

2

using the two di�erent signs for these

12



DESY (1978)
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Figure 5: Cross setions from 

v

p ! �

++

�

�

with Berends formalism inluded.

Continuous line: F

p

1

; F

�

1

; F

��

= F



with �

2

�

= 0:5 GeV

2

. Dotted line: same as

ontinuous line with the parameter for F

��

0.5 GeV

2

and for F



is 0.8 GeV

2

.

ouplings. We an see that the data favour learly one of the signs. This was

also observed in the p! �

+

�

�

p reation in [14℄. Fig. 4 shows the magnitude

of the interferene between those terms. Negleting the p! N

�

(1520)! ��

proess leads to results in between the two urves shown in the �gure where

one does not see any peak. The peak shown by the data around W=1480

MeV is hene not reminisent of a � but a peak oming from the onstrutive

interferene of the terms mentioned above.

Now we evaluate the ross setion using Berends gauge invariant approah

with di�erent form fators [25℄ using the formulae of appendix A5 for the set of

the four gauge invariant terms. We show the results in �g. 5. The ontinuous

line in the �gure is obtained with this presription using the form fators of

appendix A3 for the F

p

1

, F

�

1

but setting F



= F

��

with �

2

�

= 0.5 GeV

2

.

We an see that these results are remarkably similar to those of the dotted

line in �g. 3 where F



and F

��

had the same values as here but F

p

1

, F

�

1

were

set equal to F

��

in order to preserve gauge invariane.

One again we an see that the terms involving F

p

1

and F

�

1

are relatively

unimportant, or in any ase that setting these form fators equal to F

��

provide a gauge invariant result very lose to the one obtained with the more

general Berends presription of [25℄.

The dotted line in �g. 5 orresponds to the same parametrization for F



as for F

��

but parameter �

2



= 0.8 GeV

2

. This shows the sensitivity of the

results to F



whih appears in the dominant Kroll-Ruderman term.

Given the dominane of the Kroll Ruderman term lose to threshold pro-

dution of �� in our model and the dominane of the terms involving the

axial form fator in the urrent algebra approahes, we now show in �g. 6 the

results taking for F



the parametrization of the axial vetor form fator (see

appendix A3), varying the value ofM

A

. The Berends formalism with di�erent

form fators is used, and F

p

1

, F

�

1

, F

��

are taken as in appendix A3. We an

see that the experimental data favour values of M

A

' 1.16-1.23 GeV very

similar to the values determined in [30℄ (1.16� 0.03) GeV or [44℄ (1.18� 0.07)
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GeV.

DESY (1978)
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Figure 6: Cross setions for 

v

p ! �

�

�

++

within Berends formalism. We use

di�erent form fators for F

p

1

, F

�

1

, F

��

from appendix A3. We take for the axial

form fator, F

A

, form the ontat term. The parameter M

A

is hanged from up to

down :1.32, 1.23, 1.16, 0.89 in GeV.

DESY (1978)

0.

2.

4.

6.

1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600.

Figure 7: Cross setion for 

v

p ! �

+

�

0

within Berends formalism. We use

F

p

1

; F

�

1

; F

��

from appendix A3 and F

A

with M

A

=1.16 GeV.

In �g. 7 we show the ross setion for 

v

p ! �

0

�

+

with Berends sheme

and with a value of the axial form fator parameter of M

A

= 1:16 GeV. We

�nd a good agreement with the sare experimental data but more data would

be required to further hek this hannel.

In all these sets of �gures for �

++

eletroprodution we �nd a good agree-

ment with the experimental results around the peak region 1460 MeV� W �

1600 MeV in .m. energy at Q

2

=0.6 GeV

2

. As ommented above, this peak

omes from the interferene between the � Kroll Ruderman and the N

�

(1520)

exitation terms, whih was also found for real photons in [1,2,14℄. A priori

this interferene pattern ould hange for virtual photons sine these two terms

are a�eted by di�erent form fators, F



(q

2

) for the ontat term and the form

14



fators G

1

(q

2

); G

2

(q

2

); G

3

(q

2

) that appear for the N ! N

�

(1520) transition.

In pratie we see that the interferene survives in the ase of virtual photons.

The N

�

(1520) exitation has a longitudinal oupling and so has the �.

The inlusion of this longitudinal ontribution ould also blur the interferene

found with these two terms for real photons. However, the results shown for

virtual photons show that the interferene remains also in this latter ase. We

have heked that if we go up to higher Q

2

the interferene still exists but the

shape beomes atter.

