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Abstract

Quasielastic K+-nucleus scattering data at q = 290, 390 and 480 MeV/c are

analyzed in a finite nucleus continuum random phase approximation frame-

work, using a density-dependent particle-hole interaction. The reaction mech-

anism is consistently treated according to Glauber theory, keeping up to two-

step inelastic processes. A good description of the data is achieved, also

providing a useful constraint on the strength of the effective particle-hole

interaction in the scalar-isoscalar channel at intermediate momentum trans-

fers. We find no evidence for the increase in the effective number of nucleons

participating in the reaction which has been reported in the literature.
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I. INTRODUCTION

Quasielastic studies are traditionally a good source of information about nuclear and
nucleon structure. The main tool has been usually represented by electron scattering ex-
periments, since in this case the elementary probe-nucleon reaction mechanism is regarded
to be under better control. However, not all the possible nuclear response functions can be
accessed in this way and, furthermore, the extraction from the data of the response functions
that enter electron scattering can be model dependent.

Hadronic probes are an alternative source of quasielastic data. Among them it is par-
ticularly interesting the case of K+-nucleus scattering, since, for kaon laboratory momenta
below 800 MeV/c, the elementary K+-nucleon (K+N) interaction is much weaker than
other hadron-nucleon interactions. In fact, a weaker elementary interaction allows the pro-
jectile to penetrate deeper inside the nucleus, thus probing regions of higher density and,
consequently, being more sensitive to collective phenomena.

Such an experiment has been performed at BNL, where quasielastic K+-nucleus double-
differential cross sections have been measured for kaons with a laboratory momentum of 705
MeV/c, using D, C, Ca and Pb as targets [1,2]. Data have been taken for scattering at 24◦,
34◦ and 43◦, corresponding to approximately fixed momentum transfers of 290, 390 and 480
MeV/c. In the case of C, the data have been taken for all the momenta, whereas for Ca and
Pb they are available at 290 and 480 MeV/c.

In Refs. [1,2] the data have been analyzed using various relativistic models to describe
the nuclear dynamics; on the other hand, the distortion of the incoming kaons has been
accounted for employing a very simple model, based on the effective number of nucleons
participating in the reaction, Neff (see Sec. IID). The “experimental” values found for Neff

are ∼ 30% higher than the ones calculated in the Glauber theory. This finding is rather
puzzling, also in view of the fact that multiple scattering theory underestimates the nuclear
elastic scattering data [3,4], a fact which has been interpreted as a signal of an enhancement
of the in-medium K+N cross section. As also noted in Ref. [2], the quasielastic cross section
is, in general, proportional to the elementary single differential K+N cross section and to the
effective number of participating nucleons, the latter depending, in turn, on the total K+N
cross section (see Sec. IID for details). At the energy of the experiment, K+N scattering is
nearly isotropic, so that the differential and total cross sections are proportional; however, an
increase in the K+N cross section reduces Neff (and viceversa), leaving a quasielastic cross
section little dependent on the input K+N amplitudes. Thus, the quasifree experiment on
the one side does not shed light on the elastic scattering data and, on the other, it seems to
pose another puzzling problem.

In this paper we would like to reanalyze the K+-nucleus quasielastic data, using a more
realistic model for the reaction mechanism, — already applied to (p, p′) and (p, n) quasifree
scattering [5,6], — based on a consistent implementation of Glauber theory for quasifree
scattering. The nuclear dynamics has been treated through a finite nucleus continuum
random phase approximation (RPA) calculation, also accounting for the coupling of the
particle-hole (ph) states to higher order configurations (spreading width). The dynamics is
non-relativistic, but the correct relativistic kinematics has been used.

We will show that the puzzling experimental outcome for Neff is very likely an artifact
of the naive fitting procedure employed in the analysis of the data and that a realistic (and
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without free parameters) theoretical framework has no difficulties in giving a rather accurate
description of the experimental cross sections.

In Sec. II we introduce the theoretical methods employed in the calculations: Here, one
can find a brief description of the quasielastic nuclear responses in finite nuclei; of the RPA
using density-dependent interactions; of the specific model for the ph effective potential that
we have used; and of the response functions to hadronic probes up to two-step processes in
the Glauber framework. In Sec. III, we display the results of our calculations and in the last
Section we discuss their implications for the interpretation of the data.

II. THEORETICAL METHODS

A. Quasielastic nuclear response

The nuclear response function to an external probe, transferring momentum q and energy
ω, is proportional to the imaginary part of the polarization propagator [7]:

Rα(q, ω) = −1

π
ImΠα(q, q;ω) . (2.1)

The latter reads

Πα(q, q′;ω) =
∑

n 6=0

〈ψ0|Ôα(q)|ψn〉〈ψn|Ô†
α(q′)|ψ0〉

×
[

1

h̄ω − (En − E0) + iη

− 1

h̄ω + (En − E0) − iη

]
, (2.2)

where {|ψn〉} is a complete set of nuclear eigenstates of energy En, Ôα(q) the second quan-
tized expression of the vertex operator and α labels the spin-isospin channel. In the following,
for the purpose of illustration, we shall deal explicitly only with the scalar-isoscalar channel,
— which is, by the way, the dominant one in K+N scattering at the energies of concern to
us, — where O(q, r) = exp(iq ·r): The case of the spin modes, which is slightly complicated
by the spin algebra, is treated in detail in Ref. [5].

