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We study the J/ψ → p̄ηp and J/ψ → p̄K+Λ reactions with a unitary chiral approach. We find
that the unitary chiral approach, which generates the N∗(1535) dynamically, can describe the data
reasonably well, particularly the ratio of the integrated cross sections. This study provides further
support for the unitary chiral description of the N∗(1535). We also discuss some subtle differences
between the coupling constants determined from the unitary chiral approach and those determined
from phenomenological studies.

PACS numbers: 14.20.Gk Baryon resonances with S=0, 12.39.Fe Chiral Lagrangians, 13.30.Eg Hadronic

decays, 13.75.Jz Kaonbaryon interactions

I. INTRODUCTION

Understanding the nature of various hadrons has al-
ways been a main goal pursued in studies of strong inter-
action phenomena. With the advent of quantum chro-
modynamics (QCD) the hope was raised that one could
understand the various hadrons observed in nature as
quarks and gluons bound together by the strong interac-
tion. For instance, in terms of these degrees of freedom,
baryons and mesons are often seen as qqq or qq̄ compos-
ites, respectively. There are, however, certain resonances
that cannot easily fit into this picture, for instance, the
Λ(1405) and the N∗(1535).

The N∗(1535) with a mass higher than that of the
lowest JP = 1/2+ radial excitation state N∗(1440) has
long been a problem in conventional quark models [1].
In recent years, a new interpretation has been proposed
based on studies performed within unitary chiral theo-
ries (UχPT); i.e., it is dynamically generated from the
interaction of the octet of the pseudoscalar mesons and
the octet of the proton [2, 3, 4, 5]. In these stud-
ies, its extremely strong coupling to the ηN channel [6]
comes out naturally. In addition, a strong coupling of
the N∗(1535) to the KΣ and KΛ channels is predicted,
the latter seems to be consistent with recent analyses
of the J/ψ → p̄K+Λ [7, 8], pp → pK+Λ [9], and
γp → K+Λ reactions [10, 11]. Several further studies
utilizing the UχPT amplitudes have also been performed
recently [12, 13, 14], which all support the UχPT de-
scription of the N∗(1535).

The J/ψ and ψ′ experiments at the Beijing Electron-
Positron Collider (BEPC) provide an excellent place for
studying excited nucleons and hyperons [15]. In Ref. [7],
based on the BES results on J/ψ → p̄ηp [16] and J/ψ →
p̄K+Λ [17], the ratio between the effective coupling con-
stants of the N∗(1535) to KΛ and pη is determined to be
R = gN∗(1535)KΛ/gN∗(1535)ηp = 1.3 ± 0.3. Together with

the previously fixed gN∗(1535)ηp, they were able to re-

produce recent pp → pK+Λ near-threshold cross-section
data [18, 19, 20, 21] very well.

In Ref. [7], it was noted that the
gN∗(1535)KΛ/gN∗(1535)ηp ratio obtained there by fit-
ting the BES data is larger by a factor of two than the
corresponding UχPT one [5]. This raises naturally the
question whether the UχPT picture of the N∗(1535) is
consistent with the BES data and how to understand
the difference in the values of the coupling constants. In
the present work, we aim to answer these questions by
studying the reactions J/ψ → p̄ηp and J/ψ → p̄K+Λ
within the unitary chiral approach.

This article is organized as follows. In Sec. II, we
briefly outline the unitary chiral theory and the dynami-
cal generation of the N∗(1535). In Sec. III, we lay down
the formalisms to study the reactions J/ψ → p̄ηp and
J/ψ → p̄K+Λ. Results and discussions are given in Sec.
IV, followed by a brief summary in Sec. V.

