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Abstract

We study the ππN system by solving the Faddeev equations, for which the input two-
body t-matrices are obtained by solving the Bethe-Salpeter equation in the coupled channel
formalism. The potentials for the ππ, πN sub-systems and their coupled channels are obtained
from chiral Lagrangians, which have been earlier used to study resonances in these systems
successfully. In this work, we find a resonance in the ππN system with a mass of 1704−i375/2
MeV and with quantum numbers I = 1/2, Jπ = 1/2+. We identify this state with the
N∗(1710). This peak is found where the energies of the ππ sub-system fall in the region of
the σ resonance. We do not find evidence for the Roper resonance in our study indicating
a more complex structure for this resonance, nor for any state with total isospin I = 3/2 or
5/2.

1 Introduction

The excited states of the nucleon have been studied extensively theoretically as well as ex-
perimentally. This is evident from the fact that many of these states, especially those in the
energy region below 1750 MeV, have been assessed either three or four stars by the particle
data group (PDG) [1]. Even then, there are some resonances in this low energy region which
still need unanimous agreement on their characteristics or existence, e.g., the Jπ = 1/2+

resonances in the isospin 1/2 domain. The N∗(1440) or Roper resonance is a subject of
continuous debate and the existence of the N∗(1710) is even questioned. The quark models
face difficulties in reproducing both these states [2, 3, 4]. In case of the N∗(1710), some
partial wave analyses [5, 6] do not find any pole corresponding to it, while others claim a
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clear manifestation of this resonance [7, 8, 9, 10]. On the other hand, the authors of [11] claim
an indisputable existence of the N∗(1710) from their study of the πN → ηN reaction in the
coupled channel formalism and suggest that the status of this resonance should be improved
from three-star to four-star.

Another controversy about the N∗(1710) started after the finding of a narrow peak in the
γA → (K+n)X reaction at LEPS [12], suggesting the existence of a pentaquark state which
some groups associated to a SU(3) antidecuplet to which the N∗(1710) would also belong
(see, for example, [13, 14]). In order to be compatible with the Θ+, the N∗(1710) is required
to be narrow. However, the width of this resonance is not known precisely, with the widths
listed in [1] ranging from ∼ 90 - 480 MeV. The authors of [15] re-analyzed the πN → KΛ
reaction and found that a narrow width of the N∗(1710) [1] was incompatible with the data
and proposed the existence of another narrow resonance in this energy region. The partial
wave analyses group who do not find a pole for the N∗(1710) suggested to look for other
resonance in this energy region as a possible narrow, non-strange partner of the θ+ [16, 17].
The debate on this issue has continued with new analyses which do not find a signal for the
θ+, as a consequence of which, the case for this state has weakend (see [18] for a review).

In case of the Roper resonance, which is the lowest excited state of the nucleon and, hence,
in the simplest quark model should be expected to be a 3-quark state with a radial excitation
of a quark, alternative descriptions, like a 3-quark-gluon structure [19], a quark core dressed
by meson clouds [20], a dynamically generated resonance from interaction of mesons and a
baryon [21], etc., are posed in order to reproduce its properties.

Looking at the characteristics of both these 1/2+ resonances in [1], i.e., a large branching
ratio for the ππN decay channel, (∼ 30-40 % for the N∗(1440) and 40-90 % for the N∗(1710)),
it seems that they couple strongly to two meson-one baryon systems. There are many findings
which support this idea, e.g., a strong σN coupling to the Roper resonance reported in [21, 22],
an important contribution from the two meson cloud to the masses of the SU(3) antidecuplet
members found in [23], and a good reproduction of the data on the Σπ distribution in the
π−p → K0Σπ reaction by taking the ππN decay channel of the N∗(1710) into account [24].
Hence, a study of the three-body structure of these resonances could shed more light on their
properties.

We study the ππN system by solving Faddeev equations in s-wave using the formalism
developed in [25, 26, 27]. In these works, we studied systems made of two mesons and a
baryon and those of three mesons by using unitary chiral dynamics to calculate the two-body
amplitudes required for the Faddeev equations. In [25, 26] we have investigated the πK̄N
system and coupled channels and found a strong coupling of the lowest lying 1/2+ Σ and Λ
resonances of the PDG [1] to the three-body decay channels. In addition to this, unknown
quantum numbers of some of the S = −1 resonances were predicted, e.g., Σ(1560) has been
listed with an unknown spin-parity in [1] and our work [25] generates it with Jπ = 1/2+.
Analogously, a three meson system formed by two pseudoscalar mesons, K and K̄, and one
vector meson, φ, has been studied in [27], revealing the existence of a resonant state in this
system at ∼ 2150 MeV when the KK̄ invariant mass is close to that of the f0(980), which
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Figure 1: An example of a simplest possible interaction amongst the three particles, π0π0n. The
labels ~ki (~k′

i) on the particle lines denote the momenta corresponding to the initial (final) state.
The meaning of the blob is shown in Fig. 2.

+ · · ·+= +

Figure 2: The blob in the Fig. 1, which is a t-matrix.

can be identified with the X(2175) 1−− resonance discovered in the process e+e− → φf0(980)
at BABAR [28, 29] and in the J/Ψ → ηφf0(980) reaction by the BES collaboration [30].