The angular part of Π(q, q′;ω) (we now drop, for simplicity, the channel label α) can be
handled through a multipole decomposition that reads

Π(q, q′;ω) =
∑

JM

ΠJ(q, q′;ω)Y ∗
JM(q̂)YJM(q̂′) , (2.3)

so that

R(q, ω) = − 1

4π2
Im

∑

J

(2J + 1)ΠJ(q, q;ω) . (2.4)

In a mean field (shell model) framework, one has for the particle-hole (ph) polarization
propagator:
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Π0
J(q, q′;ω) =

∑

ph

QJJ0
ph (q)

[
1

ω − (ǫp − ǫh) + iη
− 1

ω + (ǫp − ǫh) − iη

]
QJJ0

ph

∗
(q′) , (2.5)

where p (h) labels a complete set of single particle (hole) quantum numbers and

QJℓσ
ph (q) = 〈jpjh; J |ℓσ; J〉(−i)ℓ+1(−1)ℓh2[4π(2ℓp + 1)(2ℓh + 1)]1/2Iℓ,ph(q)

(
ℓp ℓh ℓ
0 0 0

)
. (2.6)

In (2.6), 〈jpjh; J |ℓσ; J〉 is the standard LS − jj recoupling coefficient and

Iℓ,ph(q) =
∫ ∞

0
dr r2jℓ(qr)Rp(r)Rh(r) , (2.7)

Rp(h)(r) being the radial particle (hole) wave function and ǫp(h) the associated eigenvalues.
They are obtained by solving the Schroedinger equation with the Woods-Saxon potential

W (r) =
W0

1 + e(r−R)/a
+

[
h̄c

m2
πc

2

]2
Wso

ar

e(r−R)/a

[1 + e(r−R)/a]
2 ℓ · σ (2.8)

(neglecting, for simplicity, the Coulomb term), where mπ is the pion mass and the following
set of parameters has been employed:

W0 = −54.8 MeV, Wso = −10 MeV ,
R = 1.27A1/2 fm, a = 0.67 fm .

(2.9)

Note that the sum appearing in Eq. (2.5) should be understood as a sum over the discrete
part of the spectrum and an integration over the continuum one. Indeed, contrary to the
widespread procedure of calculating the polarization propagator in coordinate space and
then Fourier transform to momentum space, we have directly evaluated Eq. (2.5) in the
latter. Besides being fast and reliable, this procedure allows also for an important extension
to the shell model polarization propagator, namely the inclusion of the spreading width of
the ph states.

This can be accomplished by adding in Eq. (2.5) a complex ph self-energy, i. e. through
the following substitution:

(ǫp − ǫh) → (ǫp − ǫh) − Σph(ω) . (2.10)

Although Σph could in principle be calculated, we shall actually employ a phenomenological
parameterization, writing

Σph(ω) = ∆ph(ω) + i
Γph(ω)

2
, (2.11)

with

Γph(ω) = [γp(h̄ω + ǫh) + γh(ǫp − h̄ω)](1 + CTS)

(2.12)

∆ph(ω) = [∆p(h̄ω + ǫh) + ∆h(ǫp − h̄ω)](1 + CTS) .
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The arguments of the functions γp(h) and ∆p(h) have been inferred from the analysis of
the second order particle and hole self-energy contributions to Σph. The coefficients CTS

represent the corrections, in each isospin T–spin S channel, due to the ph interference
diagrams: These have been estimated [8] to contribute around 5% in S = T = 1 and
≈ 20 ÷ 25% in S = 0, T = 1 and S = 1, T = 0; given the smooth dependence of the
quasielastic response on the ph self-energy and the small contribution of these modes to the
K+-nucleus cross section, these corrections are not important and we shall set for simplicity
CTS = 0 in these channels. Concerning the channel S = T = 0, the estimate of Ref. [8] gives
C00 = −1, resulting in a complete cancellation of the ph spreading width. This outcome is
valid in nuclear matter and in the limit of very large angular momenta, which is presumably
good in the quasielastic peak (QEP) region. However, at low transferred momenta the region
of small energy transfers of the quasielastic response is dominated by resonances associated
to specific (low) angular momenta. In that case it is a better approximation to retain the
full width and, accordingly, we shall choose C00 = −1 + exp[−(ω/ω0)

2] with ω0 = 30 MeV:
Then, resonances in the 10 ÷ 20 MeV range get a width of a few MeV, whereas for ω >∼ 30
MeV there is essentially no spreading.