II. UNITARY CHIRAL THEORY AND THE

DYNAMICAL GENERATION OF THE N∗(1535)

Unitary chiral theories start with an interaction ker-
nel, V , provided by the corresponding chiral Lagrangians,
either lowest order or higher order. In Ref. [2] the
Lippmann-Schwinger equation in coupled channels was
used to provide a unitary amplitude in the study
of meson-baryon interaction. In Ref. [22] also the
Lippmann-Schwinger equation in coupled channels was
used in the case of the meson-meson interaction. Yet, as
noted in Ref. [23], the method of Ref. [22], integrating
explicitly the q0 variable in the loops and using relativis-
tic propagators, corresponds to a coupled channel Bethe
Salpeter equation, and most of the recent works on the
topic [4, 5, 24, 25, 26, 27, 28, 29] adhere to this method
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and this nomenclature.
Other unitarization procedures are obtained using the

Inverse Amplitude Method (IAM) [30, 31, 32] and the
N/D method [33, 34].

In the Bethe-Salpeter equation method, which we em-
ploy in the present work, one has in matrix form

T = (1 − V G)−1V, (1)

where T , V are complex matrices in coupled channels
and G is a diagonal matrix with its element the two-
body loop function. In “full form,” the Bethe-Salpeter
equation is an integral equation where the kernel V has
the full spin and angular momentum dependence and the
propagators appear in their full covariant form (see, e.g.,
Refs. [35, 36]). In the present case, one studies only the
s-wave scattering amplitude and V is already projected
in s wave. In addition, in the case of meson-baryon inter-
action, only the positive energy part of the baryon prop-
agator (with relativistic energies) is kept, while the rela-
tivistic propagator of the mesons is taken. As it has been
demonstrated with numerous examples, one can render
the complex integral equations into algebraic ones by us-
ing the on-shell approach with the argument that the
off-shell components can be absorbed by redefining the
corresponding coupling constants [22]. It also finds an
equivalent interpretation in the N/D method that relies
upon a dispersion relation for T−1 [33, 34].

The equivalence of the N/D method and the on-shell
factorized Bethe-Salpeter equation, Eq. (1), follows when
using the N/D method, neglecting the left-hand cut as
a source of the imaginary part in the dispersion relation
(see Ref. [37] for a precise and pedagogical exposition).
As described in Refs. [33] and [34], the contribution of
the left-hand cut in the physical region is either very
small or, in any case, very weakly energy dependent, such
that its effects are easily incorporated by means of the
subtraction constants of the dispersion integral. A more
detailed explanation of these facts can be found in Sec.
II of Ref. [38].

To study the J/ψ → p̄ηp and J/ψ → p̄K+Λ reactions
through intermediate N∗(1535) [N̄∗(1535)], we are inter-
ested in the S = 0 and Q = +1 sector with the following
six coupled channels:

π0p, π+n, ηp, K+Σ0, K+Λ, K0Σ+. (2)

The lowest order chiral Lagrangian responsible for the
meson-baryon interaction is [39]

L = 〈B̄(iγµDµ −MB)B〉

+
D

2
〈B̄γµγ5[uµ, B]〉 +

F

2
〈B̄γµγ5{uµ, B}〉. (3)

The term with the covariant derivative, Dµ, in this La-
grangian provides the MMBB transition amplitude, i.e.,
the Weinberg-Tomozawa interaction,

Vij = −Cij
1

4fifj
ū(p′)γµu(p)(kµ + k′µ) (4)

with p (k), p′ (k′) being the initial and final momenta of
the baryons (mesons). The coefficients Cij can be found
in Ref. [12]. The terms with the D and F couplings
account for the Yukawa coupling of a single meson to
baryons and will play a role, by analogy, in the poste-
rior discussions. At low energies, the amplitudes Vij can
be simplified by retaining the largely dominant γ0 com-
ponent and one finds an easy analytical expression for
Vij [5, 25]. In Eq.(4) fi (fj) is the meson decay constant
with fπ = 93 MeV, fK = 1.22fπ, and fη = 1.3fπ [5].

