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Abstract

We study the NπK system in order to investigate the possibility of existence of
strangeness +1 resonance(s). The formalism consists of solving the Faddeev equations
with the Nπ, πK and KN t-matrices obtained from chiral dynamics. The same
formalism, which leads to the finding of several 1/2+ resonances in the corresponding
three-body S = -1 channels in the 1400-2000 MeV energy region, results into only
one broad bump around 1700 MeV with isospin 0. The amplitudes in isospin 1 and
2 configuration do not have any resonant structure.

1 Introduction

The observation of a peak in the K+n invariant mass for the γn → K+K−n reaction on a
12C target at Spring8/Osaka [1] raised great hopes that for the first time a strangeness S=1
narrow exotic baryon could be found. The peak was thus associated to a pentaquark, since
the standard 3q states cannot produce S=1. Subsequently, many experiments were done,
some which reproduced this peak and others which did not, and the issue stimulated a
large number of theoretical works that gave a huge impetus to the field of hadron structure
(see the extensive list of references, for example, in [2,3]). Waters calmed down, a thorough
experimental review was written in [4] and a period of rest followed till a new experimental
analysis was done at LEPS confirming the original peak, now on a deuteron target and
with more statistics [5]. Although one cannot rule out an interpretation of the peak as a
consequence of the particular set up of LEPS, no alternative conventional explanation for
this peak has been provided.
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On the theoretical side most of the works concentrated on finding possible states of five
quarks (pentaquark). From the perspective of the meson-baryon interaction the situation
does not look encouraging, since the KN interaction obtained from chiral Lagrangians is
basically repulsive in nature [6], and one does not expect to find a narrow (long lived)
resonance, as the one claimed in [1], in this system. This is why very early there were
suggestions that if the peak represented a new state it could be a bound state of three
hadrons, KπN , with the pion acting as a glue between the nucleon and the K, which
would only be bound by about 30 MeV. However, investigations along this line, weakly
concluded the difficulty to have this system as a bound state [7, 8].

The purpose of this paper is to perform a thorough calculation of the KπN system
using Faddeev equations to see the possibility to find bound states or resonances. The
interest in the three hadron systems is old. In [9] there was already a study of such
possible systems based only on symmetries. However, recently a qualitative step forward
has been taken in this topic, which has been made possible by combining elements of
unitarized chiral perturbation theory UχPT [10–16] with Faddeev equations in coupled
channels [17]. In [17, 18] systems of two mesons and one baryon with strangeness S = −1
were studied, finding resonant states which could be identified with two Λ and four Σ
known low-lying resonances with JP = 1/2+. Similarly, in the case of the S = 0 sector
the N∗(1710) appears neatly as a resonance of the ππN system, as well as including the
channels coupled to ππN within SU(3) [19]. The study in S = 0 sector was further extended
by using the experimental data on the πN scattering and by adding more coupled channels
in [20], the outcome of which was the dynamical generation of three resonances, one with
quantum numbers of the N∗ (2100), another with those of the ∆ (1910), plus a new N∗ at
∼ 1920 MeV (also predicted by Jido et. al. [21]).

Developments along the same direction in three-meson system produced a resonant state
of φKK̄ [22] which could be identified with the X(2175) resonance reported at BABAR
[23,24] and later on at BES [25].

The achievements obtained in the former studies and especially the finding of several
low-lying S =-1 resonances with two meson-one baryon structure motivates us to have a
fresh look at the πKN system using our formalism and to make a thorough investigation
of the possibility to have the system bound. This is the purpose of the present paper. As
we will show in the following section, we do not get the system bound in the region of
the possible S=1 state of [1]. At higher energies a bump appears which, however, does
not have the ordinary shape of the resonances that we have found in other channels. This
could correspond to some of the bumps seen using the time delay method in the analysis
of the KN system in [26].