Finally, the γp(h) are chosen according to the parametrization of Ref. [8], namely

γp(ǫ) = 2α

(
ǫ2

ǫ2 + ǫ20

)(
ǫ21

ǫ2 + ǫ21

)
θ(ǫ)

(2.13)

γh(ǫ) = γp(−ǫ) ,

symmetrical with respect to the Fermi energy (ǫF = 0), which gives a reasonable fit of the
particle widths for medium-heavy nuclei, using α = 10.75 MeV, ǫ0 = 18 MeV and ǫ1 = 110
MeV [9]. The corresponding real parts are obtained through a once-subtracted dispersion
relation [5].

A final remark, concerning relativistic kinematics effects on the response functions, is
in order. We shall be concerned with momentum transfers up to 500 MeV/c, where purely
kinematical relativistic effects are starting to be sizable. At q = 500 MeV/c the relativistic
position of the QEP is ≈ 8 MeV below the non-relativistic one, the effect being even larger
for energies on the right hand side of the QEP. In Ref. [10], it had been shown that the non-
relativistic Fermi gas can be mapped into the relativistic one through the simple prescription

ω → ω
(
1 +

ω

2mN

)
. (2.14)

The validity of (2.14) in a finite nucleus shell-model calculation has been checked in Ref. [11].
The main effect of properly accounting for the relativistic dispersion relation turns out to
be a moderate shrink of the response functions at the right of the QEP (see Sec. III).

B. RPA with density-dependent interactions

The polarization propagator introduced in the previous subsection is used in this paper
as input in a continuum RPA calculation of the response functions.
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For a central density-independent interaction one has to solve, for each multipole J ,
the following integral equation (see Ref. [12] for the complications introduced by the tensor
interaction):

ΠRPA
J (q, q′;ω) = Π0

J(q, q′;ω) +
1

(2π)3

∫ ∞

0
dk k2Π0

J(q, k;ω)V (k)ΠRPA
J (k, q′;ω) , (2.15)

V (k) being the Fourier transform of the two-body potential. However, realistic effective
nuclear interactions are in general density-dependent, especially in the scalar channels.

For a general interaction potential V (r, r′), one can introduce the double Fourier trans-
form

V (k,k′) =
∫
dr dr′ e−ik·reik′·r′

V (r, r′)

=
∑

J

VJ(k, k′) YJM(k̂)Y ∗
JM(k̂

′
) . (2.16)

Then, instead of Eq. (2.15), one has to solve the following RPA equations:

ΠRPA
J (q, q′;ω) = Π0

J(q, q′;ω) +
1

(2π)6

∫ ∞

0
dk k2

∫ ∞

0
dk′ k′

2
Π0

J(q, k;ω)VK(k, k′)ΠRPA
J (k′, q′;ω)

= Π0
J(q, q′;ω) +

1

(2π)3

∫ ∞

0
dk′ k′

2
KJ(q, k′;ω)ΠRPA

J (k′, q′;ω) , (2.17)

having defined the kernel

KJ(q, k′;ω) =
1

(2π)3

∫ ∞

0
dk k2Π0

J(q, k;ω)VJ(k, k′) . (2.18)

Clearly, in the case V (r, r′) ≡ V (r−r′) one has VJ(k, k′) = (2π)3V (k)δ(k−k′)/k2: The ker-
nel (2.18) is then reduced to KJ(q, k′;ω) = Π0

J(q, k′;ω)V (k′) and one gets back to Eq. (2.15).
From Eq. (2.17) it is apparent that the solution of the RPA equations with density-

dependent forces does not pose any additional technical problem, apart from the input
kernel, whose calculation is more involved.

As discussed in detail in the next subsection, in the calculations of Sec. III we have been
using a parameterization of the effective nuclear interaction linear in the density. In general,
in any (non-tensor) channel one has

V (r1, r2) = V ex(r1 − r2) + V ρ(r1 − r2) ρ̃
(

r1 + r2

2

)

≡ V ex(r) + V ρ(r) ρ̃(R) , (2.19)

with r = r1 − r2, R = (r1 + r2)/2 and ρ̃(R) = ρ(R)/ρ(0), ρ(R) representing the nuclear
density, here approximated by the standard Fermi distribution.

In momentum space (2.19) reads

V (k,k′) = V ex(k)(2π)3δ(k − k′) + V ρ

(
k + k′

2

)
ρ̃(k − k′) (2.20)
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and its Jth component in the angular momentum expansion (2.16) turns out to be

VJ(k, k′) = V ex(k)
(2π)3

k2
δ(k − k′) + V ρ

J (k, k′) (2.21)

where

V ρ
J (k, k′) = 2π

∫
d(k̂ · k̂′

)V ρ

(
k + k′

2

)
ρ̃(k − k′)PJ(k̂ · k̂′

) , (2.22)

PJ representing the ordinary Legendre polinomials.

