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Abstract

We study inclusive v, and v, cross sections in 12C in a theory that takes
into account significant nuclear renormalization of strengths. Our calculation is
in excellent agreement with the measured inclusive muon capture rate and the
flux-averaged v, cross section, but overestimates the flux-averaged v,, inclusive
cross section. These reactions are of crucial relevance to the issue of possible v,
to v, oscillations.We also calculate the flux-averaged cross sections in *C' and
27 Al, which are found to be consistent with the available experimental result.
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L.INTRODUCTION

Extracting an interesting physics signal of some rare events from an experiment
crucially depends on our ability to understand the physics background in that setting.
A good example of this is the search for neutrino oscillations, and hence physics be-
yond the standard model, in the Liquid Scintillator Neutrino Detector (LSND) related
experiments, with profound implications for particle physics, nuclear physics and as-
trophysics. The LSND group have advanced evidence for the v, — v, oscillations
in a recent experiment with neutrinos from pion decays in flight [l]. Our trusts in
this claim depend crucially upon the performance of these experiments in benchmark
reactions on nucleons and nuclei initiated by neutrinos. Some of these benchmark
reactions are exclusive ones on proton, 2C and 6O targets, while others are inclusive
processes in complex nuclei. Given separate claims of agreements with experiment
and lack of it in recent theoretical calculations [P, B, @, B, f] of inclusive neutrino
reactions in 2C, this is of topical interest and deserves a careful examination.

In this paper, we are going to discuss inclusive neutrino reactions in nuclear targets
120, 13C and 7 Al, concentrating on the theory of the reactions [f]

P04 v.— X +e, (1)

PO+, — X+, (2)

where the produced X is not observed. Thus, generically, we can indicate the reactions
(1,2) as 2C(v;,17)X where X is the unspecified nuclear state and [ is the charged
lepton. At low energies, the reaction (1) has been measured by the E225 [§] and LSND
8. experiments at the Los Alamos Meson Physics Facility (LAMPF) and the
experiments by KARMEN [[[], [J] collaboration at the ISIS facility, with v,beam from
muon decays at rest (DAR), given by the Michel spectrum. The flux-averaged cross
sections from the various experiments are given in Table I. Particularly interesting to
us are the most recent values of the cross section for the reaction (1)

o(v,) = (148 4+ 0.7+ 1.1) x 1072 em?, (3a)
from the LSND experiment [[[(] and

o(v.) = (15.24+ 1.0 4 1.3) x 1072 em?, (3b)

from the KARMEN collaboration [[J]. In Eq.(3), the inclusive cross sections are
obtained by adding the cross sections leading to ground state and excited states,
with their errors added in quadrature. Within their errors, these experimental results
overlap. The reaction (2), on the other hand, has been measured over the last five
years at LAMPF [[3, [4, [J] using v, beam from pion decays in flight (DIF). The
earlier E764 experiment of Koetke et al. used a neutrino beam of slightly higher
energy than used in later experiments and gave a cross section for the reaction (2)
too large when compared to the theoretical predictions [, B, |, B, fl]. This reaction
was further studied by Albert et al. [[4] with more massive detectors and larger



exposure than used in [, using a beam of neutrinos with energy around 180 MeV.
These authors obtained considerably smaller cross section than that by Koetke et al.
The recent studies by the LSND collaboration [[[5] have improved the experimental
situation, providing the latest measured value for this cross section. We give, in
Table I, the results of all of these experiments, but use in our theoretical discussion
the latest result, reported by the LSND collaboration [[J]

o(v,) = (11.24+ 0.3 £1.8) x 107 em?. (4)

We also calculate the flux-averaged neutrino cross-sections in *C' and 2 Al as bench-
marks for our theory. These are found to be reasonably consistent with the available
experimental results [g].

Current generation of calculations of the above reactions can be grouped into two
classes, depending on their predictions for the flux-averaged cross sections for the
process (2): those that substantially exceed this observed cross section [}, B, []] and
others that find agreement [f], f]. The deficit of the flux-averaged cross sections may
be: (1) a manifestation of theoretical problem, of not being able to do a correct enough
nuclear calculation; (2) an experimental problem of not doing a precise and reliable
enough experiment. Since both theoretical calculations and experimental analysis
are involved in the determination of the excess events in the v, channel in the LSND
neutrino oscillation experiment [[l], it is important to have a clear understanding of
the nuclear physics related uncertainties in this reaction. The purpose of this paper
is to narrow down the options by examining the first point very critically from our
point of view [[f.

