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Abstract

We study the ρ0 and φ decays into π+π−γ, π0π0γ and φ into π0ηγ

using a chiral unitary approach to deal with the final state interac-
tion of the MM system. The final state interaction modifies only
moderately the large momenta tail of the photon spectrum of the
ρ0 → π+π−γ decay. In the case of φ decay the contribution to π+π−γ

and π0π0γ decay proceeds via kaonic loops and gives a distribution of
ππ invariant masses in which the f0(980) resonance shows up with a
very distinct peak. The spectrum found for φ → π0π0γ decay agrees
with the recent experimental results obtained at Novosibirsk. The
branching ratio for φ → π0ηγ, dominated by the a0(980), is also in
agreement with recent Novosibirsk results.

PACS: 13.25.Jx 12.39.Fe 13.40.Hq
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In this work we investigate the reactions ρ → π+π−γ, π0π0γ and φ →
π+π−γ, π0π0γ, π0ηγ, treating the final state interaction of the two mesons
with techniques of chiral unitary theory recently developed. The energies of
the two meson system are too big in both the ρ and φ decay to be treated
with standard chiral perturbation theory, χPT [1]. However, a unitary cou-
pled channels method, which makes use of the standard chiral Lagrangians
together with an expansion of Re T−1 instead of the T matrix, has proved to
be very efficient in describing the meson meson interactions in all channels up
to energies around 1.2 GeV [2, 3, 4]. The method is analogous to the effective
range expansion in Quantum Mechanics. The work of [4] establishes a direct
connection with χPT at low energies and gives the same numerical results
as the work of [3] where tadpoles and loops in the crossed channels are not
evaluated but are reabsorbed into the Li coefficients of the second order La-
grangian of χPT . A technically much simpler approach is done in [2] where,
only for L = 0, it is shown that the effect of the second order Lagrangian
can be suitably incorporated by means of the Bethe-Salpeter equation using
the lowest order Lagrangian as a source of the potential and a suitable cut
off, of the order of 1 GeV, to regularize the loops. This latter approach will
be the one used here, where the two pions interact in s-wave.

The diagrammatic description for the ρ → π+π−γ decay is shown in Fig. 1
In Fig. 1 the intermediate states in the loops attached to the photon, l,

can be K+K− or π+π−. However, the other loops involving only the meson
meson interaction can be also K0K̄0 or π0π0 in the coupled channel approach
of [2].

For the case of π0π0γ decay only the diagrams with at least one loop
contribute, (d), (e), (f), (g), (h), . . . in Fig. 1.

The case of the φ decay is analogous to the ρ → π0π0γ decay. Indeed,
the terms (a), (b), (c) of Fig. 1 do not contribute since we do not have direct
φ → ππ coupling. Furthermore, there is another novelty since only K+K−

contributes to the loop with a photon attached.
The procedure followed here in the cases of π0π0 and π0η production is

analogous to the one used in [5]. Depending on the renormalization scheme
chosen, other diagrams can appear [5] but the whole set is calculated using
gauge invariant arguments, as done here, with the same result. The novelty
in the present work is that the strong interaction MM → M ′M ′ is evaluated
using the unitary chiral amplitudes instead of the lowest order used in [5].

We shall make use of the chiral Lagrangians for vector mesons of [6] and
follow the lines of ref. [7] in the treatment of the radiative rho decay. The
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Figure 1: Diagrams for the decay ρ → π+π−γ.

Lagrangian coupling vector mesons to pseudoscalar mesons and photons is
given by

L2[V (1−−)] =
FV

2
√

2
〈Vµνf

µν
+ 〉 +

iGV√
2
〈Vµνu

µuν〉 (1)

where Vµν is a 3 × 3 matrix of antisymmetric tensor fields representing the
octet of vector mesons, K∗, ρ, ω8. All magnitudes involved in Eq. (1) are
defined in [6]. The coupling GV is deduced from the ρ → π+π− decay
and the FV coupling from ρ → e+e−. We take the values chosen in [7],
GV = 67 MeV, FV = 153 MeV. The φ meson is introduced in the scheme by
means of a singlet, ω1, going from SU(3) to U(3) through the substitution
Vµν → Vµν + I3

ω1,µν√
3

, with I3 the 3×3 diagonal matrix. Then, assuming ideal
mixing for the φ and ω mesons
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√

2

3
ω1 +

1√
3
ω8 ≡ ω

1√
3
ω1 −

2√
6
ω8 ≡ φ (2)

one obtains the Lagrangian of Eq. (1) substituting Vµν by Ṽµν , given by

Ṽµν ≡









1√
2
ρ0

µν + 1√
2
ωµν ρ+

µν K∗+
µν

ρ−
µν − 1√

2
ρ0

µν + 1√
2
ωµν K∗0

µν

K∗−
µν K̄∗0

µν φµν









(3)

From there one can obtain the couplings corresponding to V PP (V vector
and P pseudoscalar) and V PPγ with the GV term or the V PPγ with the
FV term.

