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The role of the Λ(1405) in the pp → pK+Λ(1405) reaction
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We report a theoretical study of the pp → pK+Λ(1405) reaction, which was recently investigated
at COSY-Jülich by using a 3.65 GeV/c circulating proton beam incident on an internal hydrogen
target. The reaction is driven by single kaon exchange, single pion exchange, and single rho exchange
terms which have very different shapes due to the two pole structure of the Λ(1405) and the presence
of background terms. The shape for the sum of the three contributions, as well as the total cross
section, are consistent with present data within experimental and theoretical uncertainties, using
reasonable form factors for the meson-baryon vertices.

PACS numbers: 13.75.-n, 13.30.-a, 14.20.Jn

I. INTRODUCTION

The Λ(1405) has been a rather controversial resonance
for a long time. In most quark-model calculations, it is
described as a p-state q3 baryon with mainly a SU(3)
singlet structure [1]. On the other hand, in Refs. [2, 3],
the Λ(1405) is believed to be a resonance emerging from
the interaction of the K̄N and πΣ systems, and therefore
of q4q̄ structure. Recent studies based on unitary chiral
theory, UχPT [4, 5, 6, 7, 8, 9, 10, 11], in particular favor
this interpretation. Furthermore, the models based on
UχPT predict that the nominal Λ(1405) is a superposi-
tion of two resonances: one around 1390 − i66MeV and
the other around 1426 − i16MeV [7, 8]. More recently,
the studies of the K̄N interaction have been extended by
including higher order chiral Lagrangians in the kernel of
the interaction [12, 13, 14, 15]. The position of the high-
energy pole is rather similar in all these works, but there
are variations in the position of the low-energy pole. Nev-
ertheless, the theoretical uncertainties have been studied
in [15] and the results obtained with the lowest-order chi-
ral Lagrangians [7, 8] are well within the uncertainties of
these extended models [12, 13, 14, 15].

As first demonstrated in Ref. [8], due to the fact that
the two poles of the Λ(1405) couple differently to the K̄N
and πΣ channels (the high-energy pole couples more to
the K̄N channel whereas the low-energy pole more to
the πΣ channel), different production mechanisms may
favor one channel or the other and lead to different in-
variant mass distributions, thus offering the possibility
to experimentally test the two-pole prediction. The re-
actions γp → K+Λ(1405) and K−p → Λ(1405)γ, (par-
ticularly the latter one), are shown to be sensitive to
the high-energy pole of the Λ(1405) and thus the corre-
sponding invariant mass distributions exhibit a peak at
∼ 1420MeV [16, 17]. On the other hand, the reaction
π−p → K0(Σπ)0 seems to give more weight to the low-
energy pole and thus exhibits a peak around 1390MeV

∗E-mail address: lsgeng@ific.uv.es
†E-mail address: oset@ific.uv.es

in the πΣ invariant mass distributions [18]. Recently, we
have shown that the two-pole structure may also lead to
quite different radiative decay widths [19].

The two-pole structure of the Λ(1405) has inspired sev-
eral experimental studies [20]. The Crystal Ball Collab-
oration has measured the reaction K−p → π0π0Σ0 [21].
In Ref. [22] it was shown that the measured invariant
mass distribution supports the two-pole structure of the
Λ(1405).

I. Zychor et al. have recently studied the reaction pp→
pK+Λ(1405) at COSY-Jülich by using a 3.65 GeV/c cir-
culating proton beam on an internal hydrogen target [23].
By means of invariant- and missing-mass techniques,
they were able to separate the overlapping Σ0(1385) and
Λ(1405). The shape and position of the Λ(1405) con-
structed from its π0Σ0 decay channel are claimed to be
consistent with the data from the π−p→ K0(Σπ)0 reac-
tion [24] and the K−p→ π+π−Σ+π− reaction [25].

It is the main purpose of this paper to study theo-
retically the pp → pK+Λ(1405) reaction. In sect. II we
give a brief description of unitary chiral theory and the
two Λ(1405)’s. In sect. III we investigate possible reac-
tion mechanisms, and build a model based on unitary
chiral theory to study the reaction pp → pK+Λ(1405).
In sect. IV, we compare the calculated invariant mass
distribution with the data and we show that our model
reproduces rather well both the total cross section and
the invariant mass distribution within the experimen-
tal uncertainties. Summary and conclusions are given
in sect. V.