2 Formalism

In this section we shall discuss different three body interaction diagrams, which contribute
to the three-body scattering matrix, starting from the lowest order and going up to the
higher order ones. We consider the ππN system with total charge zero and use π0π0n,
π+π−n, π−π+n, π0π−p and π−π0p as coupled channels. Taking advantage of the formalism
developed in [25, 26], where 22 coupled channels were handled simultaneously, we have also
used an extended base of states, up to 14, including πKΣ, πKΛ, πηN channels and we found
the results remarkably similar to those obtained using the ππN channels alone. Thus we
present the formalism for the ππN states which is considerably simpler. We need the πN
and ππ t-matrices as input, for which we solve coupled channel Bethe-Salpeter equations as
explained in the following sub-sections.

2.1 Lowest order diagrams

Our aim is to calculate the three-body scattering matrix which includes all the possible
“connected” diagrams between the three particles. The simplest possible diagram of this
kind is the one which contains two t-matrices, for example the one shown in Fig. 1 for the
π0π0n channel. Following [25], this diagram can be expressed mathematically as ( reading
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Fig. 1 from right to left as a convention )

t1g12t2 = t1
M3

E3(~k
′
1 + ~k2)

1
√

s − E1(~k
′
1) − E2(~k2) − E3(~k

′
1 + ~k2) + iǫ

t2, (1)

where the superscript on t denotes the particle which is not interacting in the three-body
system. Hence, t1 is the t-matrix for the interaction of particles 2 and 3 and t2 is that
for particles 1 and 3. In order to calculate these π0n → π0n t-matrices the Bethe-Salpeter
equation,

t = v + vg̃t (2)

is solved in the coupled channel approach with the potentials obtained from the Lagrangian
[31, 32, 33, 34]

LMB =
1

4f2
〈B̄iγµ[(Φ∂µΦ − ∂µΦΦ))B − B(Φ∂µΦ − ∂µΦΦ))〉 (3)

where f is the pion decay constant and the symbol 〈 〉 denotes the trace in the flavor space
of the SU(3) matrices Φ and B

Φ =















1√
2
π0 +

1√
6
η π+ K+

π− − 1√
2
π0 +

1√
6
η K0

K− K̄0 − 2√
6
η















(4)

B =















1√
2
Σ0 +

1√
6
Λ Σ+ p

Σ− − 1√
2
Σ0 +

1√
6
Λ n

Ξ− Ξ0 − 2√
6
Λ















(5)

Following [35], πN , ηN , KΛ and KΣ are taken as the coupled channels for the pion-
nucleon system. For example, for total charge zero Eq. (2) is solved with the potential,

v =

























vπ0n→π0n vπ0n→π−p vπ0n→ηn vπ0n→K+Σ− vπ0n→K0Σ0 · · ·
vπ−p→π0n vπ−p→π−p vπ−p→ηn vπ−p→K+Σ− vπ−p→K0Σ0 · · ·
vηn→π0n vηn→π−p vηn→ηn

...
...

...

vK+Σ−→π0n vK+Σ−→π−p vK+Σ−→ηn

...
...

...

vK0Σ0→π0n vK0Σ0→π−p vK0Σ0→ηn

...
...

...

vK0Λ→π0n vK0Λ→π−p vK0Λ→ηn

...
...

...
























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Figure 3: Different possible diagrams including two successive interactions.

and the tπ0n→π0n element of the resulting matrix is used in Eq. (1) as t2 and t1. The two
body propagator, g̃ in Eq. (2), is divergent and is calculated using dimensional regularization
by taking the substraction constants from [35], where the authors find the N∗(1535) as a
dynamically generated resonance in the πN system and its coupled channels.

There are six possible three-body diagrams involving two t-matrices as shown in Fig. 3.
To calculate all these diagrams, we require the ππ t-matrices also, which have been obtained
by solving the Bethe-Salpeter equation (Eq. (2)) with ππ, πη and KK̄ as coupled channels
[36, 37]. The potentials for these channels have been calculated using the chiral Lagrangian
[31, 32, 33, 36]

LMM =
1

12f2
〈(∂µΦΦ − Φ∂µΦ)2 + MΦ4〉, (6)

where

M =





m2
π 0 0

0 m2
π 0

0 0 2m2
K − m2

π





and mπ, mK are the pion and kaon masses, respectively. The two body propagator, g̃, in
this case has also been calculated using the dimensional regularization [37]. A detailed study
of these systems has been carried out in [36, 37] which revealed the dynamical generation of
the σ and f0 resonances in the isospin zero sector and that of the a0 in the isospin 1 sector
of these mesons.

All the diagrams in Fig. 3 can be expressed mathematically as tigijtj with i 6= j = 1, 2, 3.
In the above discussion we have taken one channel, π0π0n, as an example but the calculations
have been carried out by taking five coupled channels into account. Hence ti, gij and tj are
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matrices and each element of the gij matrix is given by

gij(~ki
′
, ~kj) =

(

D
∏

r=1

Nr

2Er

)

1
√

s − Ei(~ki
′
) − El(~ki

′
+ ~kj) − Ej(~kj)

, l 6= i, l 6= j,= 1, 2, 3 (7)

where D is the number of particles propagating between two t-matrices. Following the nor-
malization of [38], Nr = 1 for a meson and Nr = 2Mr for a baryon with Mr being the mass

of the baryon and ~ki
′
(~kj) is the momentum of the ith (jth) particle in the final (initial) state.

