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Abstract

We study total muon capture rates in light (A ∼ 6-18) nuclei, taking into
account renormalizations of the nuclear vector and axial vector strengths. We
estimate the influence in the results of uncertainties of the spin-isospin interac-
tion parameter g

′ and nuclear densities. A few of these reactions are theoretical
benchmarks for physics involving searches for neutrino oscillations. New exper-
iments in muon capture in several targets are suggested, in the light of some
discrepancies with theory, crudeness of some experimental results and relevance
to neutrino physics.
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Since its discovery in the forties [1], nuclear muon capture (NMC) has been a
probe par excellence for both weak interaction studies and exploring nuclear dynam-
ics [2]. In the context of QCD, the nucleus provides a new vacuum, wherein quark and
gluon condensates can have entirely different values from those in the free hadrons
[3], thereby opening the possibility of nuclear renormalization of the hadronic weak
couplings [4]. On the other hand, particle-hole and/or isobar-hole excitations provide
a more traditional theoretical setting for describing the nuclear renormalization dy-
namics [5]. We explore here the latter in NMC via the study of inclusive (or total)
capture rates.

The importance of NMC in light nuclei (here, those with mass number A < 20)
transcends nuclear physics. Thus, muon capture reactions in 12C and 16O, to take two
examples, provide us with opportunities to test the nuclear dynamical models, useful
in interpreting the neutrino reactions, for example, those studied by the KARMEN
[6] and the LSND [7] collaborations. The latter have bearings on the question of the
neutrino oscillations, thus, physics beyond the standard model. The inclusive NMC
rates in these targets are important benchmarks for the theory of nuclear response,
of great value in setting the scale of our understanding within the standard model.
While inclusive NMC rates are generally difficult theoretically to compute [8, 9, 10,
11, 2], these are experimentally relatively easy to measure [12], particularly in muon
factories, where high muon purity and a decent stopping rate are readily available
[13]. Regrettably, such experiments have been few and far between in the recent
times [12]. Our theoretical work here hopes to elicit new experimental interest in this
subject, of importance to nuclear physics and particle physics.

The reaction of our interest is

µ−(1S) + (A, Z) → νµ + (A, Z − 1)∗, (1)

wherein the nucleus (A, Z−1)∗, formed in the reaction, is not experimentally detected.
The rate Λc of the inclusive reaction is experimentally inferred from the disappearance
rate of the muon [2, 12].

Theoretically, three common ways of calculating Λc are: (1) by computing and
summing exclusive channels [10], (2) by using the sum rules [8] and (3) by using the
elementary particle method [11]. We follow a different method [9], which assumes the
reaction (1) proceeding as

µ−(1S) + [p] → νµ + [n], (2)

where [p] and [n] are nucleons belonging to two different local Fermi seas, characterized
by the Fermi momenta kF,i(r) (i = p, n), given by the medium densities ρi(r) =
k3

F,i(r)/3π2. Then, the differential rate for the reaction (2) is given, in the local
density approximation, by [9]

dΛc

dEν

∼
∑̄ ∑

|T |2Im Ū(q0, ~q), (3)

where we suppress in Eq. (3) phase space factors and measures of integration, shown
fully in Ref. [9]; |T |2 is the square modulus of the transition amplitude, suitably
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renormalized [9] in the nuclear medium, summed and averaged over the initial and
final states respectively; the function Ū(q0, ~q) is the nuclear Lindhard function for
the particle-hole excitation. The three-momentum transfer ~q is fixed by the outgoing
neutrino momentum. In our approach the energy transfer, q0, to the nucleus is given
by

q0 = Eµ + Q′ − Q − Eν . (4)

Here Eµ is the available energy from the muon

Eµ = mµ − E1S
µ , (5a)

where the second term on the right-hand side of (5a) is the muon binding energy. Q′

comes into play in the nucleus with N 6= Z,

Q′ = EnF
− EpF

; (5b)

Q is the threshold for the nuclear reaction (1) to begin [14]