2 Formalism and Results

We solve the Faddeev equations for the NπK system following the formalism developed
in [17–19], in which it was shown that the integral Faddeev equations can be rewritten as a
coupled system of algebraic equations using unitary chiral dynamics. The main feature of
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this approach is the explicit cancellation between the contribution of the off-shell part of the
two-body t-matrices in the three-body diagrams and the corresponding three-body contact
term originating from the same chiral Lagrangians. Due to this peculiarity, the Faddeev
equations can be transformed into the following set of coupled channel equations [17, 19]

T 12

R = t1g12t2 + t1
[

G 121 T 21

R + G 123 T 23

R

]

T 13

R = t1g13t3 + t1
[

G 131 T 31

R + G 132 T 32

R

]

T 21

R = t2g21t1 + t2
[

G 212 T 12

R + G 213 T 13

R

]

T 23

R = t2g23t3 + t2
[

G 231 T 31

R + G 232 T 32

R

]

(1)

T 31

R = t3g31t1 + t3
[

G 312 T 12

R + G 313 T 13

R

]

T 32

R = t3g32t2 + t3
[

G 321 T 21

R + G 323 T 23

R

]

where ti, i = 1, 2, 3, represents the two-body t-matrices, which have been obtained by
solving the Bethe-Salpeter equation in a coupled channel formalism. The required kernels,
i.e., the potentials which describe the interaction of the different pairs of the system are
calculated using chiral Lagrangians [13, 27, 28]. In Eq. (1), gij is the three-body Green’s
function of the system and Gijk is a loop function of three-particles (see [17, 19] for more
details). The matrices ti, gij and Gijk are all projected in S-wave, thus giving total JP =
1/2+.

The T ij
R partitions consider all the different contributions to the three-body T - matrix

in which the last interactions are given in terms of the two-body t-matrices tj and ti,
respectively. The T ij

R matrices are related to the Faddeev partitions T i through

T i = tiδ3(~k ′
i − ~ki) +

3
∑

j 6=i=1

T ij
R , i = 1, 2, 3 (2)

where ~ki (~k′
i) is the initial (final) momentum of the particle i. Thus, the full three-body

T -matrix is given by

T =
3

∑

i=1

T i =
3

∑

i=1

tiδ3(~k ′
i − ~ki) + TR

TR ≡
3

∑

i=1

3
∑

j 6=i=1

T ij
R (3)

As our objective is to search for peaks in the T -matrix which can be associated with
physical states, we can restrict ourselves to the study of the properties of

T ∗
R ≡ TR −

3
∑

i=1

3
∑

j 6=i=1

tigijtj (4)

since neither tiδ3(~k ′
i − ~ki) nor the tigijtj terms can give rise to any three-body resonance.
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We study the NπK system for total charge +1 taking into account four channels to solve
Eqs. (1): pπ0K0, nπ0K+, pπ−K+, nπ+K0. In this case, the coupled channels appearing
for the calculation of the two-body t-matrices are listed below:

• K+Σ0, K0Σ+, K+Λ, π0p, π+n, ηp for the πN interaction with charge +1.

• K+Σ−, K0Σ0, K0Λ, π−p, π0n, ηn for the πN interaction with null charge.

• π+K0, π0K+ for πK interaction with charge +1.

• π−K+, π0K0 for πK interaction with charge 0.

• And K0p, K+n for KN interaction with charge +1, K0n for charge 0 and K+p for
charge +2.

The meson-baryon potential obtained with chiral Lagrangians has the general form, after
projecting in S-wave

V MB
ij = − 1

4f 2
Cij(2

√
E − Mi − Mj)

√

Mi + Ei(E)

2Mi

√

√

√

√

Mj + Ej(E)

2Mj

(5)

where f is the pion decay constant, Cij are coefficients which depend on the interaction
under consideration, Ei and Mi (Ej and Mj) are the energy and mass, respectively, of the
incoming (outgoing) baryon and E the total energy of the interacting particles. For the
πN system and its coupled channels for total charge zero, which dynamically generate the
N∗ (1535), the coefficients Cij can be found in [27], while for the KN system in [28]. The
coefficients for the πN system for total charge +1 are given in Table 1 .

The potential for the πK system can be obtained from [13], in which the κ(800) gets
dynamically generated.