2.2 Kinematics

We now define the kinematics for the system. There are two variables in the calculation; the
total energy of the three-body system, denoted as

√
s, and the invariant mass of the particles

2 and 3, denoted as
√

s23. The other invariant masses are obtained in terms of these variables
as

sij = s + m2
k −

√
s(
√

s − E1)(s23 + m2
k − m2

j)

s23

(8)

with mk being the mass of the non-interacting particle and

E1 =
s − s23 + m2

1

2
√

s
. (9)

The definition in Eq. (8) implies an angular average between external momenta suited for
the study of s-waves.

From all this we can calculate the momenta, |~k1|, |~k′
1| of the particle 1 in the global center

of mass system and that of the particles 2 and 3 in their rest frame (R23), which we denote
as ~K ( ~K ′) in the initial (final) state;

|~k1| = |~k′
1| =

1

2
√

s
λ1/2(s, s23,m

2
1) (10)

| ~K| = | ~K ′| =
1

2
√

s23

λ1/2(s23,m
2
2,m

2
3).

The calculation of the gij propagators for different diagrams requires the momenta of the
particles in the global center of mass. For this, we boost the momentum in R23 to the global
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center of mass using the relations [39]:

~k2 =

[

(

√
s − E1(~k1)√

s23

− 1
) ~K · ~k1

~k2
1

− ER23

2 ( ~K)√
s23

]

~k1 + ~K

~k3 =

[

(

√
s − E1(~k1)√

s23

− 1
) (− ~K) · ~k1

~k2
1

− ER23

3 ( ~K)√
s23

]

~k1 − ~K

~k′
2 =

[

(

√
s − E1(~k

′
1)√

s23

− 1
) ~K ′ · ~k′

1

~k′ 2
1

− E2
R23( ~K ′)√

s23

]

~k′
1 + ~K ′

~k′
3 =

[

(

√
s − E1(~k

′
1)√

s23

− 1
) (− ~K ′) · ~k′

1

~k′ 2
1

− E3
R23( ~K ′)√

s23

]

~k ′
1 − ~K ′. (11)

We define ~k1 to be along the z-axis and ~K to form a plane with ~k1, i.e.,

~k1 =







0
0

|~k1|







~K =







| ~K|sin(θK)
0

| ~K|cos(θK)







.

The t-matrices are calculated as a function of the invariant mass of the interacting parti-
cles, e.g., t1 is calculated as a function of

√
s23. This is so because, in the chiral approach, the

t-matrices can be split into an off-shell part, which behaves as (q2
i − m2

i ), with qi being the
four vector of the off-shell particle, and an on-shell part, where q2

i is set to m2
i . In analogy to

the findings in [25], this off-shell dependence of the t-matrices in the three-body diagrams is
found to cancel exactly with the three-body forces generated from the chiral Lagrangian for
2 meson + baryon → 2 meson + baryon contact term in the SU(2) limit (see the Appendix).
In [27], where a study of the φKK̄ system has been carried out and dynamical generation
of the X(2175) resonance is found, an explicit calculation including the off-shell parts of the
t-matrices has been done. The results obtained in this case are found to be qualitatively sim-
ilar to those obtained by implementing the cancellation of the off-shell parts of the t-matrices
with the chiral three body forces. The only difference in the results was a shift in the peak
position in the squared amplitude by 40 MeV (about 2 % of the mass of the resonance).
However it should be noted that the t-matrices and hence their off-shell parts, which have
been derived from a chiral Lagrangian, are representation dependent. In the present work
we rely upon the cancellation discussed above and retain the on-shell parts of the t-matrices,
which depend on the invariant mass of the interacting pair in s-wave (as considered here).

2.3 Higher order diagrams

The calculation of the diagrams with more than two t-matrices involve a loop of three prop-
agators and three two-body t-matrices. Such diagrams can be written as tigijtjgjltl, where

7



~k2

~k3

~k1
~k ′

1

~k ′
2

~k ′
3

t1 t1

t2 ~q1

Figure 4: A diagram involving three t-matrices.

the propagators and the tj-matrix depend on the loop variable even though the t-matrices in
our model are calculated as a function of the invariant mass of the interacting pair. The cal-
culation of the three-body scattering matrix would simplify if we could extract tjgjltl out of
the loop integral. However, we would like to keep the loop dependence of this term. This can
be done if the tjgjl calculated with off-shell variables is absorbed in the previous propagator
as in [25]. Following the formalism developed in [25], we write the diagram shown in Fig. 4
as

t1G121t2g21t1 = t1(
√

s23)G
121t2(

√
s13)g

21(~k′
2,

~k1)t
1(
√

s23), (12)

where

G121 =

∫

d~q1

(2π)3
1

2E2(~q1)

M3

E3(~q1)

1√
s23 − E2(~q1) − E3(~q1) + iǫ

× F 121(~q1, ~k
′
2,

~k1, s13) (13)

with
F 121(~q1, ~k

′
2,

~k1, s13) = t2(sq1

13) × g21(~q1, ~k1) × [g21(~k′
2,

~k1)]
−1 × [t2(

√
s13)]

−1. (14)

Note that, while s23 is defined from the external variables for the diagram shown in Fig.
4, the argument s13 of the t2-matrix is a function of the loop variable and must be kept in
the loop integral. We, thus, introduce t2 calculated as a function of

sq1

13 = s − m2
2 − 2

√
s

E2(~q1)(
√

s − E3(~k
′
3))√

s12

(15)

in F 121 and hence in the loop integral G121. F 121 also contains the inverse of t2 calculated
as a function of s13 evaluated in terms of on-shell variables (Eq. (8)) and the g21 propagator
depending on off-shell variables along with the inverse of its on-shell version.