A reaction which can be regarded as a benchmark in the context of the processes
(1) and (2) in general, and (2) in particular, is the nuclear capture of muons (NMC)
from the atomic 1S state by the charged weak current [I4, [7]:

PO+ u (1S) = X + v, (5)

This process serves as an excellent check, in the low and intermediate energy transfer
region, in our ability to control the theoretical uncertainties [I7]. The inclusive NMC
rate A, for the process (5) is very accurately known. Taking the world average of the
best experimental determinations of the inclusive muon capture rate A.,[L§, [gwith
their errors added in quadrature, we obtain[[[7],

A, = (3.80 £ 0.10) x 10*s7". (6)

Thus, we have here a weak reaction rate, which is closely related to the processes (1)
and (2) and is known at an accuracy of about 2.5 %, posing a tremendous challenge
to the theoretical approaches to weak nuclear reactions in nuclei.

Various theoretical approaches to calculate reactions (1) and (2) B, B, @, @], when
applied to the inclusive muon capture, reproduce the NMC rate A, quoted in Eq.(6)
rather well, within the limits of their theoretical accuracy [, [§, BJ]. In the case of
inclusive neutrino reactions, however, the situation is different. The calculations of
Kolbe et al. reproduce the (v,, e™) rather well, but overestimate the (v, ™) by about



50%. Auerbach et al., on the other hand, use the set of parameters for their model,
which explain the inclusive muon capture rate. They predict cross sections for the
neutrino reactions, which are 20% and 15% larger than the experimental values for the
reactions (1) and (2) respectively, quoted in Egs.(3) and (4). These overestimates are
from the maximum experimental values allowed within the quoted errors. Therefore,
they represent a real discrepancy with the experiment. It is possible to explain the
observed neutrino cross sections in the calculations of Auerbach et al. with another
version of their residual nuclear forces by varying the model parameters, but this
version predicts a NMC capture rate of 3.09 x 10*s™!, which is rather small compared
to the value quoted in Eq.(6).

Finally, to complete this survey, we would like to mention that a Fermi gas model
calculation with a Fermi momentum kr = 225 MeV gives a much higher value of
24.1 x 10~ em? for the flux-averaged (v, ™) cross section. This is reduced to 22.7 x
107% em?, when the effects of meson exchange currents are taken into account [J]. In
another calculation , the method of so-called “elementary particle model”, extended
to inclusive reactions, has been used, to obtain a cross section of 13.1 x 107 em? [,
which is in good agreement with the experimental value. However, the extension of the
elementary particle model to the inclusive reactions makes use of several assumptions,
which have not been tested in the energy region of the LSND experiments. Here this
method is expected to underestimate the inclusive cross sections [f, [[4, B7].

This survey brings us to our calculation, which we briefly describe in section II
and discuss the results and conclusions in section III.

II. FORMALISM

The matrix element for the neutrino nucleon reaction for a neutrino of flavor
Li(l=-epn),ie.

v(k) +n(p) — 17 (K) +p(), (7)
is given by
T = Gj’gea(k'wu — ~s)u(k)J,, (8)
where

_ g
= W)+ By (8)iop gz + FA (@) + Fp () qus]u(p). - (9)
In Eq. (9), qu = k, — ki, is the four momentum transfer, [\, Iy, FY and F are the
known weak nucleon form factors. The double differential cross section oo(q?, k'), is

then given by

K M?

N 2 /
B L.L, SY|T)?6(E — E' + E, — E,), (10)

00 (q27 k/) =




where Y X|T'|? represents the sum and the average respectively over the final and the
initial spins of the leptons and the nucleons and is evaluated exactly, using the matrix
element T defined in Eq.(8). Its analytic expression is given in ref. [. In a nucleus,
the neutrino scatters from a neutron moving in the finite nucleus of neutron density
pn(7), with a local neutron occupation number n, (7, 7). Then the cross section in the
local density approximation and in the free nucleon picture is given by