The use of different meson decay constants, as well as
other details of the calculation in Ref. [5] require some
explanations. In Ref. [5] only the lowest order meson-
baryon chiral Lagrangian of Eq.(3) is used. The subtrac-
tion constants in the dispersion integral or loop func-
tion, G of Eq.(1), are assumed to account for effects of
higher order Lagrangians. There is, however, a caveat
in this assumption because in chiral perturbation the-
ory the loop terms contribute to order Q3 for the case
of meson-baryon interaction (the counting is different in
the meson-meson interaction), while there are chiral La-
grangians of order Q2 that would not be accounted for by
means of the subtraction constants [3, 26, 27, 29]. The
effects of using different fi are also technically of order
Q3. Although the unitary resummation will mix differ-
ent powers of Q, the aim of the chiral unitary approach
is to provide a unitary framework at higher energies that
matches exactly the chiral perturbation theory amplitude
at low energies [34]. For the meson-baryon interaction
the matching should be done at order Q3. The ability
of the method used in Ref. [5] to provide realistic am-
plitudes depends upon the Q2 terms being small. This
is, of course, a matter of principle. In practice, and as
one is usually concerned about a relatively narrow band
of energies, the subtraction constants can approximately
account for these Q2 terms. Ultimately, it is the compar-
ison of theoretical calculations done with the lowest order
Lagrangian with those including higher order terms that
must tell us how accurate the lowest order can be. Such
a comparison is possible now. Indeed, in Ref. [29], where
higher order Lagrangians are used, an estimation of theo-
retical errors is done. This is very useful and, comparing
the results obtained there with those of Ref. [40] using
only the lowest order Lagrangian, one can see that the re-
sults with the lowest order fall well within the theoretical
uncertainties of the higher order calculations.

Two modifications to the above transition amplitudes
of Eq. (4) must be introduced to better describe the phase
shifts and inelasticities of S11 and S31 πN scattering. The
first modification is due to the realization that the low-
est order chiral Lagrangian may be viewed as an effective
manifestation of the vector-meson exchange between the
mesons and the baryons in an alternative picture, the
hidden gauge formalism [41, 42], which is shown to be
equivalent to the use of chiral Lagrangians [43]. There-
fore, to account for the dependence on the momentum
transfer of the vector-meson propagator, one replaces Cij
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with

Cij

∫

dk̂′

4π

−m2
v

(k′ − k)2 −m2
v

(5)

at

√
s >

√

s0ij , (6)

where
√

s0ij is the energy where the above integral is

unity, and which appears between the thresholds of the
two i, j channels.

The second modification is the effective inclusion of the
πN → ππN channel. This channel was very important to
obtain a good description of the I = 3/2 amplitudes but
it has only a small influence in the I = 1/2 channel [5].
Following Refs. [12] and [44], in the Q = +1 sector, this
can be achieved by a modification of the potential, i.e.,
VπN→πN → VπN→πN + δV ×GππN , with δV given by

δVπ0p→π0p

=

(

−
√

2

3
v31 −

1

3
√

2
v11

)2

+

(

1

3
v31 −

1

3
v11

)2

, (7)

δVπ0p→π+n

=

(

−
√

2

3
v31 −

1

3
√

2
v11

)

(

1

3
v31 −

1

3
v11

)

+

(

1

3
v31 −

1

3
v11

)

(

− 1

3
√

2
v31 −

√
2

3
v11

)

, (8)

δVπ+n→π+n

=

(

1

3
v31 −

1

3
v11

)2

+

(

− 1

3
√

2
v31 −

√
2

3
v11

)2

, (9)

where GππN is the ππN loop function that incorporates
the two-pion relative momentum squared, whose ana-
lytic expression together with those of v31 and v11 can
be found in Ref. [5].

Searching for poles in the isospin 1/2 channel on the
second Riemann sheet, one finds the N∗(1535) pole at
1543−i46 MeV [5], whose width is smaller than the PDG
estimation of 100 ∼ 250 MeV but in agreement with the
BES J/ψ → p̄ηp data, 95 ± 15 MeV [16].