In this way, [g21(~k′
2,

~k1)]
−1 × [t2(

√
s13)]

−1 in F 121 (and hence in G121) when multiplied to

t2(
√

s13)g
21(~k′

2,
~k1) in Eq. (12) give an identity leaving t2g21 evaluated with the loop variable

in the loop integral. Simplifying Eq. (12) we have

t1(
√

s23)

∫

d~q1

(2π)3
1

2E2(~q1)

M3

E3(~q1)

1√
s23 − E2(~q1) − E3(~q1) + iǫ

t2(sq1

13)g
21(~q1, ~k1)t

1(
√

s23) (16)
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t1

~k′
1

~k′
2

~k′
3

~q1

~k1

~k2

~k3

~q2

t2

t1

t2

Figure 5: A diagram with two concatenated loops.

which is the right contribution of the diagram in Fig. 4. The integrals of Gijk are regularized
with a cut-off of 1 GeV in the modulus of the momentum, which if changed to 1.5 Gev
introduces less than 1% of a change in G. One of the propagators in the G121 function is
evaluated in the center of mass frame of two particles for convenience. A diagram with three
t-matrices is, thus, written as tiGijktjgjktk instead of tigijtjgjktk. As has been discussed in
[25], for diagrams with three t-matrices in general and in [26] for a specific diagram in detail,
this scheme simplifies the calculations. The formalism is further developed by repeating the
above procedure for higher order diagrams too, i.e., by replacing the gij propagator by the
Gijk loop function everytime a new interaction is added.

In case of the diagrams with more than three t-matrices, this scheme involves an approx-
imation, since the introduction of a new interaction, to the diagrams of the kind shown in
Fig. 4, replaces the external variables in the latter case by variables of a former loop. This
procedure, which renders the integral Faddeev equations into a set of algebraic equations, is
certainly very economical in terms of numerical solution and a justification for its use is given
below.

Let us discuss in detail a diagram with four t-matrices as shown in Fig. 5, as an example.
This diagram is written explicitly as

t1G121t2G212t1g12t2 = t1(
√

s23)

(

∫

d~q1

(2π)3
1

2E2(~q1)

M3

E3(~q1)

1√
s23 − E2(~q1) − E3(~q1) + iǫ

×t2(sq1

13) g21(~q1, ~k1) [g21(~k′
2,

~k1)]
−1 [t2(

√
s13)]

−1

)

t2(
√

s13)

(

∫

d~q2

(2π)3
1

2E1(~q2)

M3

E3(~q2)

1√
s13 − E1(~q2) − E3(~q2) + iǫ

t1(sq2

23) g12(~q2, ~k2) [g12(~k′
1,

~k2)]
−1

×[t1(
√

s23)]
−1

)

t1(
√

s23) g12(~k′
1,

~k2) t2(
√

s13) (17)

9



which can be simplified to

t1(
√

s23)

∫

d~q1

(2π)3
1

2E2(~q1)

M3

E3(~q1)

1√
s23 − E2(~q1) − E3(~q1) + iǫ

t2(sq1

13)g
21(~q1, ~k1)

×[g21(~k′
2,

~k1)]
−1

∫

d~q2

(2π)3
1

2E1(~q2)

M3

E3(~q2)

1√
s13 − E1(~q2) − E3(~q2) + iǫ

t1(sq2

23)

×g12(~q2, ~k2)t
2(
√

s13), (18)

where sq2

23 is calculated analogously to Eq.(15). We compare our expression (18) with the
corresponding one written in terms of the g propagators of the concatenated two loops

t1(
√

s23)

[

∫

d~q1

(2π)3

∫

d~q2

(2π)3
g12(~k′

1, ~q1)t
2(sq1

13)g
21(~q1, ~q2)t

1(sq2

23)g
12(~q2, ~k2)

]

t2(
√

s13). (19)

The dependence of g21 on the two loop variables has been thus factorized in Eq. (18) as

g21(~q1, ~q2) = F1(~q1)F2(~q2), (20)

where
F1(~q1) = g21(~q1, ~k1)[g

21(~k′
2,

~k1)]
−1 (21)

and

F2(~q2) = g21(~q2) =
1

2E1(~q2)

M3

E3(~q2)

1√
s13 − E1(~q2) − E3(~q2)

. (22)

This factorization, which simplifies the calculations to a great extent, leads to very similar
results to those obtained with the concatenated loop function as can be seen in Fig. 6, where
we show the mod-square of the Eq. (18) and Eq. (19) as a function of

√
s, in the energy

region of our interest. The agreement of the results depicted in Fig. 6 shows that Eq. (18)
is a good approximation of the Eq. (19). Hence, this scheme is used to write the rest of the
higher order diagrams which contribute to the three-body amplitude.