C. Effective ph interaction

Two strategies are possible in order to determine the effective ph interaction in the
nuclear medium: One can either directly fix an effective potential by fitting some phe-
nomenological properties or start with a bare nucleon-nucleon interaction and calculate the
related G-matrix. Parameterizations of the ph interaction based upon the first procedure
are generally only available at very low momentum transfers (in terms of Migdal-Landau pa-
rameters); since we are probing relatively high momenta, we have resorted to use a G-matrix
and we have chosen the calculation of Ref. [13], which, in our view, has the following ap-
pealing features: It is based upon a realistic boson exchange potential; (nonlocal) exchange
contributions are included in the effective interaction, which is conveniently parameterized
in terms of Yukawa functions; a parameterization of the density dependence is also provided.

The potential is given using the standard representation in spin and isospin (no spin-orbit
contribution will be considered in the following):

V (kf ,ki; kF ) = F + F ′τ 1 · τ 2 +Gσ1 · σ2 +G′σ1 · σ2 τ 1 · τ 2

+TS12(q̂) + T ′S12(q̂)τ 1 · τ 2 +HS12(Q̂) +H ′S12(Q̂)τ 1 · τ 2 , (2.23)

where q = ki − kf , Q = ki + kf (ki, kf being the relative momenta in the initial and final
state, respectively) and the coefficients are density and momentum dependent.

However, before utilizing the nuclear matter interaction of Ref. [13] in a finite nucleus
calculation of quasielastic responses, a few issues have to be addressed.

a) The density dependence of the G-matrix is given in terms of density dependent cou-
pling constants, which is not very useful for our purposes. Furthermore, the parameterization
is fitted for 0.95fm−1 < kF < 1.36fm−1, kF being the Fermi momentum, which spans a range
of densities down to roughly 1/3 of the central density: Extrapolation of their parameteriza-
tion to lower densities gives unreasonable results. Thus, we have chosen to employ the linear
ρ dependence of Eq. (2.19) [or (2.20)], which is known to provide a reasonable parameteriza-
tion (see, e. g., Ref. [14]). One can see in Fig. 1 a comparison of the two parameterizations
for the kF dependence of the effective interaction. It should be noted that most of the
contribution to the quasielastic responses comes from densities where the two descriptions
differ by a few per cent.

b) In order to obtain, at a fixed density, a local interaction, one can use the relation

between q, Q and ki, i. e., Q =
√

4k2
i − q2, substituting ki with a suitably chosen average

7



FIG. 1. Effective interaction in the non-tensor channels as a function of kF at q = 0; linear

(solid) and from Ref. [13] (dashed) density dependence.

p

h’

q=p-h

p h

p’

(a)

h’

h

p’

Q=p-p’

h’

hp

p’

(b)
FIG. 2. (a) Direct and exchange ph matrix elements; (b) direct pp matrix element.
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FIG. 3. Effective ph interaction in the non-tensor channels as a function of q at kF = 1.36

(solid), 1.25 (dashed), 1.10 (dot-dashed) and 0.95 fm−1 (dotted).

FIG. 4. As in Fig. 3, but for the tensor channels; T and T ′ do not depend on the density.
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value, 〈ki〉; then, the only independent momentum is q. The authors of Ref. [13] were
interested in a potential for nuclear structure calculations: Hence, they put the momenta
of the two nucleons in the initial state on the Fermi surface and averaged over the relative
angle, getting 〈ki〉 ≈ 0.7kF . Clearly, in this case one has the constraint 0 < q <∼ 1.4kF .
On the other hand, we are interested in the ph interaction in the quasielastic region: One
nucleon in the initial state is below the Fermi sea, while the other can be well above it.
A look at Fig. 2 shows that ki is defined, in terms of the particle and hole momenta, as
ki = (p − h′)/2 = (h − h′ + q)/2. Thus, at fixed q one should average ki over h and

h′, getting 〈ki〉 ≈
√

6k2
F/5 + q2/2. Now ki is growing with q, so that there are no longer

constraints on q, and the exchange momentum turns out to be constant, Q =
√

6/5kF . One
can see in Fig. 3 the resulting interaction in the non tensor channels.

c) In the case of the tensor channels things are simpler, since in the parameterization of
Ref. [13] there is no explicit density dependence (Fig. 4). The coefficients of the exchange
tensor operator, H and H ′, display a very mild density dependence, induced by Q, which
is completely negligible. The only catch concerns the treatment of S12(Q): Assuming that
q and Q are orthogonal, with some algebra one can show that S12(Q̂) = −S12(q̂)/2. Note,
however, that 80 ÷ 90% of the quasielastic cross section for K+ scattering is due to the
scalar-isoscalar channel.

D. Response functions with hadronic probes

The formalism introduced above is not enough when one is dealing with strongly inter-
acting probes, in which case a framework for the reaction mechanism must be provided. For
this purpose, we have chosen the Glauber approach [15], including up to two-step inelastic
processes.

Simple treatments within the Glauber theory usually amount to including the effects
due to rescattering in an effective number of nucleons participating in the reaction, thus
effectively renormalizing the response functions defined above. In the case of K+ quasielastic
scattering, this approach has been followed in Refs. [1,2,16].