The moduli of the unitarized amplitudes |Tij | with i
any of the six coupled channels and j ηp or K+Λ are
shown in Fig. 1. It is interesting to note that the am-
plitude around the N∗(1535) does not behave like an
usual Breit-Wigner resonance, even at the peak position.
Therefore, a pole simplification of this resonance by

Tij =
gigj√

s−MN∗ + iΓ/2
(10)

might lead to problems. We come back to this issue in
Sec. IV.

0.00

0.02

0.04

0.06

0.08

0.10

 1000  1100  1200  1300  1400  1500  1600  1700  1800

|T
| [

1/
M

eV
]

MI [MeV]

(a)
π0p-->ηp

π+n-->ηp

ηp-->ηp

K+Σ0-->ηp

K+Λ-->ηp

K0Σ+-->ηp

0.00

0.02

0.04

0.06

0.08

 1000  1100  1200  1300  1400  1500  1600  1700  1800

|T
| [

1/
M

eV
]

MI [MeV]

(b)
π0p-->K+Λ
π+n-->K+Λ
ηp-->K+Λ
K+Σ0-->K+Λ
K+Λ-->K+Λ
K0Σ+-->K+Λ

FIG. 1: (Color online) The moduli of the transition ampli-
tudes in different channels leading to the ηp and K+Λ final
states.

III. REACTION MECHANISMS OF J/ψ → p̄ηp
AND J/ψ → p̄K+Λ

The picture of the N∗(1535) as dynamically generated
from the meson-baryon interaction has a repercussion in
the mechanisms of production. One must first produce
the relevant meson-baryon components, which upon in-
teraction produce the resonance. This means that the
J/ψ decaying into p̄ηp and p̄K+Λ proceeds through the
following steps: the J/ψ first decays into p̄MB, withMB
being one of the six coupled channels. The rescattering of
the MB pair generates dynamically the N∗(1535), which
then decays back into any of the coupled channels. Such
a process is illustrated in Fig. 2.

Because the J/ψ is a SU(3) singlet, its couplings to the
p̄MB system can be obtained from the D and F terms of
the lowest order chiral Lagrangian of Eq. (3). This SU(3)
argument still would have D and F as free parameters
in J/ψ → p̄ηp (p̄K+Λ). However, the J/ψ → P̄MB
process is OZI forbidden (the cc̄ quarks of J/ψ decouple
from those of the p̄MB system) and it only brings into
the scheme a ~σ ·~ǫ operator, which is SU(3) blind. We can
then invoke SU(6) symmetry, mixing spin and flavor, to
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J/ψ

p̄ p(Λ)

η(K+)

J/ψ

p̄

η(K+)

p(Λ)B

M+

(a) (b)

FIG. 2: The reaction mechanisms of J/ψ → p̄ηp and J/ψ →

p̄K+Λ through intermediate N∗(1535). For J/ψ → p̄pη a
similar diagram through N̄∗(1535) has been added.

TABLE I: The coupling of J/ψ to p̄MB with MB being one
of the six coupled channels.

π0p π+n ηp K+Σ0 K+Λ K0Σ+

D+F
2fπ

D+F√
2fπ

3F−D

2
√

3fη

D−F
2fK

−
D+3F

2
√

3fK

D−F√
2fK

evaluate the ~σ ·~ǫ coupling with two octets of the baryons,
with their SU(3) and spin functions, and the octet of
the mesons. Assuming this symmetry, the ratio F/D is
fixed to the value 2/3 [45], very close to the empirical
value. Because we only need the ratio F/D, the SU(6)
symmetry provides us with the needed value. Therefore,
we take F and D as the empirical values up to a common
constant C. The couplings are listed in Table I, where
we have assumed C to be 1 because later on we are only
interested in the ratio of the integrated cross sections,
not their respective absolute values.