If we sum Eqs. (1), (12), (17) and all the other possible diagrams with the last two
t-matrices as t2 and t1, we get the series

t1g12t2 + t1G121t2g21t1 + t1G121t2G212t1g12t2 + · · ·+ t1G123t2g23t3 + t1G123t2G232t3g32t2 + · · · ,
(23)

which we define as T 12
R . Similarly, we consider all other possible diagrams obtained by per-

mutating different interactions between the three hadrons and get the following equations

10



1458 1512 1566 1620 1674 1728

s (MeV)

0

0.1

0.2

0.3

0.4

0.5

Figure 6: The comparison of modulus square of Eq. (18) and Eq. (19) shown as dashed and solid
lines, respectively, in units of 10−15 MeV−6.

upon summing all the diagrams with the same last two t-matrices

T 12
R = t1g12t2 + t1

[

G 121 T 21
R + G 123 T 23

R

]

T 13
R = t1g13t3 + t1

[

G 131 T 31
R + G 132 T 32

R

]

T 21
R = t2g21t1 + t2

[

G 212 T 12
R + G 213 T 13

R

]

T 23
R = t2g23t3 + t2

[

G 231 T 31
R + G 232 T 32

R

]

T 31
R = t3g31t1 + t3

[

G 312 T 12
R + G 313 T 13

R

]

T 32
R = t3g32t2 + t3

[

G 321 T 21
R + G 323 T 23

R

]

(24)

These are six coupled equations which are summed to get

TR = T 12
R + T 13

R + T 21
R + T 23

R + T 31
R + T 32

R . (25)

The T ij
R can be related to the Faddeev partitions T i of the the Faddeev equations

T = T 1 + T 2 + T 3 (26)

as
T i = tiδ3(~k ′

i − ~ki) + T ij
R + T ik

R . (27)

11



3 Results and discussions

The TR in Eq. (25) has been calculated in s-wave for the coupled channels π0π0n, π+π−n,
π−π+n, π0π−p, π−π0p as a function of

√
s and

√
s23. All the angle dependent expressions

have thus been projected into s-wave. The TR-matrix (Eq. (25)) is then projected on the
isospin base defined in terms of the total isospin of the three body system, I, and the total
isospin of two pions, Iππ, defining the states as |I, Iππ〉. These states are obtained assuming
the phase convention for | π+〉 as − | 1, 1〉. We write the state | π0 π0 n〉, for example, as

| π0 π0 n〉 = | 1, 0〉⊗ | 1, 0〉⊗ | 1/2,−1/2〉

=

{

√

2

3
| Iππ = 2, Iz

ππ = 0〉 −
√

1

3
| Iππ = 0, Iz

ππ = 0〉
}

⊗

⊗ | 1/2,−1/2〉

=

√

2

5
| I = 5/2, Iππ = 2〉 +

2√
15

| I = 3/2, Iππ = 2〉 −
√

1

3
| I = 1/2, Iππ = 0〉

To simplify the notation, we omit the label I and Iππ and write

| π0 π0 n〉 =

√

2

5
| 5/2, 2〉 +

2√
15

| 3/2, 2〉 −
√

1

3
| 1/2, 0〉. (28)

Similarly,

| π+ π− n〉 = −
√

1

10
| 5/2, 2〉 −

√

1

15
| 3/2, 2〉 −

√

1

3
| 3/2, 1〉 −

√

1

6
| 1/2, 1〉 −

√

1

3
| 1/2, 0〉

| π− π+ n〉 = −
√

1

10
| 5/2, 2〉 −

√

1

15
| 3/2, 2〉 +

√

1

3
| 3/2, 1〉 +

√

1

6
| 1/2, 1〉 −

√

1

3
| 1/2, 0〉

| π− π0 p〉 =

√

1

5
| 5/2, 2〉 −

√

3

10
| 3/2, 2〉 −

√

1

6
| 3/2, 1〉 +

√

1

3
| 1/2, 1〉

| π0 π− p〉 =

√

1

5
| 5/2, 2〉 −

√

3

10
| 3/2, 2〉 +

√

1

6
| 3/2, 1〉 −

√

1

3
| 1/2, 1〉. (29)

From Eqs. (29), one can obtain

| 5/2, 2〉 =

√

1

5

(√
2 | π0 π0 n〉+ | π0 π− p〉+ | π− π0 p〉 −

√

1

2
| π+ π− n〉 −

√

1

2
| π− π+ n〉

)

| 3/2, 2〉 =

√

1

15

(

2 | π0 π0 n〉 − 3√
2
| π0 π− p〉 − 3√

2
| π− π0 p〉− | π+ π− n〉− | π− π+ n〉

)

| 1/2, 0〉 = −
√

1

3

(

| π0 π0 n〉+ | π+ π− n〉+ | π− π+ n〉
)

.
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Figure 7: The squared amplitude for the ππN system in isospin 1/2 configuration as a function of√
s and

√
s23.