Q = Mf − Mi , (5c)

the nuclear mass difference for the target and daughter nuclei. For light nuclei under
consideration in this Letter (target nuclei between 6Li and 18O), the Q value varies

from a low of 0.67 MeV , in the case of 14N
µ−

→ 14C transitions, to a high of 21.15 MeV,
in the case of the 14C target, metastable, but still experimentally accessible, because

of its very long life, leading to 14C
µ−

→ 14B transitions; indeed, Q values exceeding
10 MeV are quite common in light nuclei. We find a significant effect of the Q value
on the total capture rate in light nuclei, since the right-hand side of (3) is a sensitive
function of the available energy in the reaction, (2).

The calculations in [10] use a RPA approach to nuclear structure. Kolbe et al.

use a continuum RPA which sums up over the excited nuclear states above nucleon
emission. Auerbach et al. use a standard RPA, including pairing, that allows one to
include the contribution of all final states. In both cases the RPA evaluation reduces
the results with respect to the calculation with the single particle orbitals, but the
reduction is stronger in the calculations of Auerbach et al.

Our approach might look simplified with respect to the ones just mentioned, but in
fact it is also an RPA approach built up from single particle states of an uncorrelated
local Fermi sea. This method in practice is a very accurate tool when the excitation
energy is sufficiently large such that relatively many excited states contribute to the
process, and in particular if a large fraction of it comes from excitation to the contin-
uum, as it is the case in µ− capture. The adaptation of the method to finite nuclei via
the local density approximation has proved to be a rather precise technique to deal
with inclusive photonuclear reactions [15], response functions in electron scattering
[16] and deep inelastic scattering [17].

Obviously, because of its nature, the method only applies to inclusive processes,
summing over relatively many final states and it is not meant to evaluate transitions
to discrete states.
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The simplicity of the method, however, allows for improvements over the tradi-
tional methods: 1) the sum Σ̄Σ|T 2| is done relativistically; 2) the nucleon momentum
of the Fermi sea is considered in the calculations which usually is taken equal to
zero; 3) the Zeff approximation is avoided and instead our evaluation uses directly
the muon wave functions. Nonrelativistic muon wave functions are used, but the
relativistic effects were evaluated in [9] and amounted to about 2%. The µ− binding
energy is also considered. 4) In addition, our approach builds up the RPA correlations
by allowing the ∆h excitation on top of the ph excitation considered in [10]. This
is a major difference with the other theoretical RPA approaches mentioned [10]. A
Landau-Migdal interaction is used to account for the propagation of these ph and ∆h
states in the nucleus.

The ∆h excitation leads to extra quenching of the transition strength with respect
to the one found by Kolbe et al. The role of this ∆h excitation in the quenching of
Gamow Teller transitions was emphasized by Rho and later by Brown and Rho in ref
[4]. This quenching could be interpreted as an effective quenching of gA, since this
coupling term gives the largest contribution to the µ capture rate; we can, instead,
talk in terms of quenching of the transition strength. The pseudoscalar current is also
renormalized, but this term plays a smaller role in µ capture.

Our method was used in [9], where a good overall agreement with experiments
over the periodic table was found. The method has proved even more accurate than
anticipated in the ref. [9], when the improvements of the present paper are done. The
basic framework of our approach has been described in detail in [9]. We stress here
only significant improvements of this approach: (1) We use a new Lindhard function
[18], which takes into account a shift of the neutron and proton Fermi seas due to
the experimental Q value [14]. Its imaginary part coincides with the the results of
the Eq.(3) in terms of the ordinary Lindhard function, but its real part is changed
slightly with respect to the old one. The new Lindhard function avoids pathologies
of the ordinary Lindhard function in the limit (q0, ~q) → 0. This limit, however,
does not occur in the muon capture kinematics, but it does play an important role
in the neutrino scattering at low energies. (2) The experimental Q value and the
theoretical one, Q′, are used in the evaluation as indicated in eqs. (3), (4). The
Q-value in general is important in determining the NMC rate in light nuclei. (3) The
uncertainties coming from the Landau-Migdal parameter g′ are included by varying
g′ in the range [19]

g′ = 0.7 ± 0.1 . (6)

This is an important parameter influencing the nuclear response in our approach.
This parameter occurs in the particle-hole and the Delta-hole interactions [4, 5]. (4)
In many nuclei, the radial form of the nuclear density has parametric uncertainties.
We take them also into account in our calculation by letting the density parameters
vary within the experimental errors of [20].