DESY (1978)

0.

10.

20.

30.

1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600.

Figure 8: Continuous line: ross setion for 

v

p! �

++

�

�

within Berends formal-

ism and with the parameter M

A

=1.23 GeV at Q

2

=0.6 GeV

2

. Dotted lines: From

up to down we show the tranverse �

T

and longitudinal ��

L

ross setion at Q

2

=0.6

GeV

2

respetively. Short-dashed lines: From up to down the same as in dotted line

for Q

2

=1.2 GeV

2

.

Figure 9: Cross setion 

v

p! �

++

�

�

as a funtion of the Q

2

.

It is interesting to show separate ontributions for the longitudinal and

transverse ross setions whih are likely to be also measured at TJNAF. We
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Figure 10: Continuous line: Total ross setion from 

v

! �

�

�

++

within Berens

formalism restriting m

�

� !

�

� � m

�

+ 10 MeV. We use F

p

1

; F

�

1

from appendix

A3 and F

��

with �

2

�

= 0.5 GeV

2

. Dotted lined: Contribution of � Kroll Ruderman

term using F

A

with M

A

=1.16 GeV. Short-dashed line: Contribution of � Kroll

Ruderman term plus the interferene with the N

�

(1520) term.

.

�nd in �g. 8 that the shape of the urves for the transverse ontribution is the

same as for real photons and for the sum of the longitudinal and transverse

ross setions for the virtual ones. We observe that the longitudinal ontribu-

tion gives only a small bakground. This pattern appears for any intermediate

values of Q

2

between those shown in the �gure.

In �g. 9 we show a ross setion as a funtion of the momentum transfer

Q

2

and we ompare with the experimental data from [22,30℄.

We have made an average of the ross setions between 1300 to 1500 MeV

.m. energy in order to ompare with the experiment. We observe that the

trend of the data is well reprodued, but the absolute value is a little lower

reeting the disrepanes with the data in �g. 8 in that range of energies.

In �g. 10 we show some results whih an be a guideline for an experimental

analysis. We onentrate on a hypothetial measurement that strengtens the

ontribution of the Kroll Ruderman term in order to optimize the hanes

to obtain an aurate value for the ontat form fator F



(q

2

). This an be

aomplished by �xing the energy of the �

�

and hene putting the �

++

on

shell in the diagram D.1 of �g. 1. In �g. 10 we takem

�

� !

�

�

� m

�

+ 10 MeV

and show the results obtained for di�erent Q

2

seleting the Kroll Ruderman

term alone, this term plus the interferene with the N

�

(1520) and the total

16



ontribution. We see indeed that this magnitude is largely dominated by the

Kroll Ruderman term. However the interferene with the N

�

(1520) term is

always present. Sine the weight of the N

�

(1520) propagator is smaller at lower

energies, we an also see that the region to the left of the � peak whih appears

in the �gure is more suited to pin down the ontribution of the Kroll Ruderman

term. Yet, even at this lower energies the ontribution of the interferene term

is still of the order of 20 per ent. This means that the aurate evaluation of

F



(q

2

) at level better than 20 per ent requires a areful analysis in whih the

interferene term is expliitly onsidered.

6 Conlusions

We have alulated ross setions for the 

v

p ! �

++

�

�

and 

v

p ! �

0

�

+

reations, extending the model of ref. [2℄ to virtual photons and seleting the

diagrams whih have a � in the �nal state.

The present alulations and omparison with the sare experimental data

are suÆient to establish the fairness of the present model to deal with the

�� prodution proess. In summary we ould remark the following points:

Even if the data are sare the agreement with them is good up to W' 1.6

GeV and Q

2

' 1.4 GeV

2

for the �

++

hannel. However, it would be desirable

to have data for di�erent values of Q

2

. In the future suh experiments are

bound to be made in Thomas Je�erson Laboratory and other experimental

failities. Also other hannels should be measured as well as total ross setions

for 

v

N ! ��N where the �N are not in a � state.

We have also shown that the peak in the ross setion is due to an interfer-

ene between the � Kroll Ruderman term and the N

�

(1520) exitation proess

followed by �� deay. This interferene appeared in real photons and is not

destroyed for virtual ones in spite of the fat that the eletromagneti form

fators of the respetive mehanisms are not exatly the same. In addition,

the ontribution from the longitudinal ouplings in the terms involved in the

interferene does not destroy this e�et. The experiments show learly that

interferene of the two mehanisms is ontrutive below the N

�

(1520) pole,

whih is onsistent with the �ndings in real photons and preditions of the

relativized quark models.