However, a consistent treatment within Glauber theory leads one to the definition of
surface response functions [5]. A detailed derivation, in particular for the spin-isospin chan-
nel, can be found in Ref. [5]. Here, we briefly sketch the relevant points, again using the
scalar-isoscalar channel as example.

A surface polarization propagator can be obtained from (2.2) by substituting the vertex
operator Oα(q, r), which describes the probe-nucleon coupling, with

Osurf
α (q, r) =

1

(2π)2fα(q)

×
∫
db dλ e−σ̃totT (b)/2ei(q−λ)·bfα(λ)

×Oα(λ, r) , (2.24)

b and λ being bidimensional vectors in the plane orthogonal to the direction of motion of the
projectile, fα the elementary probe-nucleon amplitudes, σ̃tot the effective total probe-nucleon
cross section and
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T (b) =
∫ +∞

−∞
dz ρ(r =

√
b2 + z2) , (2.25)

ρ(r) being the nuclear density. With these definitions, the effective number of participating
nucleons is given as

Neff =
∫
dbT (b)e−σ̃totT (b) . (2.26)

σ̃tot depends on the energy and we shall take the average over the total cross sections at
the incoming and outgoing projectile energies: For K+ scattering at k = 705 MeV/c, the
variation of σ̃tot is rather weak, going roughly from 14 mb to 13 mb for energy losses up to
250 MeV.

One then finds, for the J-th multipole,

Πsurf
J(α)(q, q;ω) = ΠJ(α)(q, q;ω)

+
1

|fα(q)|2
∫ ∞

0
dλ λ

∫ ∞

0
dλ′ λ′ Re[f ∗

α(λ) fα(λ′)G
(0)
J (λ, λ′; q)]ΠJ(α)(λ, λ

′;ω)

−2
1

|fα(q)|2
∫ ∞

0
dλ λRe[f ∗

α(q) fα(λ)H
(0)
J (λ; q)]ΠJ(α)(q, λ;ω) , (2.27)

having set

G
(0)
J (λ, λ′; q) =

∑

m

cJmg
∗
m(λ, q)gm(λ′, q) (2.28a)

H
(0)
J (λ; q) =

∑

m

cJmgm(λ, q) , (2.28b)

where

gm(λ, q) =
∫ ∞

0
db b

[
1 − e−σ̃totT (b)/2

]
Jm(λb) Jm(qb) (2.29)

and

cJm = IJ+m
(J −m− 1)!!(J +m− 1)!!

(J +m)!!(J −m)!!

(2.30)

IJ+m =

{
0, J +m odd
1, J +m even

.

With the previous definitions, the one-step surface response functions are given as
Rsurf

α (q, ω) = −Im
∑

J(2J+1)Πsurf
J (q, q;ω)/4π2 and the double differential cross section turns

out to be

d2σ

dΩdǫ′

∣∣∣∣∣
1-step

=
∑

α

|fα(q)|2Rsurf
α (q, ω) , (2.31)

to be compared with the effective number approximation, which reads
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d2σ

dΩdǫ′

∣∣∣∣∣
1-step

= Neff

∑

α

|fα(q)|2Rα(q, ω) . (2.32)

Multiple scattering inelastic contributions can, in principle, be incorporated along the same
lines. Since in the kinematic regions of interest they turn out to be much smaller than
the one-step terms, it is not worth going through a very complex formalism and one can
safely stick to the effective number approximation. In this case, the two-step contribution is
proportional to the convolution of two one-step response functions [17]. By summing over all
the possible channels and using free one-step response functions, one can define the two-step
response as

R(2)(q, ω) =
D2

k2

1
∑

ST |fST (q)|2
∫
dq′

∫ ω

0
dω′

{
∑

ST

|fST (q′)|2R(0)(q′, ω′)
∑

ST

|fST (|q − q′|)|2R(0)(|q − q′|, ω − ω′)

+2
∑

S

|fS1(q
′)|2R(0)(q′, ω′)

∑

S

|fS1(|q − q′|)|2R(0)(|q − q′|, ω − ω′)

}
,

(2.33)

where k is the momentum of the projectile, fST the KN amplitude in the S, T channel and

D2 =
1

2

∫
dbT 2(b)e−σ̃totT (b) (2.34)

is proportional to the effective number of pairs participating in the double scattering.
The full quasielastic K+-nucleus cross section discussed in Sec. III is given by the sum

of one- and two-step terms:

d2σ

dΩdǫ′
=
∑

α

|fα(q)|2
[
Rsurf

α (q, ω) +R(2)(q, ω)
]
. (2.35)

We conclude this Section with a few remarks about the elementary K+N amplitudes
employed in the calculations. The amplitude for elastic K+N scattering can be written as
f (s) + f (v)τ3, with f (i) = g(i) + iσ · n̂ h(i), n̂ being a unit vector normal to the scattering
plane. In Fig. 5 one can see the amplitudes as a function of the momentum transfer for
k = 705 MeV/c [18,19]: The dominant channel is clearly the scalar-isoscalar one.