In Table I, we display our calculated total capture rate Λc, obtained by integrating
(3), for g′ = 0.7 and for one set of standard nuclear density parameters [20]. The
present approach has significantly improved the agreement between the theory and
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experiment, compared with results reported in [9].
The principal uncertainty of our theoretical estimate of the NMC rate stems from

that of the parameter g′. For the range of g′, given in equation (6), this results in an
uncertainty of about ±(5− 7)% in the NMC rate for all the nuclei considered in this
paper and reported in table I. Thus, to take a physical example, that of NMC by 12C,
we vary g′ from 0.6 to 0.8 and this results in a variation of the rate from 3.78×104 s−1

to 3.43×104 s−1, a ±5% effect around the central value of 3.6×104 s−1, corresponding
to g′ = 0.7. Our experience with many electroweak and strong processes points
towards a value of g′ = 0.7 [15, 16, 17]. Similarly, other implicit parameters of the
particle-hole or the Delta-hole interactions are determined from other processes.

The nuclear densities ρp,n, enter in our calculation via the local density approx-
imation [9]. There are three cases, for A equal to 12, 14 and 16, in which radial
uncertainties are readily investigated in our approach by calculating the capture rate
for many sets of density parameters determined from electron scattering [20]. They
produce relatively small uncertainties of ±(2 − 3)%. The theoretical capture rates
quoted for these nuclei in table 1 should be read with this additional uncertainty due
to the nuclear densities. Thus, in 12C, the total capture rate varies from 3.45×104 s−1

to 3.60× 104 s−1, keeping the spin-isospin parameter fixed. This is a ±2 % variation
due to uncertainty of the nuclear density around the central value. Assuming the
uncertainties of g′ and nuclear densities to be independent, we have a theoretical un-
certainty in 12C NMC rate of ≃ 6%: this is a conservative estimate of our theoretical
error. Thus, the 12C NMC rate is, according to our theoretical calculation,

Λc(
12C) = (3.60 ± 0.22) × 104 s−1 . (7)

This is in good agreement with the best experimental determination so far [12],
taking the world average of the best determinations, with their errors in quadrature:

Λexp
c (12C) = (3.80 ± 0.10) × 104 s−1 . (8)

In the following, we compare our work with the recent work of Kolbe et al. and
Auerbach et al. for this reaction.

Kolbe et al. [10] have done a continuum RPA calculation, which can compute
with a reasonable accuracy the NMC rates to the particle-unbound states in 12B.
Using their calculation of the 1994 paper [10], we obtain the inclusive capture rates
for the 12C nucleus, wherein the particle bound states are not included for the excited
nucleus (see their Table I). We get theoretical rates for two different potentials to be
3.42 and 3.34 in units of 104s−1. These numbers are slightly above the experimental
value for the capture to the particle unbound states quoted by Kolbe et al. Taking a
conservative lower limit of 7000 s−1 for the muon capture rate to the particle-bound
states directly from the experiment, we can translate the calculation of Kolbe et al.

as

Λc(
12C) ≃ (4.04 − 4.12) × 104 s−1. (9)

Auerbach et al. have several variations of their HF-RPA model and they obtain [10]
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Λc(
12C) ≃ (3.09 − 3.64) × 104 s−1. (10)

Recent researches in neutrino physics have brought NMC in 12C in sharper fo-
cus as a theoretical benchmark. One has to keep in mind the results of the recent
(νe, e