The t matrix of the reaction mechanism of Fig. 2 can
be easily written down (up to a global ~σ~ǫ factor with ~ǫ
being the J/ψ polarization vector) as

ti =

6
∑

j=1

Dj(δji +GjTj→i) (11)

where Dj is the coupling of the J/ψ to channel j (see Ta-
ble I), Gj the one-baryon one-meson loop function, and
Tj→i the unitarized amplitude. The corresponding in-
variant mass distribution for the J/ψ → p̄K+Λ reaction
is quite simple:

dΓ

dMI
=
Mp̄MΛ

8π3

1

M2
J/ψ

kp̄k̃Λ|t5|2 (12)

where

kp̄ =
λ1/2(M2

J/ψ,M
2
p̄ ,M

2
I )

2MJ/ψ
, (13)

k̃Λ =
λ1/2(M2

I ,m
2
K ,M

2
Λ)

2MI
(14)

with MΛ and mK being the masses of the Λ and kaon,
and t5 given in Eq. (11).

For the reaction J/ψ → p̄ηp, because it can proceed
through either intermediate N∗ or intermediate N̄∗, one

cannot derive such a simple expression. The total width
for this reaction is

Γ =
1

2MJ/ψ

1

(2π)5
M2
p

2

∫

dEp

∫

dΩp

∫

dωη

∫

dφη (15)

×|t3(N∗) + t3(N̄
∗)|2Θ(1 −A)2)Θ(MJ/ψ − Ep − ωη),

where Mp, Ep, and Ωp are the mass, energy, and solid
angle of the proton, while ωη and φη are the energy of
the eta and its azimuthal angle relative to the proton,
and A is

A =
1

2kpkη
[(MJ/ψ − Ep − ωη)

2 −M2
p − k2

p − k2
η] (16)

with kp and kη being the moduli of the three-momenta
of the proton and the eta in the J/ψ rest frame.

The amplitude t3(N̄
∗) is the same as that of Eq. (11)

for the pη amplitude, omitting the δij not to double
count, but written as a function of the invariant mass
of p̄η instead of that of pη. The consideration of t3(N̄

∗)
accounts for the final state interaction of ηp̄; however, we
should in principle also care about the final state inter-
action of K+p̄, p̄p, or p̄Λ. The ηp̄ interaction has been
singled out because one can have the N̄∗(1535) formation
with p̄η as well as the N∗(1535) formation with pη. The
interactions of the other pairs are different. The K+p̄
couples strongly to the Λ̄(1405). However, this resonance
is below the K+p̄ threshold, and we are interested in the
region of K+Λ energies around threshold, where the in-
variant mass of K+p̄ is far away from the Λ̄(1405) in the
J/Ψ decay, which has 550 MeV of excess energy. How-
ever, one spans the region where the Λ̄(1670) appears.
This resonance appears also as dynamically generated in
the chiral approach that we use for the K+p̄ (K−p) in-
teraction [25], and, because of that, we take this interac-
tion into account. We can use similar arguments for the
p̄p and p̄Λ interactions, which will have relatively large
invariant masses. In these cases the potential energy is
small compared to the kinetic energy and accordingly the
wave function diverts little from the plane wave, thus,
barely modifying the production amplitudes [46, 47, 48].

IV. RESULTS AND DISCUSSIONS

A. Comparison with the data

The invariant mass distributions for the reactions
J/ψ → p̄ηp and J/ψ → p̄K+Λ are shown in Fig. 3. As
argued in the previous section, we have used the same D
and F coefficients as the couplings of the pseudoscalars to
the baryon octet: D = 0.795 and F = 0.465 [46, 49, 50].
In the figure, the curves labeled with an “F” are obtained
with the full UχPT amplitudes as described above, while
the curves labeled with an “S” are obtained with the am-
plitudes without the πN → ππN and vertex corrections
as explained below. It is seen that the differences be-
tween the results obtained with the full amplitudes and
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FIG. 3: (Color online) Invariant mass distributions of J/ψ →

p̄ηp and J/ψ → p̄K+Λ. The theoretical results labeled “F”
are obtained using the full UχPT amplitudes containing the
vertex and ππN loop corrections, while the ones labeled “S”
are obtained by using the amplitudes without these two cor-
rections and with the readjusted subtraction constants by fit-
ting the π−p→ KY data [14].