Di�erent sets of form fators have been used in our model in order to show

the sensitivity of the results to these hanges. These tests should be useful

in view of the oming data and the possibility to extrat relevant information

from them.

Some plots an be useful for the experimental task. We have shown the

separation of the transverse and longitudinal ross setions and found that the

transverse one largely dominates the ross setions.

We have also shown a method aimed at obtaining the form fator for the

Kroll Ruderman term seleting a kinematis whih maximizes its importane.

Even then we saw that an aurate extration of this form fator requires the

17



expliit inlusion of the N

�

(1520) term in the analysis beause of the important

interferene of this term with the Kroll Ruderman one.

Finally, it is also interesting to note that the present model is just part of a

more general 

v

N ! ��N model whih selets only the terms where a �N pair

of the �nal state appears forming a � state. Both experiments and theoretial

alulations on the di�erent (

v

; ��) hannels should be enouraged.
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APPENDIX

A1. Lagrangians.

L

�NN

= �

f

�

	

�



5

�

�

~

� � ~�	 (28)

L

��N

= �

f

�

�

	

y

�

S

y

i

(�

i

�

�

)T

�y

	

N

+ h:: (29)

L

���

= �

f

�

�

	

y

�

S

�i

(�

i

�

�

)T

�

�

	

�

+ h:: (30)

L

N

�

��

= �

g

N

�

��

�

	

y

�

S

y

i

(�

i

�

�

)T

�y

	

N

�

+ h:: (31)

L

N

�0

��

= i	

N

�0

(

~

f

N

�0

��

�

~g

N

�0

��

�

2

S

y

i

�

i

S

j

�

j

)�

�

T

�y

	

�

+ h:: (32)

L

NN

= �e	

N

(

�

A

�

�

�

N

2m

�

��

�

�

A

�

)	

N

(33)

L

��

= ie(�

+

�

�

�

�

� �

�

�

�

�

+

)A

�

(34)

Instead of writing the expliit expressions for the terms involving the pho-

ton and the exitation of resonanes like L

�N

, L

N

�

N

, L

��N

and L

N

�0

N

, we

address the reader diretly to eqs. (40, 43-44, 50, 51-52) respetively whih

provide the vertex funtion (L! �V

�

�

�

).

In the former expressions

~

�, 	, 	

�

, 	

N

�

, 	

N

0�

and A

�

stand for the pion,

nuleon, �, N

�

, N

0�

and photon �elds, respetively ; N

�

and N

0�

stand for

the N

�

(1440) and N

�

(1520); resonanes m and � are the nuleon and the pion

masses; ~� and ~� are the spin and isospin 1/2 operators;

~

S

y

and

~

T

y

are the

transition spin and isospin operators from 1/2 to 3/2 with the normalization

h

3

2

;M jS

y

�

j

1

2

; mi = C(

1

2

; 1;

3

2

;m; �;M) (35)

with � in spherial base, and the same for T

y

. The operators

~

S

�

and

~

T

�

are

the ordinary spin and isospin matries for the a spin and isospin 3/2 objet.

For the pion �elds we used the Bjorken and Drell onvention :

�

+

=

1

p

2

(�

1

� i�

2

) destroys �

+

; reates �

�

(36)

�

�

=

1

p

2

(�

1

+ i�

2

) destroys �

�

; reates �

+

(37)

�

0

= �

3

destroys �

0

; reates �

0

(38)
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Hene the j�

+

i state orresponds to �j11i in isospin base.

In all formulae we have assumed that �

i

� �

i

, S

i

� S

i

, T

i

� T

i

are Eulidean

vetors. However for �

i

, A

i

, p

i

, et, we have respeted their ovariant meaning.

A2. Feynman Rules.

Here we write the Feynman rules for the di�erent verties inluding already

the eletromagneti form fators. We assumed the photon with momenta q as

an inoming partile while the pion with momentum k is an outgoing partile

in all verties. The momentum p, p

0

are those of the baryoni states just before

and after the photon absorption vertex (or pion prodution vertex in eq. (42)).