/ = dﬁ 5 /
o(? k) = 2/dr(2ﬂ)3nn(p, Moo(q’, k'), (11)

where the neutron energy F,, and the proton energy E, in the expression of a¢(q¢?, k'),
given in Eq.(10), are replaced by E,(p) and E,(p’) respectively, p and p’ being the
momenta of the neutron and proton in the nucleus. However, neutrons and protons are
not free and their momenta are constrained to satisfy the Pauli principle i.e. p < pp,
and p’ > ppy,, where pp, and pp, are the local Fermi momenta, given by

pra(r) = [30°p,(r)]* and pry(r) = [37%p, (r)]'°. (12)
Moreover, in the finite nucleus, there is a threshold energy for the reaction to proceed,
also called the Q-Value, and this should be taken into account. Finally, the charged
lepton produced in reactions (1) and (2) moves in the nucleus and its energy is
modified by the Coulomb interaction, which should be accounted for. In our approach,
these effects are incorporated by modifiying the argument of the § function in Eq.
(10), from E—-FE+ E — E,to E— E'—V.(7) + E,(p) — E,(p/), and replacing the
factor [ -4 o) 3nn(ﬁ, ﬁ)E 28 "_§(E—FE'+ E, — E,) occurring in Eq. (11) by —1ImU(qo, q),
where

—E-E-V,-Q+Q. (13)

In Eq.(13), V.(7) is the Coulomb energy of the lepton and Q' = Ep, — Epy,, is
introduced to take into account the unequal Fermi sea in the case of N # Z nuclei.
U(qo, ¢, is the Lindhard function given by

(P —np(P+q)] M
Ul 9 = / )3 qo + E.(p) — Ep(7+p) +ie E,E, (14)

With these modifications, the total cross section o(E,) is given as [[]:

4 00 max 1
o(E,) = —— /0 r2dr /p’", w2 [ d(cos )

T min
l

1
E,E
XYY TP ImU[E, — B — Q + Q' — V.(r), q|O[E; + Ve(r) — my]. (15)

The kinematic limits p}"*>™" for the lepton momentum k' are easily computed in our
special case[[]]. For the numerical integrations, we use Gaussian quadrature with high
enough accuracy for our purpose. The radial integration in Eq. (15) is performed up
to a radius R = ¢; + 5fm, where ¢y, is the radius parameter in the two-parameter
harmonic oscillator and Fermi density distributions used for the nuclei, considered in
section III.



The renormalization of weak currents in the nuclear medium is taken into account
by calculating the effect of propagation of the particle-hole (ph) excitations in the
nuclear medium on various terms occurring in £3|T'|?. The ph response is then re-
placed by a Random Phase Approximation (RPA) response accounting for the ph and
the Ah components, which interact through an effective spin-isospin nuclear interac-
tion described by the Landau-Migdal potential. The details of this renormalization
procedure as well as those of Eq. (15) are given in [[]]. However, we have made here
the following improvements, which considerably reduce the theoretical uncertainties
in our calculations from the previous versions of our model: (1) Our new Lindhard
function makes use of a strategy [BJ] that avoids the pathologies of the ordinary [{]
Lindhard functions in the limit of go, ¢ both going to zero, g, being the momentum
transferred to the nucleus in the processes of interest. (2) The nuclear response func-
tion is renormalized by the ph and the Ah correlations in nuclei [, effects of which
are quite large for low and intermediate energy neutrino scattering. The physics of
this renormalization depends, among other things, on the Landau-Migdal spin-isospin
parameter ¢’ [4]. This itself has an uncertainty of £0.1 around its preferred value of
0.7 [BH]. We take into account the theoretical uncertainties of our estimates of o(v,)
and o(v,) due to this variation of ¢’. (3) Finally, the target nucleus *C' has intrinsic
parametric uncertainties in the radial density function. The effect due to this uncer-
tainty in our cross-section estimate is taken into account by repeating our calculation
in several radial parametric settings [RG]. Overall, we achieve a theoretical accuracy
around +£10% for o(v,) and o(v,). This significant improvement in theoretical ac-
curacy is even better in the case of the NMC rate for the inclusive process (5) [L§].
We estimate here an uncertainty of 2% due to nuclear radial effects and £5% due
to the variation of the spin-isospin parameter ¢’. Treating these two uncertainties
independently and adding them in quadrature, we get a theoretical error of about

+6% and obtain [[§]

A, = (3.60 £ 0.22) x 10*s7, (16)

it in excellent agreement with the precise experimental data (Eq.6). The inclusive
nuclear muon capture provides us with a critical benchmark, an independent accurate
check of our ability to describe nuclear inclusive weak processes clearly related to the
neutrino scattering.