Some care should be taken in the choice of the reference frame where theK+N amplitudes
are evaluated. In order to be able to factorize the two-body amplitude out of the nuclear
response functions, an “optimal” choice of the reference frame has to be done [20,21]: The
optimal momentum of the struck nucleon turns out to be

popt = −q

2


1 − ω

q

√√√√1 +
4m2

N

q2 − ω2


 , (2.36)

such as to reduce to zero at the QEP and to the Breit frame value at ω = 0.
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FIG. 5. Center-of-mass K+N squared amplitudes corresponding to a K+ laboratory momen-

tum k = 705 MeV/c.

The most relevant consequence of this choice of frame is that the elementary projectile-
nucleon amplitudes should be evaluated at an effective laboratory kinetic energy defined
by

T eff
L =

EkEopt − k · popt −mpmN

mN
, (2.37)

mp and k being the projectile mass and momentum, respectively. This introduces a depen-
dence on ω of the amplitudes entering in the evaluation of the quasielastic cross section,
which can be important if the former are strongly energy dependent: At the kinematics of
relevance to us, the effective K+ momentum varies roughly in the range 500 ÷ 800 MeV/c,
where the amplitudes change sufficiently slowly to make the effects not at all dramatic.

III. RESULTS

Let us start by briefly discussing the relativistic kinematical effects, introduced at the
end of Sec. IIA. In Fig. 6 one can see the RPA scalar-isoscalar response of 12C to K+

probes in the non-relativistic case compared to the response function where the relativistic
dispersion relation has been accounted for. As expected, the effect is negligible at the lowest
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FIG. 6. Scalar-isoscalar RPA response function for K+ quasielastic scattering: Non-relativistic

(dotted) and with the kinematical relativistic corrections discussed in the text (solid).

momentum transfer (q = 290 MeV/c), whereas at higher momenta (q = 480 MeV/c) it
produces a moderate shrink of the response at the right of the QEP, compensated by an
enhancement (∼ 10%) at the peak position.

Next, we would like to discuss the uncertainties connected to the choice of the effective
ph interaction for quasielastic calculations. The knowledge of the latter suffers, in general,
from many shortcomings: When it is theoretically calculated, — as the one we employ here
(see Sec. IIC), — sources of uncertainties arise because of the specific many-body scheme
which has been adopted, from relativistic effects (see Ref. [22] for an effective interaction
along the lines of Ref. [13], but in a relativistic context) and from the approximations made
in the actual calculations or in extrapolating to the ph kinematical regime (see Sec. IIC);
when the effective interaction is just fitted to phenomenological properties, it can suffer from
ambiguities in the parameterization (many sets of parameters reproducing the same body of
data) and from the limited range of momenta which is covered (see, for instance, Ref. [14]
for a phenomenological density-dependent interaction expressed in terms of Migdal-Landau
parameters at q ≈ 0).

On the other hand, one can of course reverse the argument and use the quasielastic studies
to gain insight into the effective ph interaction at momentum transfers of a few hundreds
MeV. One obvious difficulty in this case is related to the fact that it is not always possible
to disentangle the various spin-isospin channels: The only reaction for which this has been
achieved is the (~p, ~n) charge-exchange one, where the separated isovector spin-longitudinal
and spin-transverse responses have been extracted [23]. However, the strong interaction
of protons with nuclei constrains that reaction to the low density peripheral region of the
nucleus, making it little sensitive to RPA effects; moreover, while the spin-longitudinal
channel can be well described, the transverse one shows much more strength than expected

14



FIG. 7. K+-12C quasielastic response functions RST (S, T = 0, 1) at q = 480 MeV/c. The

dotted line represents the uncorrelated case; the solid line the RPA responses corresponding to the

interaction of Sec. IIC; the dashed lines the RPA responses with the same interaction scaled by

±50%.

[6]. In this regard, the K+-nucleus reaction is much more promising for two reasons: First of
all, the small K+N cross section makes the kaon enter inside the nucleus much more deeply
than protons or pions, in turn implying stronger collective effects; secondly, as seen in Fig. 5,
the scalar-isoscalar channel is largely dominant, making this reaction a “quasipure” probe
of the S = T = 0 mode.

Whatever be the attitude towards this problem, we believe it is useful to gain some feeling
about the sensitivity of the collective effects to the input effective potential. For this purpose,
we display in Fig. 7, for the four spin-isospin channels, the surface RPA response functions
at q = 480 MeV/c, calculated with the ph interaction discussed in Sec. IIC, comparing them
to the RPA responses calculated with the same interaction scaled by ±50%. This amount
for the rescaling is not an estimate of the theoretical or phenomenological uncertainty of the
ph interaction; however, concerning the scalar-isoscalar channel, there are reasons to believe
that the G-matrix estimate of Ref. [13] gives too much attraction: As discussed by the
authors, the extracted f0 Landau parameter makes nuclear matter unstable, a shortcoming
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that can be cured by higher order contributions1. Thus, while the case with the interaction
increased by 50% is taken mainly for illustrative purposes, the case with a weaker interaction
is somewhat more realistic.