II. UNITARY CHIRAL THEORY AND THE

TWO Λ(1405)’S

In [5, 6, 7, 8], the unitary formalism with coupled
channels using chiral Lagrangians is exposed. The lowest
order chiral Lagrangian for the interaction of the pseu-
doscalar mesons of the SU(3) octet of the pion with the
baryons of the proton octet is used. By picking the terms
that contribute to the MB → MB amplitude the La-
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grangian is given by [5]:

L =
1

4f2
〈B̄iγµ[Φ∂µΦ − ∂µΦΦ, B]〉, (1)

which, after projected over s-wave, provides tree level
transition amplitudes:

Vij = −Cij
1

4f2
(k0 + k′0), (2)

with k0(k′0) the energy of the initial(final) meson and Cij

are the coefficients tabulated in [5]. These tree level am-
plitudes are used as kernel of the Bethe-Salpeter equation
in coupled channels

T = [1 − V G]−1V, (3)

where V appears factorized on shell [5, 7] and G is the
loop function of a meson and a baryon:

G = i

∫

d4q

(2π)4
M

E(~q)

1√
s− q0 − E(~q) + iǫ

1

q2 −m2 + iǫ

=

∫

d3q

(2π)3
1

2ω(~q)

M

E(~q)

1√
s− ω(~q) − E(~q) + iǫ

, (4)

which is regularized by a cut off in [5] and in dimensional
regularization in [6, 7, 8].

For the particular case of 1/2− states (in MB s-wave
interaction) with strangeness S = −1 and zero charge
one has ten coupled channels: K−p, K̄0n, π0Λ, π0Σ0,
ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ−, and K0Ξ0. The explicit
solution of the Bethe-Salpeter equation leads to poles in
the second Riemann sheet corresponding to resonances.
In this sector one finds two poles close to the nominal
Λ(1405) resonance, and other poles corresponding to the
Λ(1670)- and other Σ- resonances [6, 8].

In Ref. [8], it was shown that the SU(3) decomposition
of the 1/2+ baryon octet and the pseudoscalar meson
octet leads to a singlet and two octets, apart from the
10, 10, and 27 representations. The two octets are de-
generate in the limit of exact SU(3) symmetry, but the
use of the physical meson and baryon masses breaks ex-
plicitly the SU(3) symmetry and thus the degeneracy. As
a result, two branches for I = 0 and two for I = 1 emerge.
One of the I = 0 branch moves to low energies and comes
closer to the singlet at the region of the nominal Λ(1405).
Reactions occurring in this region, thus, would involve
both resonances but only an apparent bump would be
seen, giving the impression that there is only one reso-
nance. However, thanks to the very different couplings
of the two poles to the K̄N and πΣ channels, and also
since the low-energy pole is broader than the high-energy
pole, the shape of the bump seen is likely to change from
one reaction to another.

III. THE pp → pK+Λ(1405) REACTION

MECHANISMS

In this section, we investigate the possible pp →
pK+Λ(1405) reaction mechanisms. We concentrate on

p(p)
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K+(pK) Σ0

K−(q)

p(p2)

π0

FIG. 1: The kaon exchange mechanism of the pp →

pK+Λ(1405) reaction.
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π0/ρ0(q) π0/ρ0(q)

FIG. 2: The pion (rho) exchange mechanism of the pp →

pK+Λ(1405) reaction through N∗ excitation.

the final decay state π0Σ0 of the Λ(1405) in order to com-
pare with the experimental results of [23]. Assuming an
s-wave for the final states, which are close to threshold,
conservation of spin and parity dictates that the initial
proton-proton system, with isospin I = 1, has total an-
gular momentum L = 0 and total spin S = 0; therefore,
the pp spin wave function can be written as

|pp〉 =
1√
2
(|1/2,−1/2〉 − | − 1/2, 1/2〉). (5)

With incident protons of laboratory momentum 3.65
GeV/c, the pp → pK+Λ(1405) reaction can occur
through kaon, pion, and rho meson exchanges, as shown
in Figs. 1, 2, and 3.

Σ0

p(p2)

+
π0(q)

p(p1)

p(p) p(p)

p(p1)

K+(pK) π0 π0

π0(q)

Σ0

p(p2)

K+(pK)

(a) (b)

FIG. 3: The pion exchange mechanism of the pp →

pK+Λ(1405) reaction through meson cloud.



3

TABLE I: The N∗
→ K+MB couplings with MB one of the ten coupled channels.