In summary, our method used in this paper is essentially an RPA approach built
up from single particle states of an uncorrelated local Fermi sea. This method is, in
practice, found to be a very accurate tool, when the excitation energy is sufficiently
large such that relatively many states contribute to the process, in particular, if a
large fraction of it comes from excitation to the continuum, as it is in the present case.
The adaptation of this method to finite nuclei via the local density approximation
has proved to be rather advantegeous to deal with inclusive reactions and has been
successfully applied to the photonuclear reactions[R7)], electron scattering|Pg], deep
inelastic scattering [P9 and muon capture[[[§, B].

The numerical evaluation of the neutrino-nucleus reaction cross section is done
using Eq.(15) and the rsults are presented in section III below.



ITII. RESULTS AND CONCLUSIONS

In order to compare with the experimental results of KARMENI([Z] and LSND [§]
collaborations, we compute the flux-averaged cross section,

Emaz
v FE E))dE
52[0 Em(;( Vw(E,)d V’ (17)
Il w(k,)dE,

where the neutrino profile function w(E,) is well-known (i.e., the Michel spectrum in
E,. and the spectrum of E, provided by the LSND experiment). The lower limit Ej
in Eq.(17) is taken to be zero for the (1., e™) reaction and 123.1 MeV for the (v, 1™)
reaction [[[J].

For 2C, we present our results in Tables IT and III, and compare with experiments
and other recent theoretical works in Table IV. Here are the main points of our
analysis. In both Tables II and III, the rows 1 through 4 indicate four different
choices of the radial parameters for the nuclear density [BG]. The columns represent
different choices of the Landau-Migdal spin-isospin parameter ¢’. In Table III, we have
used the v, spectrum reported in the LSND papers [ll, [J] for a direct comparison
with the experiments. The radial uncertainties are typically about 2%, while the ¢’
variation represents a £7 % spread, for the (v.,e”) case and £8% for the (v,,p")
case both around the central values corresponding to ¢’ = 0.7. Thus, the overall
spread from the theoretical error, taking both of these effects in quadrature, is +7.3%
for the (v, e™) case and £8.2% for the (v,, u~) case. In Table IV, we compare the
presently available theoretical results with the most recent experimental results for
these reactions.

From Table IV, we can provide our best estimate of ¢(v.) and a(v,,) as follows:

7(ve) = (15.48 £ 1.13) x 10~ *cm?, (18)

&(v,) = (16.65 £ 1.37) x 10~ *em?®. (19)

We are in excellent agreement with the experimental value of o(v,), but our lower
limit o(v,) is 15% higher than the higher limit of o(v,) measured by the LSND col-
laboration.

For 13C, we obtain a flux averaged cross section of 7.25 x 10~*em? for Michel
spectrum, using the density distribution parameters given in[Pf].This should be com-
pared with the calculations of Arafune et al. [BI], who obtain a cross section of
9.58 x 10~*'em? for the transition to the ground state and first excited state of the
final nucleus, which together give 85 % of the total coss section. This implies an in-
clusive cross section of 11.3 x 10~*'¢m?. There could be a reduction of (10 — 15) %,if
the momentum dependence of the form factors are taken into account[BZ]. This value
seems to be in agreement with an unpublished result of Donnelly quoted by Krakauer
it et al. [§]. The calcultions of Arafune it et al. [BI] do not take into account the
possible quenching of the weak interaction operators in nuclei, which is studied by
Fukugita it et al. [B3. In this paper, the quenching of the matrix elements of the



Gamow-Teller (G-T) operators is obtained in an effective operator approach, which
takes into account the effect of core polarization, isobar and the meson exchange cur-
rent processes. This leads to a 20 % reduction in the flux-averaged cross section for
the ground state transition, while the cross section to the first excited state is reduced
by a factor 3. Assuming, as before, that these two states together contribute 85 %
of the total cross section, a flux-averaged cross section of 5.4 x 10~*'em? is inferred
from the calculations of Fukugita et al. [BJ].