V

�

NN

= �ie

(

F

N

1

(q

2

)

F

N

1

(q

2

)[

~p+~p

0

2m

℄ + i

~��~q

2m

G

N

M

(q

2

)

)

(39)

V

�

N�

=

s

2

3

f



(q

2

)

m

�

p

s

m

�

8

<

:

~p

�

p

s

(

~

S

y

� ~q)

p

0

�

p

s

[

~

S

y

� (~q �

q

0

p

0

�

~p

�

)℄

9

=

;

(40)

V

�N�

= �

f

�

�

~

S

y

� (

~

k �

k

0

p

s

~p

�

)T

�y

(41)

V

�NN

= �

f

�

(~�

~

k � k

0

~�(~p+ ~p

0

)

2m

)�

�

(42)

V

0

N

�

N

= i

~q

2

2m

F

2

(q

2

)� i~q

2

(1 +

q

0

2m

)F

1

(q

2

) (43)

V

i

N

�

N

= F

2

(q

2

)[i~q

q

0

2m

+ (~� � ~q)(1 +

q

0

2m

)℄ (44)

�F

1

(q

2

)[i~qq

0

(1 +

q

0

2m

) + q

2

1

2m

(~� � ~q)℄

V

N

�

��

= �

g

N

�

��

�

~

S

y

�

~

kT

�y

(45)

V

���

= �

f

�

�

~

S

�

�

~

k T

�

�

(46)

V

N

�0

��

= �(

~

f

N

�0

��

+

~g

N

�0

��

�

2

~

S

y

�

~

k

~

S �

~

k)T

�y

(47)

V

�

��

= �i

(

e

�

F

�

1

(q

2

)

e

�

F

�

1

(q

2

)[

~p+

~

p

0

2m

�

℄ + i

~

S

�

�~q

3m

eG

�

M

(q

2

)

)

(48)

V

�

��

= �iq

�

(k

�

+ k

0�

)F

��

(q

2

) (49)
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V

�

�N�

= �q

�

f

�

m

�

T

�y

8

<

:

~

S

y

~p

�

p

s

~

S

y

9

=

;

F



(q

2

) (50)

V

0

NN

0�

= i(G

1

(q

2

) +G

2

(q

2

)p

00

+G

3

(q

2

)q

0

)

~

S

y

� ~q (51)

V

i

NN

0�

= �i[(

G

1

(q

2

)

2m

�G

3

(q

2

))(

~

S

y

� ~q) ~q � iG

1

(q

2

)

~

S

y

� ~q

2m

(~� � ~q) (52)

�

~

S

y

fG

1

(q

2

)(q

0

+

~q

2

2m

) +G

2

(q

2

)p

00

q

0

+G

3

(q

2

)q

2

g℄
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A3. Coupling and form fators

Coupling onstants :

f = 1 f

�

= 2:13

f

�N

= 0:122 f

�

= 0:802

e = 0:3027

~

f

N

�0

��

= �0:911 ~g

N

�0

��

= 0:552

g

N

�

��

= 2:07

Form fators :

For the o�-shell pions we use a form fator of the monopole type :

F

�

(p

2

) =

�

2

�

� �

2

�

2

�

� p

2

; �

�

� 1250MeV (53)

The Sahs's form fators are given by

G

N

M

(q

2

) =

�

N

(1�

q

2

�

2

)

2

; G

N

E

(q

2

) =

1

(1�

q

2

�

2

)

2

(54)

with �

2

= 0:71 GeV

2

; �

p

= 2:793; �

n

= �1:913.

The relation between F

p

1

(q

2

) (Dira's form fator) and G

p

E

(q

2

) is :

F

p

1

(q

2

) = G

p

E

(q

2

)

(1�

q

2

�

p

4m

2

N

)

(1�

q

2

4m

2

N

)

(55)

and F

n

1

= 0:

For the delta resonane we use

F

�

1

= F

p

1

(q

2

) (56)

G

�

M

(q

2

) =

�

�

(1�

q

2

�

2

)

2

(57)

In the ase of the �

++

we make use of the experimental value �

�

++

= 1:62

�

p

and for the other harge states we make use of the ratio (e > 0):

�

�

�

p

=

e

�

e

(58)
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For the �� vertex in diagram D2, we take the form fator:

F

��

(q

2

) =

1

(1�

q

2

�

2

�

)

(59)

with �

2

�

= 0:5 GeV

2

.

The axial nuleon form fator is given by:

F

A

(q

2

) =

1

(1�

q

2

M

2

A

)

2

(60)

with M

A

= 1.16 GeV. This form fator is used for the ontat form fator,

F



(q

2

), in some of the results reported here. Some others results use F



(q

2

) =

F

��

(q

2

).