−) and (νµ, µ
−) experiments [6, 7], along with the results of some recent theoret-

ical calculations[10, 21]. The latter reaction is the inverse of the NMC. In particular,
the recent LSND experiment has produced an inclusive (νµ, µ

−) rate, which is in dis-

agreement with the calculation of Kolbe et al. [10] by a factor of about 1.5. However,
Auerbach et al. [10], in a recent paper find that this disagreement can be eliminated
in their Hartree-Fock- Random-Phase Approximation (HF-RPA) calculation that in-
cludes pairing. With the present approach, we obtain a rate which is within 15 % of
the experimental result when the maximum uncertainties in the theoretical as well as
experimental results are taken into account[21].

In the neutrino physics context, the NMC produces the following situation: while
Kolbe et al. [10] obtain a result for NMC rate which is within 5% of the experimental
result and explain the (νe, e

−) inclusive cross sections rather well, they overestimate
the inclusive (νµ, µ

−) cross section by (45-50) %. In the calculations of Auerbach et

al. [10], it is possible in one version of their model to obtain a NMC rate (Λc =
3.64 × 104s−1) in fair agreement with the experiment, but this version of the model
predicts slightly higher values for the (νµ, µ

−) inclusive cross sections and a large
value for the (νe, e

−) inclusive cross sections when compared with the experiments .
On the other hand, the version of the model, which can explain the inclusive neutrino
reactions , predicts a NMC rate of 3.09×104s−1 which is smaller than the experimental
value. Our present method, when applied to 12C reproduces the experimental results
of muon capture as well as those of the (νe, e

−) inclusive cross sections quite well, but
it also overestimates the experimental values for the (νµ, µ−) inclusive cross sections
by about (15-20)% [21]. This underscores the important role of the NMC in selected
targets as benchmark reactions to calibrate the nuclear theory, which is, in turn, used
to delineate standard model physics. From this point of view, the NMC rates in 12,13C
and 16O are particularly important.

The above discussion, comparing results of different accurate methods, gives us
an idea of present theoretical uncertainties in calculations of weak nuclear reactions.

We now come to a very subtle physics in NMC, the isotope effect. In Table II,
we display our calculations for the ratios of the rates of NMC for a pair of isotopes.
We compare here our results with experimental ones wherever available, and the
prediction of the well-known formula of Primakoff [8]:

Λc(A
′, Z ′)/Λc(A, Z) =

1 − δ(A′ − Z ′)/2A′

1 − δ(A − Z)/2A
. (11)

where δ ≃ 3.15. The Primakoff formula yields Pauli blocking of the muon capture
process rather approximately.

From Table II, we can see that our calculation does much better than the Primakoff
formula in three out of four cases where there are data on isotope shifts. For example,
our calculation yields for 13C/12C and 18O/16O ratios 0.82 and 0.78, in fair agreement
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with the experimental values of 0.90 ± 0.01 and 0.86 ± 0.15 respectively, in contrast
to the predictions of the Primakoff formula of 0.71 and 0.59 in the two cases. Our
approach is able to take into account the special properties of individual target nuclei
such as the shell closure in 16O and the large Q-value needed in 14C. No such physics
is included in the relatively simple formula (11).

Detailed calculations, such as those in [10], should likewise do better than the Pri-
makoff formula. They also take into account the role of the experimental Q values.
The case of 7Li/6Li does not come up too good in our approach. This is under-
standable, since, in very light nuclei, the local density approximation can become less
accurate.

We now make some remarks on the experimental situation and future prospects
at the muon factories. It is important to have muon capture rates in light nuclei
measured with high precision. In several targets, old [2] and newer [12] experiments
disagree quite strongly (e.g. 9Be,14 N,16 O etc.), even though the more recent exper-
iments are of higher statistical accuracy. While our theoretical estimates agree with
most of the recent determinations of the Λc, there are significant disagreements in
7Li and 14N . Some targets, 6Li and 7Li, have relatively poorly known Λc and de-
serve better experimental determination. 14C, being a radioactive nucleus, will pose
experimental challenges to prepare a dense enough nuclear target. However, it is very
interesting theoretically: the Q-value for NMC in this target is the largest in the
nuclei studied here, with an enormous effect on the rate. Hopefully, the long half-life
of 14C would make an experiment with it feasible.