We find that our flux-averaged cross section for ¥C reported in this paper, is
35 % smaller than that obtained by Arafune et al. while it is 35 % larger than the
results of Fukugita et al. It will be interesting to test these predictions by measuring
this cross section in the low energy neutrino experiments with liquid scintillators,
where 3C' forms part of natural carbon. In the experiments of Krakauer et al. [J], it
is reported that

Oap = 0.7236(V2C) + 6 (V2T Al) < 18.3 x 10~ em?. (20)

In our approach, we calculate the flux averaged cross section in 27 Al to be 11.48 x
10~*em? with ¢’ = 0.7 and using one set of parameters from ref. [Bf]. This, along
with the value obtained for the neutrino cross section in *C, gives a value of 16.5 x
10~*em? for o4, in Eq.(20). We associate a theoretical uncertainty of 6 % due to g’
and density variation of 27 Al on this average cross section. This value is consistent
with the available experimental information on these reactions.

We would like to emphasize that the renormalization of nuclear strengths in our
model produces a reduction of about 40% in the (v.,e™) cross section to bring it
in agreement with the experiment [[]. Similarly large reductions also occur in the
(v, ™) case.

In summary, our calculations show no discrepancy with the measured flux-averaged
v, cross sections in 2C, like other authors. We also nicely reproduce the measured
inclusive muon capture rate, now known very accurately [I9, R0]. But we see a discrep-
ancy, at least by 15 % in the flux-averaged v, cross section compared with the LSND
experiment [[J], the theoretical prediction being higher than the experiment. The
discrepancies between the experimental and various theoretical results for (v,, ™)
inclusive cross sections in 2C' should be taken seriously, in view of its implications
in present studies of neutrino oscillations. Our results for the case of 3C and 2" Al
are consistent with the only experimental limit available at present. A high-quality
experimental measurement of the inclusive cross section, specially in 13C', will be very
useful in understanding the quenching of the G-T strengths in this nucleus in the light
of the wide range of theoretical predictions for this reaction.
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Table I: A summary of flux-averaged v, and v, cross sections as obtained in various
experiments done with 2C target. The unit for the v, cross section is 107*2¢m? and
for v, cross section is 10~ *em?.

LSND collab. LAMPF E225 | KARMEN collab.
o(ve) | 14.8+.7+1.1 [f, [T] 14.1+2.3 [{ 16.84+1.441.7 [
15.241.0+1.3 [[F]
o(v,) 8.3+.7+1.6 4] LAMPF E764 —
11.24+.3+£1.8 [IF] | 159+26+37 [[J

Table II: Flux-averaged v,.. Four radial parameter sets are chosen from the lit-

erature [Pg), with parameters ¢; and ¢y in fms. The Landau-Migdal parameter ¢ is

taken as ¢’ = 0.7 = 0.1. The unit for cross section is 107*2e¢m?.

c1 co | gd=06|g=07]|g=08
1.687 | 1.067 16.87 15.69 14.72
1.672 | 1.150 16.65 15.49 14.53
1.649 | 1.247 16.30 15.15 14.20
1.692 | 1.082 16.99 15.80 14.52

Table III. Flux-averaged v, cross section. Radial parameter sets and ¢’ values are as in
Table II. The v, flux is taken from S; [[§] The unit for cross section is 10~4%cm?.

c1 co | ¢gd=06|¢g=07]4g=08
1.687 | 1.067 18.35 16.82 15.61
1.672 | 1.150 18.19 16.67 15.45
1.649 | 1.247 17.91 16.38 15.17
1.692 | 1.082 18.45 16.92 15.70

Table IV. Summary of flux-averaged cross sections. Experimental results are inferred
by adding ground state and excited state contributions for (ve,e™). Theoretical results are
from Kolbe et al. [B], Auerbach et al. [, Umino et al. [[] and this work. The units are
107*2¢em? for (ve,e”) and 107*%em? for (v, ™) cross sections.

Kolbe Auerbach Umino This work Exp
et al. [@ et al. [] et al. [
o(ve) 14.8 +£ 1.0 + 1.5 [{, [Lq]
15.6 12.9 - 22.7 - 15.48 £ 1.13 15.2 + 1.4 + 1.8 7
o(v,) | 193-20.3 | 135-15.2 | 22.7-24.1 | 16.65 = 1.37 | 11.20 + .3 + 1.8[[] |
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