The basic couplings needed to evaluate the diagrams of Fig. 1 are

tρπ+π− = −GV Mρ

f 2
(pµ − p′µ)ǫµ(ρ)

tργπ+π− = 2e
GV Mρ

f 2
ǫν(ρ)ǫν(γ)

+
2e

Mρf 2

(

FV

2
− GV

)

Pµǫν(ρ)[kµǫν(γ) − kνǫµ(γ)] (4)

tγπ+π− = 2epµǫ
µ(γ)

with pµ, p′µ the π+, π− momenta, Pµ, kµ the ρ and photon momenta and f
the pion decay constant which we take as fπ = 93 MeV.

The vertices of Eq. (4) are easily generalized to the case of K+K−. Us-
ing the Lagrangian of Eq. (1), in the first two couplings one has an extra
factor 1/2 and the last coupling is the same. The couplings for φK+K− and
φγK+K− which are needed for the φ decay are like the two first couplings of
Eq. (4) substituting Mρ by Mφ, ǫµ(ρ) by ǫµ(φ) and multiplying by −1/

√
2.

In addition we shall take the values GV = 55 MeV and FV = 165 MeV which
are suited to the φ → K+K− and φ → e+e− decay widths respectively.

The evaluation of the ρ width for the first three diagrams (a), (b), (c)
of Fig. 1 is straightforward and has been done before [9, 10, 11] and in [7]
following the present formalism. We rewrite the results in a convenient way
for our purposes
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dΓρ

dMI

=
1

(2π)3

1

16m3
ρ

(m2
ρ − M2

I )(M2
I − 4m2

π)1/2

×1

2

∫ 1

−1
d cos θ ¯∑∑

|t|2 (5)

where

¯∑∑

|t|2 =
8

3
e2 [I1 + I2 + I3] (6)

In Eq. (5), MI is the invariant mass of the two π system and θ the angle
between the π+ meson and the photon in the frame where the π+π− system
is at rest. The quantity I1 stands for the contribution of the first diagram
alone, Fig. 1 (a), I3 for the second and third (b), (c) and I2 for the interference
between the first diagram and the other two. They are given by

I1 =

∣

∣

∣

∣

∣

MρGV

f 2
+

K

f 2

(

FV

2
− GV

)

∣

∣

∣

∣

∣

2

I2 = 2
MρGV

f 2
~p 2(D1 + D2) sin2 θ

{

MρGV

f 2
+

K

f 2

(

FV

2
− GV

)

}

I3 = 2~p 2(D1 + D2) sin2 θ

×
{

(D1 + D2)~p
2 + (D1 − D2)|~p||~k| cos θ

}

(

MρGV

f 2

)2

(7)

where K is the photon momentum in the ρ rest frame and p, k are the mo-
menta of the meson and the photon in the rest frame of the π+π− system,
and D1, D2 the meson propagators in the (b), (c) Bremsstrahlung diagrams,
conveniently written in terms of MI and θ.

The first term of the contact term, tργπ+π− , in Eq. (4) is not gauge invari-
ant. It requires the addition of the diagrams (b) and (c) of Fig. 1 to have a
gauge invariant set. On the other hand the second term in the contact term
(FV /2 − GV part) is gauge invariant by itself. When considering final state
interaction of the mesons this means that the GV part of the contact term,
diagram (d), must be complemented by diagrams (e), (f), (g) to form the
gauge invariant set. On the other hand the FV /2 − GV part of the contact
term appears in the (d) diagram which is gauge invariant by itself.
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The technology to introduce the final state interactions is available from
the study of φ → K0K̄0γ in [12]. There it was shown that the strong t matrix
for the M1M2 → M ′