MB K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

C 2 1
√

3

2

1

2

3

2

√
3

2
0 1 0 0

Kaon exchange at low energies for the reaction pro-
ceeds as depicted in Fig. 1, where on one nucleon one
has the K−p → K−p amplitude in s-wave, while on
the other nucleon one has the Λ(1405) production via
K−p → Λ(1405) → π0Σ0. With the strong vertices
given in the appendix, the corresponding t matrix ele-
ment reads:

tK = − 1

2f2
K

(q0 − ωK+)
1

q02 − ~q2 −m2
K

tK−p→π0Σ0 . (6)

For the pion exchange mechanism we would have
the Yukawa vertex on one nucleon while the π0p →
K+Λ(1405) → K+π0Σ0 reaction on the other nucleon.
For this latter amplitude we follow the method of Ref. [18]
and we have the mechanisms shown in Figs. 2 and 3,
where the pion excites the N∗(1710) resonance, Fig. 2,
or interacts with a meson cloud, Fig. 3. In Ref. [18] in
this latter case the meson pole amplitude was accompa-
nied with the contact term, and cancellations between
the off shell part of the meson pole term and the contact
term were pointed out there. Here we make explicit use
of this finding and we evaluate only the meson pole term,
by taking the meson meson amplitude on shell (i.e., as a
function of the meson meson invariant mass and replac-
ing p2

i by m2
i for the meson legs).

The t matrix element corresponding to pion exchange
through N∗ excitation (Fig. 2) reads

tπ = − gA

2fπ
~q2

1

q02 − ~q2 −m2
π

1√
s′ −MN∗ + iΓ2

AB

f3
π

× (7)

[

Cπ0Σ0(ωπ0 − ωK+) +
∑

i

Ci(ωi − ωK+)Giti→π0Σ0

]

,

where s′ is the invariant energy squared of the N∗(1710)
determined by

s′ = (p1 + p2 − p)2 = s+M2
N − 2

√
sE(p), (8)

Gi are the one-meson one-baryon loop functions of
Eq. (4), Ci the coupling constants tabulated in Table I,
and i one of the ten coupled channels. A and B are
the coupling constants of the N∗(1710) decaying into
baryon-meson and baryon-meson-meson as defined in the
appendix and in Ref. [18]. Their numerical values are
given below. The amplitudes tMB→MB are the meson-
baryon meson-baryon amplitudes described in sec. II.
Finally, the t-matrix element corresponding to pion ex-
change through meson cloud (Fig. 3) reads

tMP =
gA

2fπ
~q2

1

q02 − ~q2 −m2
π

[

M4 +
∑

i

MiGiti→4

]

(9)

with the amplitudes Mi given in the appendix.
The N∗(1710) decay coupling constants A and B ap-

pearing in Eq. (7) are fixed by the N∗(1710) partial de-
cay widths into ππN and πN . Considering the rather
large uncertainty of the N∗(1710) total decay width
and the corresponding branching ratios [26], we choose
two sets of parameters: For parameter set I, we take
MN∗ = 1740MeV, Γ = 200MeV, ΓππN = 100MeV,
ΓπN =40MeV, which yield A = 0.11 and B = 0.84;
for parameter set II, we take MN∗ = 1710MeV, Γ =
100MeV, ΓππN = 65MeV, ΓπN=15MeV, which yield
A = 0.07 and B = 0.77. A recent combined analy-
sis [27] of different reactions also require the presence
of the N∗(1710) but it has not improved on the present
uncertainties of the properties of this resonance. For the
energy evolution of the N∗ decay width, we have taken
into account the effects of the Blatt-Weisskopf penetra-
tion factors [28, 29].

The N∗ excitation mechanism can also be induced by
ω or ρ meson exchange (see Fig. 2). We note that the
latest study of [30] shows that the branching ratio of
the N∗(1710) decaying into Nω is only 0.2%, instead of
(13.0±2.0)%, as quoted by the PDG [26], deduced by the
same authors as in [30] in an earlier work [31]. Therefore,
we will not consider the N∗ excitation induced by an ω
meson. According to the PDG [26], the branching ratio
of the N∗(1710) decaying into Nρ is 5 − 25%. With the
standard strong vertices as shown in the appendix, the
t-matrix element of the ρ induced N∗ excitation reads

tρ = t(1)ρ + t(2)ρ

(σ(1) × ~q)(σ(2) × ~q)

~q2
(10)

with

t(1)ρ = −N 2

{

[

GV − ~q2

2M(E +M)
GT

](

1 − q02

m2
ρ

)

+
GV ~q2

(E +M)2

(

1 +
~q2

m2
ρ

)

+
GT

2M(E +M)2
q0~q4

m2
ρ

}

× 1

q02 − ~q2 −m2
ρ

GρNN∗

1√
s′ −MN∗ + iΓ2

B

f2
π

×
[

Cπ0Σ0(ωπ0 − ωK+) +
∑

i

Ci(ωi − ωK+)Giti→π0Σ0

]