.

those with the amplitudes without the ππN channel and
vertex corrections are rather large beyond ∼1650 MeV.
This should not worry us much because we are only inter-
ested up to this energy. Below this energy, the invariant
mass distributions peak at slightly different energies, but
this does not change the integrated cross section a lot.

Now we are in a position to compare the theoretical
ratio of the two integrated cross sections with the data.
However, our model for the dynamical generation of the
N∗(1535) is reliable only up to ∼1650 MeV. Thus, we
can only compare the integrated decay width up to this
energy. The experimental ratio is estimated to be

Rexp. =
Γ(J/ψ → p̄K+Λ)

Γ(J/ψ → p̄ηp)
(17)

=
(0.89 ± 0.16 × 10−3) × 10%

(2.09 ± 0.18 × 10−3) × 31%
≈ 0.14 ± 0.04.

The numbers 0.89 ± 0.16 × 10−3 and 2.09 ± 0.18 × 10−3

are the branching ratios for the J/ψ decaying into p̄K+Λ
and p̄ηp [6]. The fraction 10% of the strength of J/ψ →
p̄K+Λ up to MI = 1650 MeV is estimated by studying
the J/ψ → p̄K+Λ experimental spectrum (see Fig. 9b of
Ref. [17]). The number 31% is the estimated fraction of
the amount of J/ψ → p̄ηp up to the same energy (see
Fig. 8 of Ref. [16]).

It should be noted that the above ratio has been ob-
tained by using only the raw data to avoid uncertainties
related to the further treatments of the data. On the
other hand, using the results of the partial wave analyses

of Refs. [16] and [17], the ratio is estimated to be

Rexp. =
Γ(J/ψ → p̄N∗ → p̄K+Λ)

Γ(J/ψ → p̄N∗ + pN̄∗ → p̄ηp)
(18)

=
(0.89 ± 0.16 × 10−3) × (15 ∼ 22)%

(2.09 ± 0.18 × 10−3) × (56 ± 15)%
≈ 0.14+0.15

−0.07,

which is the ratio fitted to obtain the N∗(1535) coupling
constant to KΛ in Ref. [7]. We note that the ratios ob-
tained either way are consistent with each other, albeit
with large uncertainties.

On the other hand, our theoretical ratio of the inte-
grated cross sections from the respective thresholds up
to MI = 1650 MeV (using the full amplitudes) is

Rth =
Γ(J/ψ → p̄N∗ → p̄K+Λ)

Γ(J/ψ → p̄N∗ + pN̄∗ → p̄ηp)
= 0.16+0.06

−0.04, (19)

which is in reasonable agreement with the experimental
ratio determined either way. The theoretical uncertain-
ties are estimated by slightly changing the F/D ratio
appearing in the J/ψ couplings to p̄MB by 5%.

It is interesting to note that the theoretical ratio is
obtained by assuming SU(6) symmetry for the J/ψ to
p̄MB couplings and by assuming, for the reasons given
above, that theD and F coefficients are the same as those
appearing in the Yukawa couplings of one pseudoscalar
to the octet of baryons, up to a global constant. The
agreement with the data supports these assumptions.

Another source of inherent theoretical uncertainties
comes from the consideration of the ππN channel, the
vertex correction, and the freedom one has in the val-
ues of the subtraction constants. Following Ref. [14], we
assess these uncertainties by removing the contribution
of the ππN channel and the vertex corrections and ad-
justing the subtraction constants to fit the π−p → KY
cross-section data at higher energies. The corresponding
invariant mass distributions obtained this way are shown
in Fig. 3, the curves labeled with an “S”. It is seen that
the ηp peak position is moved to slightly higher energies
by ∼30 MeV, while the ratio of the two integrated cross
sections is reduced to ∼0.11. Combining the results with
the full and the “simplified” UχPT amplitudes, we arrive
at the theoretical ratio

Rth = 0.135± 0.06, (20)

where the central value is an average of the ratios ob-
tained with the full amplitudes and the simplified ampli-
tudes, and the dispersion incorporates both the uncer-
tainties in the UχPT amplitudes and those in the D and
F coefficients.