The form fator for the �N transition is taken as:

f



(q

2

) = f



(0)

(1�

q

2

(m

�

+m)

2

)

(1�

q

2

�

p

4m

2

N

)

G

p

M

(q

2

)

�

p

(m

�

+m)

2

(m

�

+m)

2

� q

2

(61)

where f



(0) = 0:122

A4. Amplitudes for the reation

In this appendix we write the expliit expressions for the amplitudes of

the Feynman diagrams used in the model. The isospin oeÆients and some

onstant fators are olleted in the oeÆients C whih are written in the

table A4.

Reation D1 D2 D3 D4 D5 D6 D7 D8



v

p! �

�

�

++

-i/3 -i/3 0 i/3 1 i/3 i -1



v

p! �

+

�

0

i/9 i/9 -2i/9 i/9 -2/3 0 i/3 -1/3

Table A4: CoeÆients of the amplitudes for the �

++

and �

0

(�

0

! �

�

p)

reations, aounting for isospin and onstant fators.

In the following expressions q, p

1

, p

2

, p

4

, and p

5

are the momentum of the

photon,the inoming nuleon, the outgoing nuleon and the two pions :

 p �

+

�

�

p

q p

1

p

5

p

4

p

2

We write only the amplitude when the pion labelled p

5

is emitted before

the pion labelled p

4

(�

0

ase), exept in the ase of the D6 where the only
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possibility is the �

++

and the expliit amplitude for this ase is written. We

have also evaluated the rossed diagrams when the pion labelled p

5

is emitted

after the pion alled p

4

(�

++

ase). Suh amplitudes are exatly the same

than the others written before, but exhanging the momenta p

4

and p

5

and

hanging some isospin oeÆient. This latter hange is taken into aount by

the fator C written in table A4.

We should note that in the vertex �N�, when ~p

�

is not zero, we must

hange ~p

�

by ~p

�

�

p

0

p

s

~p

�

for the �nal pion.

In the formulae, D

�

, G

�

, G

N

, G

N

�

, G

N

0�

are the propagator of the pion,

delta, nuleon, N

�

(1440), N

�

(1520) respetively. Expressions for them and for

the width of the resonanes an be found in [1, 2, 14℄.

�iT

�

1

= Ce(

f

�

�

)

2

G

�

(p

2

+ p

4

)F

�

((p

5

� q)

2

)F
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2

) (62)

�
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5
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5

) � ~�℄
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�

2~p

4
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4
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)

�iT

�

2
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f

�

�

)

2
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(p

2
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4
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�
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5
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((p

5
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2
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2

) (63)
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� (~p

5

� ~q)� i(~p
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� (~p

5

� ~q)) � ~�℄

�

n

2p

5

� q

o

�

�iT

�

3
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�
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�
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�
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(p

2

+ p
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(p

1

+ q) (64)

�
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[�2i(~p

4

� ~q)� (~� � ~q)~p

4

+ (~p

4

� ~q)~�℄
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�
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�

[�2i(~p
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)� (~� � ~q

0

)~p

4

+ (~p
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0

�
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�
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=

;
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0

5
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1

� ~p

5

)
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+ ~� ~p

5

℄

with ~q

0

= (~q �

q

0
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0

�

~p
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�iT
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= Ce(
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�
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1
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�
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2
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�

((p

5

� q)
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) (65)

�[2~p
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� ~p
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� i(~p
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� ~p

5

) � ~�℄

�
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F
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1

(q
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F
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1

(q
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~p+~p

0

2m

℄ + iG

p

M

(q

2

)

~��~q

2m

)

�iT

0

5

= 0 in  � p CM frame (66)
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)

�

G
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(p

2

+ p
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)G

�
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1

+ q) (67)
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5
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5
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6
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5
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�iT

0

6

= C(

f

�

�
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G

�
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5
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1
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A5. Amplitudes for the gauge invariant set

within Berends formalism.

The expliit amplitudes for the gauge invariant set of the 4 diagrams D1,

D2, D4 and D6, in the presene of di�erent form fators are made aording to

eq. (17) of [25℄. We implement them in our formalism by making the following

substitutions in the amplitudes shown in the appendix A4. The form fator

in the zeroth omponent of eah amplitude is hanged as:
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where G

N

, G

�

are the non relativisti propagator of the nuleon and the �

resonane and D

�

the ordinary relativisti pion propagator.

A6. Misellaneous Formulae.

In order to obtain our amplitudes we have employed some useful relations:
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From eqs. (78) and (79). we an prove the following relations,whih are

used in the alulation of the amplitudes:
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where we have omitted the sum over intermediate states.
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