1M
′
2 transition factorizes with their on shell values in the

loops with a photon attached. The same was proved for the loops of the
Bethe-Salpeter equation in the meson meson interaction description of [2].
On the other hand the sum of the diagrams (d), (e), (f), (g), which appears
now with the GV part of the contact term (diagram (a)), could be done
using arguments of gauge invariance which led to a finite contribution for
the sum of the loops [5, 13, 14]. A sketch of the procedure is given here. The
ρ → π+π−γ amplitude can be written as ǫµ(ρ)ǫν(γ)T µν and the structure of
the loops in Fig. 1 is such that

T µν = a gµν + bQµQν + c QµKν + d QνKµ + e KµKν (8)

where Q, K are the ρ meson and photon momenta respectively. Gauge
invariance (T µνKν = 0) forces b = 0 and d = −a/(Q · K). Furthermore, in
the Coulomb gauge only the gµν term of Eq.(8) contributes and the coefficient
a is calculated from the d coefficient, to which only the diagrams (e), (f),
of Fig. 1 contribute. For dimensional reasons the loop integral contains two
powers less in the internal variables than the pieces contributing to the gµν

term from these diagrams, since the product QνKµ is factorized out of the
integral. This makes the d coefficient finite. Furthermore, the MM → MM
vertices appearing there have the structure αs + β

∑

i p
2
i + γ

∑

i m
2
i , which

can be recast as αs + (β + γ)
∑

i m
2
i + β

∑

i(p
2
i −m2

i ). The first two terms in
the sum give the on shell contribution and the third one the off shell part.
This latter term kills one of the meson propagators in the loops and does
not contribute to the d term in Eq. (8). Hence, the meson meson amplitudes
factorize outside the loop integral with their on shell values. A more detailed
description, done for a similar problem, can be seen in [15], following the
steps from Eqs. (13) to (23).

Following these steps, as done in [12, 15], it is easy to include the ef-
fect of the final state interaction of the mesons. The sum of the diagrams
(d), (e), (f), (g) and further iterated loops of the meson-meson interaction,
(h), . . . , is shown to have the same structure as the contact term of (a) in
the Coulomb gauge, which one chooses to evaluate the amplitudes. The sum
of all terms including loops is readily accomplished by multiplying the GV

part of the contact term by the factor F1(Mρ, MI)
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F1(Mρ, MI) = 1 + G̃π+π−tπ+π−,π+π− +
1

2
G̃K+K−tK+K−,π+π− (9)

where tM1M2,M ′

1
M ′

2
are the strong transition matrix elements in s-wave evalu-

ated in [2] and G̃M1M2
is given by

G̃M1M2
(Mρ, MI) =

1

8π2
(a − b)I(a, b)

a =
M2

ρ

M2
M1

; b =
M2

I

M2
M1

(10)

with I(a, b) a function given analytically in [12]. The (FV /2−GV ) part of the
contact term is iterated by means of diagrams (d), (h) . . . in order to account
for final state interaction. Here the loop function is the ordinary two meson
propagator function, G, of the Bethe-Salpeter equation, T = V + V GT , for
the meson-meson scattering and which is regularized in [2] by means of a
cut-off in order to fit the scattering data. The sum of all these diagrams is
readily accomplished by multiplying the (FV /2 − GV ) part of the contact
term by the factor

F2(MI) = 1 + Gπ+π−tπ+π−,π+π− +
1

2
GK+K−tK+K−,π+π− (11)

By using isospin Clebsch Gordan coefficients the amplitudes tM1M2,M ′

1
M ′

2
can

be written in terms of the isospin amplitudes of [2] as

tπ+π−,π+π− =
2

3
tI=0
ππ,ππ(MI)

tK+K−,π+π− =
1√
3
tI=0
KK̄,ππ(MI) (12)

neglecting the small I = 2 amplitudes. In Eq. (12), one factor
√

2 for each
π+π− state has been introduced, since the isospin amplitudes of [2] used in
Eq. (12) are written in a unitary normalization which includes an extra factor
1/
√

2 for each ππ state.
The invariant mass distribution in the presence of final state interaction

is now given by Eqs. (5, 6, 7) by changing in Eq. (7)
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I1 →
∣

∣

∣

∣

∣

MρGV

f 2
F1(Mρ, MI) +

K

f 2

(

FV

2
− GV

)

F2(MI)

∣

∣

∣

∣

∣

2

I2 → 2
MρGV

f 2
~p 2(D1 + D2) sin2 θ

×Re

{

MρGV

f 2
F1(Mρ, MI) +

K

f 2
(
FV

2
− GV )F2(MI)

}

I3 → I3 (13)

The ρ → π0π0γ width is readily obtained by omitting the terms I2, I3 and
also omitting the first term (the unity) in the definition of the F1(Mρ, MI),
F2(MI) factors in Eqs. (9) and (11) and dividing by a factor two the width
to account for the identity of the particles.