By inspecting Fig. 7 one can note the following:
i) the dependence of the responses on the potential is somehow desensitized by the RPA

chain: For the S = T = 0 mode the variation of the response function at the left of the QEP
is typically about 20÷ 30%, apart from the very low energy region (ω <∼ 30 MeV), where it
grows up to ∼ 50%; for the other modes, still at the left of the QEP, the variation is always
much smaller, say <∼ 5 ÷ 10%;

ii) at the right of the QEP the effect of correlations is much smaller, being limited to a
few per cent for the S = T = 0 mode and to practically nothing for the other modes;

iii) the relatively weak sensitivity of the isovector and spin channels to variations of
the input potential makes the small (10 ÷ 20%) contamination from these modes in the
K+-nucleus cross section rather stable with respect to uncertainties due to correlations,
enhancing the argument in favour of this reaction as a probe of the scalar-isoscalar channel.

The results if Fig. 7 are given for q = 480 MeV/c: Similar considerations apply also to
the lowest momenta.

In Fig. 8 one can see the data for the quasielastic K+-C cross section [1,2] compared
to our calculations. In the theoretical cross sections, besides the case with free response
functions (dotted), there are included the nuclear responses corresponding to the interaction
of Sec. IIC (solid) and to a reduction of 50% of the same interaction (dashed); the curves
include the two-step contribution, which is also shown separately (dot-dashed).

From inspection of the figure, one sees that the strength of the cross sections on the
right hand side of the QEP is well reproduced by both the correlated and the free responses
(apart from the very high energy tail) at all the momentum transfers; however, at the lowest
momenta the data show a clear distortion of the typical quasielastic shape, which is not
compatible with the uncorrelated cross sections.

The experimental energy resolution is not sufficient to cut out the elastic scattering
contribution; moreover, low-lying discrete nuclear excitations are much affected by the detail
of the nuclear model (such as shell model parameters and spreading width). If, for these
reasons, one excludes the very low energy tail (say, ω <∼ 15 MeV) it appears that the model
with a weaker ph interaction gives a remarkably good description of the data at q = 290
and 390 MeV/c.

At the highest momentum, the elastic contamination and the discrete excitations have
been washed out; the interaction in both the correlated models is sufficiently weak to cause
little distortion of the quasifree shape, but the low energy part of the spectrum seems again
to favour the model with the weaker ph interaction.

It is worth noticing the smallness of the two-step contribution, which is at most a few
per cent of the one-step term at q = 480 MeV/c: This can be contrasted, for instance, to

1 Also relativistic effects give rise to a weaker attraction: In Ref. [22] the strength in the S = T = 0

channel has been shown to be reduced by nearly a factor 1/2 at q = 0; however, in the range of

momenta of interest to us, the relativistic and non-relativistic G-matrices appear to be comparable.
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FIG. 8. Cross section for K+-12C quasielastic scattering: Free response (dotted), RPA with

the interaction of Sec. II C (solid); RPA with the same interaction reduced by 50% (dashed). In all

the cases, the two-step contribution has been added and it is also shown separately (dot-dashed).
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FIG. 9. As in Fig. 8, but for 40Ca.

the isovector spin-transverse response to 500 MeV protons, where one finds, at q ∼= 500
MeV/c, a sizeable 20 ÷ 30% contribution from two-step processes [6]. Protons of 500 MeV
of kinetic energy have a squared momentum which is roughly twice the one of 700 MeV/c
kaons; furthermore, the two-step factor D2 of Eq. (2.33) and (2.34) is larger by roughly a
factor two for the kaon reaction, — because of the smaller probe-nucleon total cross section
σ̃tot, — but this is compensated by the factor two arising from the two possible orderings
of the charge-exchange reaction (see formula (8) of Ref. [6]). Hence, apart from a factor 2
in the coefficient, the relative weight of the two-step term in the two reactions has to be
driven by the elementary amplitudes entering (2.33) (the response functions being in all the
cases the free ones), that is by the factor |f00(|q−q′|)|2|f00(q

′)|2/|f00(q)|2 in (2.33) (since the
scalar-isoscalar channel is dominant) and by the factor |fNN

00 (|q−q′|)|2|fNN
T (q′)|2/|fNN

T (q)|2
in the analogous expression for the (p, n) reaction, q being the external momentum and q′

the integration variable, whereas fNN
T and fNN

00 are the isovector spin-transverse and the
scalar-isoscalar NN amplitudes, respectively.

The different size of the two-step contributions is indeed determined by the different
strength and the different momentum behaviour of the above amplitudes: In the kaon case,

18



the scalar-isoscalar amplitude has little momentum dependence, so that |f00(q
′)|2/|f00(q)|2 is

roughly between one and two, while the remaining squared amplitude is on average ∼ 1.5 mb
(in the laboratory); on the other hand, for the (p, n) reaction at q ∼= 500 MeV/c, the ratio
|fNN

T (q′)|2/|fNN
T (q)|2 is typically in the range 4÷ 8, whereas the remaining amplitude gives

contributions mainly in the range from 10 to 22 mb. In qualitative words, we can say that
because the NN cross section is relatively forward peaked, — unlike the K+N one, — a
double scattering in which the momentum transfer q is shared by the two nucleons is favored
in the NN case with respect to the K+N one.