The T ∗
R matrix for different possible total isospins has been obtained using the following

relations:

|NπK; I = 0, IπK = 1/2〉 =
1√
6

[

|pπ0K0〉 −
√

2|pπ−K+〉 +
√

2|nπ+K0〉 + |nπ0K+〉
]

|NπK; I = 1, IπK = 1/2〉 =
1√
6

[

|pπ0K0〉 −
√

2|pπ−K+〉 −
√

2|nπ+K0〉 − |nπ0K+〉
]

(6)

|NπK; I = 1, IπK = 3/2〉 =
1√
6

[√
2|pπ0K0〉 + |pπ−K+〉 + |nπ+K0〉 −

√
2|nπ0K+〉

]

|NπK; I = 2, IπK = 3/2〉 =
1√
6

[√
2|pπ0K0〉 + |pπ−K+〉 − |nπ+K0〉 +

√
2|nπ0K+〉

]

and the phase convention |π+〉 = −|Iπ = 1, Iπz = 1〉. The I and IπK in the above equations
represent the total isospin of the three-body system and that of the πK system, respectively.

We calculate Eqs.(1) as a function of the total energy and the invariant mass of the
subsystem of particles 2 and 3. We denote these two variables as

√
s and

√
s23, respectively.
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Table 1: Cij coefficients for the πN interaction with charge +1

K+Σ0 K0Σ+ K+Λ π0p π+n ηp

K+Σ0 0
√

2 0 -1

2

1√
2

-
√

3

2

K0Σ+ 1 0 1√
2

0 -
√

3

2

K+Λ 0 -
√

3

2
-
√

3

2
-3

2

π0p 0
√

2 0

π+n 1 0

ηp 0

The invariant masses of the other two subsystems can be written in terms of
√

s and
√

s23

as explained in [17]. We have calculated the TR matrices for the energy range 1500 MeV
<

√
s < 2100 MeV, with the motivation to find some structure around 1540 MeV, and for

600 <
√

s23 < 1100 MeV to generate dynamically the κ (800) in the KN subsystem in
order to have some attractive interaction in the three-body system.

We do not find any resonance in the isospin 1 and 2 configurations. We obtain one
peak with a broad structure in the squared amplitude in isospin zero (i.e., when the πK
subsystem is in isospin 1/2) around 1720 MeV. The full width at half maximum of the peak
is of the order of 200 MeV. These features have nothing in common with the resonance
claimed in [1]. The value of

√
s23, for which the bump is found, is around the mass of

the κ (800) resonance. We show this peak in Fig.1, where we plot the amplitude square
for the total isospin zero. As is evident from the figure, the structure of the peak is far
from a Breit-Wigner. Though the strength of this amplitude is similar to that of the
corresponding S = -1 case [17], its shape is different from those of the clear resonances
found in the latter. Its unconventional peaking behaviour cast doubts whether this peak
could have a pole associated in the complex plane, the accepted criterium to define a peak
as a resonance. The technique to extrapolate the amplitudes to the complex plane with the
two variables that we have is not available and looks nontrivial, since it involves working
with complex momenta for some particles and real for others. Yet, independently from
whether the structure found deserves or not to be called a resonance, the fact remains that
the chiral dynamics of this coupled channel three-body system leads to such a bump in the
cross section in a region where the system clusters like a κ and a nucleon. This peak should
be visible in KN scattering with the quantum numbers I = 0, JP = 1/2+, but even better
in the KN → πKN reaction, since the peak appears well above the πKN threshold, or in

5



any reaction producing πKN in I = 0 in the final state.

 1400 1500 1600 1700 1800 1900 2000 2100 √ s (MeV)

 700
 800

 900
 1000

 1100
√s23 (MeV)

 0

 1

 2

 3

 4

|TR
*|2 (x 10-10 MeV-6)

Figure 1: The isospin zero amplitude squared for the NπK system as a function of the
total energy and the invariant mass of the πK subsystem.

Interestingly, a broad structure at around 1800 MeV seems to be present in the data [29]
of K+N scattering in the P01 partial wave and in the time delay analysis of these data [26],
which could correspond to the peak shown in Fig.1.

3 Summary

The possibility of existence of strangeness +1 baryon with a strong coupling to the NπK
system has been investigated by solving Faddeev equations in the formalism which has
generated dynamically many strange and non strange resonances in three-body systems.
We do not find any structure in the energy region close to 1542 MeV, therefore, the
interpretation of a possible Θ+ as a NπK bound state, with all the interactions in s-wave,
is ruled out. A bump is found around 1720 MeV with about 200 MeV of width and with
isospin zero, which reveals the underlying chiral dynamics of the three-body system, and
that we hope can be seen in K+N scattering, but much better in reactions producing πKN
in I = 0 in the final state. Our study should stimulate experimental work in this direction.
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