One could equivalently define the states in terms of the total isospin and the isospin
of a pion-nucleon sub-system (IπN ) by repeating the former procedure or using the Racah
coefficients for the transformation of the | I, Iππ〉 states to | I, IπN 〉 states.

In Fig. 7 we show the squared amplitude | T ∗
R |2=| TR −

3
∑

i6=j=1

tigijtj |2 for the ππN

system, calculated in s-wave and projected on the isospin base | I, Iππ〉 =| 1/2, 0〉. The
∑

tgt
has been subtracted out of the TR (following [25]) since it does not give rise to any three-body
structure and only provides a background to the amplitude. The squared amplitude shown
in Fig. 7 has a peak at

√
s = 1704 MeV, with a full width at half maximum of 375 MeV (see

also Fig. 8). These results are in good agreement with the characteristics of the N∗(1710)
[1] and, hence, we relate the resonance shown in Fig. 7 with the N∗(1710). To get further
physical meaning of this peak, we show the same amplitude depicted in Fig. 7, but as a
function of

√
s23 and

√
s12 in Fig. 9. The peak in

√
s12 is very wide (width ∼ 270 MeV ) and

is in the energy region of the σ resonance (see also Fig. 10). This means that the N∗(1710)
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Figure 8: The projection of the amplitude shown in Fig. 7.
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Figure 9: The same as shown in Fig. 7 but as a function of the ππ invariant mass and that of the
πN system.
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Figure 10: The projection of the amplitude shown in Fig. 9

has a large ππN component where the ππ sub-system rearranges itself as the σ resonance.
Although we find evidence for the N∗(1710), this work fails to find any clear trace of the

Roper resonance, which means that considering the ππN system in s-wave interaction does
not suffice to generate the Roper resonance, which is not surprising. Other works such as
the Juelich model [21], which successfully describes the dynamical generation of the Roper
resonance, contains additional information on the πN , π∆, ρN coupled channels and σN
forces beyond the three body contact term of the chiral Lagrangians which we include here
and which cancels the off-shell dependence of the amplitudes. An important contribution of
the π∆ channel and ππ final state interaction (with one of the pions coming from the decay
of the ∆ resonance) to the Roper resonance has also been claimed in [40]. Such information
is not present in our formalism. Things are different in the case of the N∗(1710) with its
large empirical coupling to ππN and weaker to πN and other coupled channels.

Another important result of this work is that we do not find any resonant structure in the
total isospin I = 3/2 and I = 5/2 configuration. Should we have found the latter, it would
be exotic in the sense that it would not be possible to construct it with just three quarks.
But no structure is found in this isospin state.

To summarize, we have studied the ππN system in s-wave, thus in Jπ = 1/2+ configu-
ration. We find a resonance, in three-dimensional plots of the squared amplitude versus the
total energy and the invariant mass of a sub-system, at 1704 MeV, which can be associated
with the N∗(1710) [1]. Our peak has a full width Γ = 375 MeV to be compared with that of
the N∗(1710) which ranges from 90-500 MeV [1]. We find that the invariant mass of the ππ

15



sub-system falls in the region of the mass of the σ (500 -i 200 MeV) when the ππN amplitude
peaks at

√
s = 1704 MeV, which means that the large width of the N∗(1710) could be related

to that of the σ resonance formed in the ππ sub-system. No evidence for states with I = 3/2
and I = 5/2 is found in this work. We also do not find the Roper resonance in our approach.
This should not be seen as a negative result, but as an evidence that the structure of the
Roper is far more complex than that envisaged by the ππN interaction in s-wave, which is
what we have investigated in the present work.
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Appendix

In this appendix we discuss the three-body interactions including the off-shell parts of the
t-matrices that give rise to a kind of three body force which, as we show below, gets cancelled
with the three-body force arising from the chiral Lagrangian.

Let us consider the lowest order diagrams, which correspond to the first terms of the TR

equations, i.e., tigijtj . There are six terms of this kind shown in the Fig. 3, which can be
expanded in terms of the potentials as

tigijtj =
[

vi + vig̃ivi + vig̃ivig̃ivi + · · ·
]

gij
[

vj + vj g̃jvj + vj g̃jvj g̃jvj + · · ·
]

= vigijvj + vig̃ivigijvj + vigijvj g̃jvj + · · · (30)

For example, a term of t1g13t3 expanded as in Eq. (30) is shown in Fig. 11.
The potentials in chiral dynamics can be split into an on-shell part which depends on

the center of mass energy of the interacting particles and an off-shell part proportional to
p2 − m2 for each of the meson legs, in case of meson-meson interaction (where p is the four
vector of the off-shell particle and m is its mass). In case of the meson-baryon interaction,
the off-shell part of the potential behaves as p0−k0, where p0(k0) is the energy corresponding
to the off-shell (on-shell) momentum. Due to this behavior, the off-shell part of the potential
cancels a propagator in the loops, giving rise effectively to a three body force, for example,
the one shown in Fig. 12 corresponding to the t1g13t3 term shown in Fig. 11.

Similar effective three-body forces arise from other terms too. We shall now write the
contributions for the first terms of all six tigijtj terms (Eq. (30)) including the off-shell parts
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=

(a) (b)

k" k"

Figure 11: A diagrammatic representation of the t1g13t3 term. The blob in (a) represents a t-matrix
which can be expressed mathematically as v + vg̃v + vg̃vg̃v + vg̃vg̃vg̃v + .... And (b) shows the term
(v1g̃1v1g̃1v1)g13(v3g̃3v3g̃3v3) of Eq. (30).