Finally, we display also the available data for Ca at q = 290 and 480 MeV/c (Fig. 9).
To these figures one can apply the same considerations made for the carbon data, although
the preference for the weaker ph effective potential is even more clear now, since in heavier
nuclei collective effects tend to be stronger. Indeed, the sensitivity of the response functions
to variations in the input potential is a little more pronounced in 40Ca than in 12C, being
about 25÷35% for a 50% change of the potential in the S = T = 0 channel, to be compared
to the 20 ÷ 30% sensitivity found in 12C (see the discussion of Fig. 7). Also the two-step
contribution is, as expected, larger in 40Ca than in 12C.

IV. CONCLUSIONS

From the discussion in the previous Section, it appears that the model presented here
gives a good description of the quasielastic K+ data, the main uncertainty being related to
the strength of the effective ph interaction in the scalar-isoscalar channel. A good description
of the data was achieved by using the interaction of Ref. [13] quenched by 50%. It was shown
that the use of this interaction with the full strength led to results in clear contradiction
with the data. Indeed, there are theoretical indications that the strength of this interaction
in the scalar-isoscalar channel should be reduced. On the other hand, from Figs. 8 and 9
one can see that the K+ data can be used to constrain the strength of the ph potential for
the S = T = 0 mode.

There are, however, two issues that need to be commented upon, namely the reported
high experimental values for the effective number of nucleons Neff [1,2] (see the Introduction)
and the comparison with the available calculations for this reaction that employ relativistic
dynamical models [1,2,16].

Concerning the first point, it might appear curious that the “experimental” value for
Neff quoted in Refs. [1,2] be ∼ 30% higher than the one calculated in the Glauber model,
since we have seen that the latter gives a nice estimate of the quasielastic cross sections.
A source of error may of course be given by the use of the effective number approximation
(2.32); however, we believe that the main reason for the overestimate of Neff lies in the way
followed to extract the effective number from the data [2]. Indeed, Neff has been obtained
by integrating the quasielastic data over the whole range of transferred energies: In order to
do this, the data have been fitted with Gaussian distributions and, although a subtraction
of the elastic scattering and low energy excited levels contributions has been attempted, no

subtraction for any high energy background has been included. From Figs. 8 and 9 it appears
that the very high energy tail of the cross sections is underestimated by the calculations, both
for the free and the correlated models (remember, from the discussion of Sec. III, that while
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RPA correlations sizably affect the low energy side of the QEP, they have little influence
on the high energy part). The data actually seem to show some structure beyond the ph
response region: In the case of quasifree electron scattering, the strength in this region is
attributed to effects beyond RPA (such as meson-exchange currents or 2p–2h excitations).
Note also that a simple, “straight line”, estimate of the background brings the value of Neff

in close agreement with the Glauber estimate [24].
Meson-exchange currents effects tied to the interaction of the kaon with the nuclear pion

cloud have been evaluated in Refs. [25,26] and found to lead to small corrections to the
K+-nucleus total cross section. The consideration of contact terms using chiral Lagrangians
makes the corrections even smaller [27], so that this source of corrections cannot account for
the strength at large values of ω. On the other hand, the tail of the ∆ excitation reaches this
region, since the ∆ acquires a finite width, even below the pion production threshold, due
to the ∆N → NN reaction in the nucleus. Hence, the channel of kaon induced ∆ excitation
in nuclei should become a target of both theoretical and experimental investigation in order
to further clarify these issues.

Concerning the calculations with relativistic models of Refs. [1,2,16], it is obviously
difficult to make a comparison with our results, since in those papers the RPA response
functions (calculated in a variety of models) have been multiplied by the “experimental”
Neff, so that their strength is just fitted to the data (of course, the use of the calculated
value for Neff would result in a general underestimate of the cross sections). However, it
should be noticed that the relativistic RPA isoscalar response is quenched, in contrast to
our non-relativistic RPA response, which is mainly shifted to the left and enhanced at very
low energies. Then, it is clear that this quenching has to be compensated by a higher Neff.
Also to be noticed is the fact that the relativistic RPA calculations are able to describe
(albeit through a fit of the total cross section) only the data at high momentum transfers.
At q = 290 MeV/c, the large enhancement in the cross section visible at moderate energy
transfers (15 <∼ ω <∼ 40) is clearly not predicted, even in a finite nucleus calculation [1], in
contrast to our non-relativistic results.

Of course, before drawing more firm conclusions one should test the model also against
the (e, e′) data and calculations in this direction are in progress. In this connection, it is
interesting to note that a recent reanalysis of the (e, e′) world data [28] seems to rule out
the long-standing problem of the missing strength in the charge channel, which had been
interpreted in terms of a quenching of the charge response.
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