Our worst agreement with experiment comes in 7Li and 14N targets. We predict
the inclusive NMC rates 3.4×103 and 8.7×104 s−1 in these two cases, while the most
accurate experiments give (2.26± 0.12)× 103 s−1 and (6.93± 0.008)× 104 s−1 respec-
tively [12]. Given the quality of our agreement in other targets with experimental
results, this disagreement invites an experimental reconfirmation, with a special care
on the systematic errors of the experiments. Further experimental studies are also
needed to investigate possible non-statisticality in the hyperfine states of the muonic
atom [2], in particular, in the case of 14N , due to hyperfine conversion.

In summary, we have studied total NMC rates in the framework of a theory
wherein vector and axial-vector strengths in nuclei are appreciably renormalized due
to particle-hole and Delta-hole correlations. Large effects from the consideration of
the Q-values of the NMC are seen, in some nuclei. A reasonable (± 0.1) variation
of the Landau-Migdal parameter g′ around its preferred value 0.7 translates into a
±(6−7)% uncertainty of the NMC rate for the nuclei studied in this paper. Similarly
the nuclear radial uncertainties in some of these nuclei contribute at most a ±(2−3)%
variation of the capture rate.

Since renormalizations of weak vector and axial-vector strengths, studied here,
also occur in the electromagnetic and strong processes, we should interpret them as
those for nuclear strengths rather than for weak nucleon couplings in nuclei. This
has important consequences in our understanding of the nuclear QCD effects, in
particular, the Bjorken sum rule in nuclei.

Precise theoretical understanding of the NMC in 12C, 13C and 16O would provide
benchmarks in low-energy neutrino physics, with important bearings on the issue of
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neutrino oscillations and physics beyond the standard model. Although small, there
are still defferences between the predictions of different accurate models and it would
be most desirable to examine and test these differences in precise experiments in
future.
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Table I: Total muon capture rates in s−1 in various target nuclei, compared with
the most accurate experimental results cited in the literature, wherever available[12];
A dash in the last column means that no data are available in that case; in case of
two or more experimental results of comparable quality, we display the value with
best precision here. We use g′ = 0.7 and one standard set of radial densities [20].

Target This calculation Experiment
6Li 4.68 × 103 (4.68 ± 0.12) × 103

7Li 3.41 × 103 (2.26 ± 0.12) × 103

9Be 8.84 × 103 (7.4 ± 0.5) × 103

10B 2.67 × 104 (2.78 ± 0.07) × 104

11B 1.86 × 104 (2.19 ± 0.07) × 104

12C 3.60 × 104 (3.76 ± 0.04) × 104

13C 2.95 × 104 (3.38 ± 0.04) × 104

14C 2.34 × 104 −
14N 8.67 × 104 (6.93 ± 0.008) × 104

15N 6.34 × 104 −
16O 1.16 × 105 (1.026 ± 0.006) × 105

17O 1.06 × 105 −
18O 9.00 × 104 (8.80 ± 0.15) × 104

Table II: Isotope effect (with g′ = 0.7) calculated by us, compared with the
Primakoff formula (Eq. (14)) and experiment[12].
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Isotope pair This calculation Primakoff Exp.
7Li/6Li 0.73 0.47 0.48 ± 0.03
11B/10B 0.79 0.67 0.79 ± 0.03
13C/12C 0.82 0.71 0.90 ± 0.01
14C/12C 0.65 0.47 -
14C/13C 0.79 0.66 -
15N/14N 0.73 0.75 -
17O/16O 0.91 0.78 -
18O/16O 0.78 0.59 0.86 ± 0.15
18O/17O 0.85 0.75 -
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