Above we have shown that the two experimental ra-
tios Eq. (17) and Eq. (18) are consistent with each other.
However, there is a caveat in our comparison with these
two numbers. Our above comparison with the exper-
imental ratio of Eq. (18) is fine, because this ratio is
obtained solely from N∗ contributions as explained by
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FIG. 4: (Color online) The invariant mass distributions of the
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interaction [40].

the corresponding experimental analysis. Our compari-
son with the experimental ratio of Eq. (17), on the other
hand, is not very consistent because in this case we have
to include the K+p̄ final state interaction in the same
way we included the ηp̄ interaction. The K+p̄ interac-
tion has been studied extensively in unitary chiral the-
ories and is well understood around the K+p̄ threshold
and, to a lesser degree, around the Λ̄(1670) peak posi-
tion. For energies beyond the Λ̄(1670) peak position,
it is less constrained and the comparison with data is
only qualitative [25]. Despite all the uncertainties of the
K+p̄ interaction, it is still interesting to see how adding
this part will change the scenario. Following a proce-
dure similar to that of including the ηp̄ contribution and
using the same argument to obtain the couplings of the
J/ψ to the ten channels coupling to K+p̄, we find that
adding the K+p̄ final state interaction only changes our
calculated ratio by ∼10% percent, which is smaller than
the theoretical errors. The corresponding invariant mass
distributions are shown in Fig. 4, in comparison with the
results obtained without including the K+p̄ final state
interaction—the curve denoted by (S) in Fig. 3. The
experimental numbers are obtained by multiplying by
phase space the numbers shown in Fig. 9 of Ref. [17].

We can conclude from the above discussion that the
theoretical ratio is rather stable despite the relatively
large uncertainties of the K+p̄ final state interaction.
This is true partly because we confine ourselves to K+Λ
center of mass energies below ∼1650 MeV where theK+p̄
interaction is relatively well constrained due to the three-
body phase space.

B. Couplings constants in different models

It is instructive to compare the ratio of the N∗(1535)
effective couplings obtained in the unitary chiral ap-
proach of Ref. [5] and that obtained in Ref. [7], because

both models describe the J/ψ decay data. Using the
numbers from Ref. [5], one has |gN∗(1535)KΛ| = 0.92
and |gN∗(1535)ηN | = 1.84 obtained from the residues of
the T amplitudes at the pole position on the complex
plane. On the other hand, from the same study, one finds
|gN∗(1535)KΛ| = 1.28 and |gN∗(1535)ηN | = 1.77 through a
Breit-Wigner fit of the real energy scattering amplitudes.
Thus, we obtain

R =
|gN∗(1535)KΛ|
|gN∗(1535)ηN | = 0.5 ∼ 0.7. (21)

This is a factor of two smaller than the one obtained in
Ref. [7], 1.3±0.3, from the comparative study of the reac-
tions studied in the present work, and is slightly smaller
than the range of 0.8 ∼ 2.6 given in Ref. [51].

The relatively large discrepancy between the phe-
nomenologically determined R and the UχPT ones re-
veals a fundamental difference in these two different de-
scriptions of resonances, particularly in the region far
from the resonance peak position, which is relevant to
the present study. In the phenomenological description
one often adopts a Breit-Wigner-like formula to describe
the distribution of a resonance,

g̃ig̃j
(S −M2) + iMΓ(s)

, (22)

where g̃i, g̃j are the coupling constants of the resonance
to channels i and j, M is the mass of the resonance,
and Γ(s) is the width of the resonance, which incorpo-
rates the explicit energy dependence. This is the type
of amplitudes used in Ref. [7] to describe the J/ψ decay
processes.