Figure 12: An induced effective three-body force generated by the cancellation of the off-shell part
of the potential and a propagator as explained in the text.

of the t-matrices, taking the π+π−n channel as an example and evaluate the total effect of
these three-body forces.

We label the initial (final) four-momentum of the π+ as p (p ′), that of the π− as k (k ′)
and that of the neutron as q (q ′) as shown in Fig. 13. We assign a four vector k′′ to the
intermediate states, see Fig. 11

π+ (p)

π− (k)

n (q)

π+ (p′)

π− (k′)

n (q′)

Figure 13: Assigning four momenta to the π+π−n system.

The potentials calculated from the chiral Lagrangians Eqs. (3, 6) for the three possible
two-body interactions are

Vπ+π−→π+π− = − 1

6f2

[

3sππ −
∑

i

(p2
i − m2

i )
]

, (31)

Vπ−n→π−n = − 1

4f2
(k0

π + k′
π

0
), (32)
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Vπ+n→π+n = −Vπ−n→π−n, (33)

where sππ is the invariant mass of the π − π sub-system, f is the pion decay constant and
k0

π (k′
π

0) is the energy of the pion before (after) the πN interaction.
In this way, the contribution of the first term of Eq. (30) for i = 1 and j = 2, which

corresponds to the first diagram in Fig. 3, is given by

Ta = − 1

16f4
(k0 + k ′0)

mn

En

1

k ′0 + q ′0 − k0 − En(~p ′ + ~k) + iǫ
(p0 + p ′0) ≡ T on

a . (34)

mn in Eq.(34) is the neutron mass and the superscript “on” on Ta denotes that there is no
off-shell dependence in the above equation.

For the diagram (b) of Fig. 3

Tb =
1

24f4

[

2k ′0 + (k′′0 − k′0)
] 1

k′′2 − m2
π

[

3(p + k)2 − (k′′2 − m2
π)
]

(35)

≡ T on
b + T off

b (36)

with

T on
b =

1

4f4
k ′0 1

(p + k − p ′)2 − m2
π

(p + k)2 (37)

T off
b =

1

24f4

[

− k ′0 − p0 − k0 + p ′0 + 3(p + k)2
k′′0 − k ′0

k′′2 − m2
π

]

(38)

representing the on-shell and off-shell contributions to Tb. In Eq. (37) and in the first term
of Eq. (38), k′′ has been replaced by p + k − p ′ using the energy-momentum conservation
law from the initial state. For the second term of Eq. (38) we apply energy-momentum
conservation from the final state

k′′2 = (k ′ + q′ − q)2. (39)

Defining ∆q = q ′ − q, Eq. (39) becomes

k′′2 = m2
π + (∆q)2 + 2k ′ · ∆q

and, hence
k′′0 − k ′0

k′′2 − m2
π

=
(∆q)0

(∆q)2 + 2k ′ · ∆q
. (40)

Therefore,

T off
b =

1

24f4

[

− k ′0 − p0 − k0 + p ′0 + 3(p + k)2
(∆q)0

(∆q)2 + 2k ′ · ∆q

]

. (41)
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The contribution of the diagram (c) of Fig. 3 is

Tc = − 1

16f4
(p0 + p ′0)

mn

En

1

k0 + q0 − k ′0 − En(~p + ~k ′)
(k0 + k ′0) ≡ T on

c . (42)

Similarly,

Td = − 1

24f4
(2p ′0 + p′′

0 − p′
0
)

1

p′′2 − m2
π

[3(p + k)2 − (p′′
2 − m2

π)] (43)

≡ T on
d + T off

d (44)

with

T on
d = − 1

4f4
p ′0 1

(p + k − k ′)2 − m2
π

(p + k)2 (45)

T off
d = − 1

24f4

[

− p ′0 − p0 − k0 + k ′0 + 3(p + k)2
p′′0 − p ′0

p′′2 − m2
π

]

(46)

Analogous to Eq. (40), we write

p′′0 − p ′0

p′′2 − m2
π

=
(∆q)0

(∆q)2 + 2p ′ · ∆q
(47)

which gives

T off
d = − 1

24f4

[

− p ′0 − p0 − k0 + k ′0 + 3(p + k)2
(∆q)0

(∆q)2 + 2p ′ · ∆q

]

. (48)

For the next diagram, we have

Te =
1

24f4
[3(p ′ + k ′)2 − (k′′2 − m2

π)]
1

k′′2 − m2
π

(2k0 + k′′0 − k0) (49)

≡ T on
e + T off

e (50)

where

T on
e =

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − p)2 − m2
π

k0 (51)

T off
e =

1

24f4

[

− k0 − p ′0 − k ′0 + p0 + 3(p ′ + k ′)2
k′′0 − k0

k′′2 − m2
π

]

In this case k′′ = k − ∆q and therefore

k′′0 − k0

k′′2 − m2
π

= − (∆q)0

(∆q)2 − 2k · ∆q
(52)
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π+

π−

n

π+

π−

n

Figure 14: Source of three-body force from the chiral Lagrangians.