The evaluation of the φ decay is straightforward by noting that the tree
level contributions, diagrams (a), (b), (c) are not present now, and that only
kaonic loops attached to photons contribute in this case. Hence, the invariant
mass distribution for φ → π+π−γ is given in this case by Eq. (5), changing
mρ → mφ, with

¯∑∑

|t|2 =
4

3
e2

∣

∣

∣

∣

∣

MφGV

f 2

1√
3
G̃K+K−tI=0

KK̄,ππ +
K

f 2

(

FV

2
− GV

)

1√
3
GK+K−tI=0

KK̄,ππ

∣

∣

∣

∣

∣

2

(14)
For φ → π0π0γ the cross section is the same divided by a factor two to
account fot the identity of the two π0’s.

For the φ → π0ηγ case we have

¯∑∑

|t|2 =
4

3
e2

∣

∣

∣

∣

∣

MφGV

f 2

1√
2
G̃K+K−tI=1

KK̄,πη +
K

f 2

(

FV

2
− GV

)

1√
2
G̃K+K−tI=1

KK̄,πη

∣

∣

∣

∣

∣

2

(15)
In Fig. 2 we show dΓ/dK for ρ → π+π−γ decay, (dΓρ/dK = mρdΓρ/MIdMI).

The dashed-dotted line shows the contribution of diagrams 1(a), (b), (c) and
taking FV = 0. The dashed line shows again the contribution coming from
diagrams 1(a), (b), (c) but now considering also the FV contributions. Fi-
nally, the solid line includes the full set of diagrams in Fig. 1 to account for
final state interaction and with the FV and GV contributions. The process is
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Figure 2: Photon distribution, dΓ/dK, for the process ρ → π+π−γ as a
function of the photon momentum. Solid line: spectrum including final state
interaction of the two mesons and the FV and GV contributions; dashed line:
spectrum including only the tree level diagrams (a), (b), (c) of Fig. 1 and the
FV and GV contributions; dashed-dotted line: spectrum including only the
tree level diagrams (a), (b), (c) of Fig. 1 and taking FV = 0. The experimental
data taken from [16] are normalized to our results.

infrared divergent and we plot the distribution for photons with energy big-
ger than 50 MeV, where the experimental measurements exist [16]. We have
also added the experimental data, given in [16] with arbitrary normalization,
normalized to our results.

As one can see in Fig. 2, the shape of the distribution of photon momenta
is well reproduced. For the total contribution we obtain a branching ratio to
the total width of the ρ

B(ρ0 → π+π−γ) = 1.18 10−2 for K > 50 MeV (16)

which compares favourably with the experimental number [16], Bexp(ρ0 →
π+π−γ) = (0.99 ± 0.04 ± 0.15) 10−2 for K > 50 MeV.

The changes induced by the FV term found here reconfirm the findings of
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Figure 3: Distribution dB/dMI for the decay φ → π0π0γ, with MI the
invariant mass of the π0π0 system. Solid line: our prediction, with FV GV > 0.
Dashed line: result taking FV GV < 0. The data points are from [17] and
only statistical errors are shown. The systematic errors are similar to the
statistical ones [17]. The distribution for φ → π+π−γ is twice the results
plotted there.

[7]. The effect of the final state interaction is small and mostly visible at high
photon energies, where it increases dΓ/dK by about 25%. The branching
ratio for B(ρ0 → π0π0γ) that we obtain is 1.4 10−5 which can be interpreted
in our case as ρ0 → γσ(π0π0) since the π0π0 interaction is dominated by the
σ pole in the energy regime where it appears here. This result is very similar
to the one obtained in [5]. In the case one considers FV GV < 0, the result
obtained is 1.0 10−4. The measurement of this quantity may serve as a test
for the sign of the FV GV product.