This approximation assumes that the resonance’s
shape in different channels is the same, while the only
difference comes from the coupling constants. This could
be a valid approximation in many cases, but it is not true
in the present case, as can be clearly seen from Fig. 1.
There, one can easily see that even around the resonance
peak position the shapes in different channels are not
proportional to each other. The deviations become even
larger at the K+Λ threshold. The dynamics of coupled
channels is mostly responsible for that [2, 3, 4, 5], and
particularly the large coupling of the resonance to the
ηN channel close to threshold. This particular behav-
ior of the resonance might explain the relatively large
discrepancy between the coupling constants obtained in
different methods, though they both describe the data.

One may well conclude that the coupling constants
determined from chiral unitary theory and those deter-
mined from phenomenological studies cannot be directly
compared: They only have meanings inside the frame-
work where they are deduced, at least quantitatively.
This has also been pointed out recently in Ref. [14].

Of course, one of the aims of the present work is to
show consistency of the present two J/ψ decay reactions
with the idea of the N∗(1535) resonance as being dynam-
ically generated in the chiral unitary approach, and we
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see that indeed the UχPT picture is consistent with the
BES data. Note that we have not fitted the experimen-
tal data to obtain the N∗ΛK couplings, as is the case
in Ref. [7]. We have used the results of Ref. [5] in the
context of the two J/ψ reactions and have found con-
sistency with the data, with some uncertainties tied to
the nature of these two reactions beyond the dynamics
of the meson-baryon interaction, as we have explained
above. We found consistency with the data even if the
UχPT picture produces a coupling for N∗KΛ different
than that in Ref. [7], but we also have mentioned that the
meaning of the couplings is not exactly the same because
of the different shapes used for the energy dependence of
the amplitudes. Furthermore, the approach followed here
does not make any explicit use of the gN∗(1535)KΛ cou-
pling because we used the full MB amplitudes. These
amplitudes are different from the simple pole approxi-
mation that one would obtain extrapolating the form of
Eq. (22) with constant Γ to higher energies.

A further remark concerning the meaning of the cou-
plings: The one obtained in Ref. [5] comes from the
residue of the N∗ pole, while the one from Ref. [7] comes
from fits to data around the KΛ threshold. The former
is a measure of the strength of the KΛ component in the
N∗(1535) wave function and plays a role in the determi-
nation of the properties of the N∗(1535). For instance,
if one wishes to determine the helicity amplitudes of the
N∗(1535) as done in Ref. [13], it is the residue of the N∗

pole that must be used in the calculation.

V. SUMMARY

We have studied the J/ψ → p̄ηp and J/ψ → p̄K+Λ re-
actions, more specifically, the ratio of the integrated cross

sections, using the unitary chiral approach. The unitary
chiral approach, which generates the N∗(1535) dynam-
ically, can describe the data reasonably well. This was
despite the fact that the coupling of the N∗(1535) to the
KΛ channel is different from the one obtained in the em-
pirical study of the present reactions in Ref. [7], but it was
clarified that the concepts are different. The couplings of
the chiral unitary approach come from the residues of the
amplitudes at the N∗ pole, while the N∗ΛK coupling ob-
tained in Ref. [7] comes from a fit to the data close to the
KΛ threshold assuming a certain shape for the N∗ dom-
inated amplitude. Furthermore, it is interesting to note
that although the couplings obtained in different ways
are quantitatively different, they both indicate that the
N∗(1535) wave function contains a large ss̄ component.

Certainly, the N∗(1535) may in fact be a mixture of
three-quark component and five-quark (meson-baryon)
component, as suggested by the studies of Ref. [52]. This
may slightly change the numbers obtained in this work,
but the main conclusions, taking into account both the-
oretical and experimental uncertainties, will remain the
same.
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