leading to

T off
e =

1

24f4

[

− k0 − p ′0 − k ′0 + p0 − 3(p ′ + k ′)2
(∆q)0

(∆q)2 − 2k · ∆q

]

. (53)

For the last diagram of Fig. 3 we have

Tf = − 1

24f4
[3(p ′ + k ′)2 − (p′′

2 − m2
π)]

1

p′′2 − m2
π

(2p0 + p′′
0 − p0) (54)

≡ T on
f + T off

f (55)

where

T on
f = − 1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2 − m2
π

p0 (56)

T off
f = − 1

24f4

[

− p0 − p ′0 − k ′0 + k0 + 3(p ′ + k ′)2
p′′0 − p0

p′′2 − m2
π

]

(57)

Following the same method

p′′0 − p0

p′′2 − m2
π

= − (∆q)0

(∆q)2 − 2p · ∆q
. (58)

then

T off
f = − 1

24f4

[

− p0 − p ′0 − k ′0 + k0 − 3(p ′ + k ′)2
(∆q)0

(∆q)2 − 2p · ∆q

]

. (59)

On the other hand, genuine three-body forces also originate directly from the chiral La-
grangian , where we can find a contact term as the one shown in Fig. (14) [41].

At lowest order in momentum, which we consider in our study, the interaction Lagrangian
between mesons and baryon is given by

L = i〈B̄γµ[Γµ, B]〉 (60)
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where

Γµ =
1

2
(u†∂µu + u∂µu†), u2 = ei

√
2Φ/f (61)

and φ, B are same as those in Eqs. (4, 5). If we expand Γµ up to the terms which contain
four meson fields, we get

Γµ =
1

32f4

[

1

3
∂µΦΦ3 − Φ∂µΦΦ2 + Φ2∂µΦΦ − 1

3
Φ3∂µΦ

]

(62)

For the case under consideration, i.e., π+π−n, the Eq. (60) becomes

L =
i

32f4
n̄

[

1

3
6∂π−π+π−π+ − π− 6∂π+π−π+ + π−π+ 6∂π−π+ − 1

3
π−π+π− 6∂π+

]

n (63)

In this way, the contribution of the diagram in Fig. 14 is

T3b =
1

24f4
ūr(~q

′)(26p − 26k ′ − 26k + 26p ′)ur(~q) (64)

We are interested in the low energy region, thus, only the γ0 component of Eq. (64) is
relevant, then

T3b =
1

24f4
(2p0 − 2k ′0 − 2k0 + 2p ′0) (65)

Adding this to the off-shell contributions from the Faddeev equations at second order in
t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0 + 4p ′0 − 4k ′0 + 4p0

+3(p + k)2(∆q)0

{

1

(∆q)2 + 2k ′ · ∆q
− 1

(∆q)2 + 2p ′ · ∆q

}

+3(p ′ + k ′)2(∆q)0

{

1

(∆q)2 − 2p · ∆q
− 1

(∆q)2 − 2k · ∆q

}]

(66)

If we consider small momentum transfer for the baryon, i.e., ∆~q << 1, Eq. (66) can be
expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0 + 4p ′0 − 4k ′0 + 4p0 + 3(p + k)2

{

1

(∆q)0 + 2k ′0 − 1

(∆q)0 + 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0 − 2p0
− 1

(∆q)0 − 2k0

}]

(67)
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And there is a cancellation of the terms in the SU(2) limit, assuming equal average energies
for the pion. Furthermore, if the propagators in the Eq. (66) are projected over s-wave, as
we do in our study, the curly brackets become

{

1

2 | ~k ′ | | ~∆q |
ln

(

(∆q)2 + 2k ′0(∆q)0 + 2 | ~k ′ | | ~∆q |
(∆q)2 + 2k ′0(∆q)0 − 2 | ~k ′ | | ~∆q |

)

− 1

2 | ~p ′ | | ~∆q |
ln

(

(∆q)2 + 2p ′0(∆q)0 + 2 | ~p ′ | | ~∆q |
(∆q)2 + 2p ′0(∆q)0 − 2 | ~p ′ | | ~∆q |

)}

and
{

1

2 | ~p | | ~∆q |
ln

(

(∆q)2 − 2p0(∆q)0 + 2 | ~p | | ~∆q |
(∆q)2 − 2p0(∆q)0 − 2 | ~p | | ~∆q |

)

− 1

2 | ~k | | ~∆q |
ln

(

(∆q)2 − 2k0(∆q)0 + 2 | ~k | | ~∆q |
(∆q)2 − 2k0(∆q)0 − 2 | ~k | | ~∆q |

)}

respectively, and the cancellation is exact.
With the cancellation of these basic diagrams proved, the addition of an extra interaction,

vi, to the set of these cancelling terms will still give a vanishing contribution. For the on-shell
part of the basic diagrams that we have studied, further iteration of the potential between
two particles, leading to the two-body t-matrix, are done in such a way that the off-shell part
of the new vi interactions is reabsorbed in constants of the on-shell potential, as is done in
the construction of the two body t-matrices [34, 36]. The conclusion is that at the end we
should only use the on-shell t-matrices, ignoring the off-shell effects and genuine three body
forces simultaneously.
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