As for the φ → ππγ decay, as we pointed above the φ → π+π−γ rate
is twice the one of the φ → π0π0γ. We have evaluated the invariant mass
distribution for these decay channels and in Fig. 3 we plot the distribution
dB/dMI for φ → π0π0γ which allows us to see the φ → f0γ contribution since
the f0 is the important scalar resonance appearing in the K+K− → π+π−
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amplitude [2]. The solid curve shows our prediction, with FV GV > 0, the
sign predicted by vector meson dominance [6]. The dashed curve is obtained
considering FV GV < 0. We compare our results with the recent ones of the
Novosibirsk experiment [17]. We can see that the shape of the spectrum is
relatively well reproduced considering statistical and systematic errors (the
latter ones not shown in the figure). The results considering FV GV < 0 are
in complete disagreement with the data.

The finite total branching ratio which we find for φ → π+π−γ is 1.6 10−4

and correspondingly 0.8 10−4 for the φ → π0π0γ. This latter number is
slightly smaller than the result given in [17], (1.14±0.10±0.12) 10−4, where
the first error is statistical and the second one systematic. The result given
in [18] is (1.08 ± 0.17 ± 0.09) 10−4, compatible with our prediction. The
branching ratio measured in [20] for φ → π+π−γ is (0.41±0.12±0.04) 10−4.

The branching ratio obtained for the case φ → π0ηγ is 0.87 10−4. The re-
sults obtained at Novosibirsk are [19] (0.83±0.23) 10−4 and [18] (0.90±0.24±
0.10) 10−4. The spectrum, not shown, is dominated by the a0 contribution.

The contribution of φ → f0(π
+π−)γ, obtained by integrating dΓφ/dMI

assuming an approximate Breit-Wigner form to the left of the f0 peak, gives
us a branching ratio 0.44 10−4. As argued above, the branching ratio for
φ → π0π0γ is one half of φ → π+π−γ, which should not be compared to
the one given in [17] since there the assumption that all the strength of the
spectrum is due to the f0 excitation is done. As one can see in Fig. 3, we
find also an appreciable strength for φ → σγ.

We should also warn not to compare our predicted rate for φ → π+π−γ
directly with experiment. Indeed, the experiment is done using the reaction
e+e− → φ → π+π−γ, which interferes with the ρ contribution e+e− → ρ →
π+π−γ at the tail of the ρ mass distribution in the φ mass region [21]. Also
the results in [18, 20] are based on model dependent assumptions. For these
reasons, as quoted in [18], the π0π0γ mode is more efficient to study the ππ
mass spectrum.

Our result for φ → π0π0γ is 50 % larger than the one obtained in [5] owed
to the use of the unitary K+K− → π0π0 amplitude instead of the lowest
order chiral one. The shape of the distribution found here is, however, rather
different than the one obtained in [5], showing the important contribution of
the f0 resonance which appears naturally in the unitary chiral approach.

The φ → f0γ decay has been advocated as an important source of in-
formation on the nature of the f0 resonance and experiments have been
conducted at Novosibirsk [22] and are also planned at Frascati [23], trying
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to magnify the signal for f0 production through interference with initial and
final state radiation in the e+e− → φ → f0(π

+π−)γ reaction [21, 23, 24, 25].
The completion of the experiments [17, 18, 19, 20] is a significant step for-
ward.

Present evaluations for φ → f0γ → ππγ are based on models assuming a
KK̄ molecule for the f0 [26] with a branching ratio 1-2 10−5, a qq̄ structure
with a value 5 10−5 [26] and a qq̄qq̄ structure with a value 2.4 10−4 [26].

The model for φ → f0γ assumed in Fig. 1 is similar to the one of [27] where
the production also proceeds via the kaonic loops. There a KK̄ molecule is
assumed for the f0 resonance while here the realistic KK̄ → ππ amplitude
of [2] is used. Emphasis is made in the importance of going beyond the
zero width approximation for the resonance in [27, 28]. Our approach auto-
matically takes this into account since the KK̄ → ππ amplitude correctly
incorporates the width of the f0 resonance [2].

We would also like to warn that the peak of the f0 seen in Fig. 3 cannot
be trivially interpreted as a resonant contribution on top of a background,
since there are important interference effects between the f0 production and
the σ background. The strength of the peak comes in our case in about
equal amounts from the real and the imaginary parts of the amplitude for
the process.

The agreement found between our results for the φ → π0π0γ, φ → π0ηγ
and experiment provides an important endorsement for the chiral unitary
approach used here. Improvements in the future, reducing the experimental
errors, should put further constraints on avalaible theoretical approaches for
this reaction.
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