,

t(2)ρ = N 2 ~q2

E +M

(

GV

E +M
+
GT

2M

)

× 1

q02 − ~q2 −m2
ρ

GρNN∗

1√
s′ −MN∗ + iΓ2

B

f2
π

×
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[

Cπ0Σ0(ωπ0 − ωK+) +
∑

i

Ci(ωi − ωK+)Giti→π0Σ0

]

,

where N =
√

E+M
2M ; E and M are the energy and mass

of the initial protons.
The value of the coupling constant GρNN∗ in the

GρNN∗γµǫµ~τ · ~ρ vertex is determined by reproducing the
N∗(1710) decay width into Nρ (∼ 15MeV). Its sign,
however, cannot be fixed. Therefore, we will present re-
sults corresponding to both cases. Taking into account
the relatively large widths of the N∗(1710) and the rho,
we used the following double convolution to obtain the
N∗(1710) decay width into Nρ:

Γρ =
3

C

MN∗+2Γ
∫

MN∗−2Γ

dM̃

mρ+2Γρ
∫

mρ−2Γρ

dm̃ρ (11)

× 1

π
Im

1

M̃ −MN∗ + iΓ/2
G2

ρNN∗

× 1

π
Im

1

m̃ρ −mρ + iΓρ/2
Θ(M̃ − m̃ρ −M)

× 1

2π

M

M̃
q

(

−3

2
+
E − q0

2M
+
q0(M̃2 −M2)

2Mm̃2
ρ

)

,

where Θ is the step function, q is the 3-momentum of Nρ
in the rest frame of the N∗(1710), E and M the nucleon
energy and mass, the factor 3 accounts for isospin, and
C is the normalization constant

C =

MN∗+2Γ
∫

MN∗−2Γ

dM̃

mρ+2Γρ
∫

mρ−2Γρ

dm̃ρ
1

π
Im

1

M̃ −MN∗ + iΓ/2

× 1

π
Im

1

m̃ρ −mρ + iΓρ/2
Θ(M̃ − m̃ρ −M). (12)

For the mass and width of the N∗(1710) appearing in the
above equation, we use the N∗ parameter set I.

With incident protons of lab momentum 3.65 GeV/c,
the exchanged pion and rho are very much off shell, which
must be taken into account in a realistic study. For the
pion exchange diagram, we multiply the πNN vertex by
the following recoil correction

R(q) = 1 − q0

2M
(13)

with q outgoing from the nucleon and the form factor

F (q) =
Λ2

π −m2
π

Λ2
π − q2

(14)

with Λπ = 1.0GeV. For the πNN∗ vertex, we multiply
the same form factor but with the recoil correction:

R(q) = 1 +
q0

2M
, (15)

since q is now incoming. For the ρNN and ρNN∗ ver-
tices, following Ref. [32], we multiply a form factor of the
dipole form

F (q) =

(

Λ2
ρ −m2

ρ

Λ2
ρ − q2

)2

(16)

with Λρ = 2 GeV. As for the kaon exchange diagram,
taking into account relativistic correction, the p→ pKK
vertex becomes

− it = i
1

2f2
K

(ωK− − ωK+ − EN +MN). (17)

We also multiply this vertex with a form factor of the
form

F (q) =
Λ2

K −m2
K

Λ2
K − q2

(18)

with ΛK = 1.25 GeV. A moderate modification of all the
cutoff values, Λπ, Λρ, and ΛK , will not change our results
significantly, as will be shown below.

IV. RESULTS AND DISCUSSION

With all the t-matrix elements provided above, the in-
variant mass distribution is then calculated by

dσ

dMπ0Σ0

=
1

32π5

M3
NMΣ0

√

s2 − 4sM2
N

∫

dE

∫

dωΘ(1 − cos2 θ)

×k̃
{

[2(tK + t(1)ρ )]2 + 2[2t(2)ρ ]2

+[2(tπ + tMP)]2
}

,(19)

with k̃ the π0 (Σ0) 3-momentum in the center-of-mass
frame of π0Σ0 and θ the angle between ~p and ~pK given
by

k̃ =
λ1/2(M2

π0Σ0 ,m2
π0 ,M2

Σ0)

2Mπ0Σ0

, (20)

cos θ =
(
√
s− E − ω)2 − ~p2 − ~p2

K −M2
π0Σ0

2|~p||~pK | , (21)

where E and ω are the energies of the final proton and
K+. The factors 2 in Eq. (19) accounts for the possibility
of having the Λ(1405) production from either of the two
protons.

It is to be noted that although Ref. [23] only mea-
sured the π0Σ0 final state, the total cross section given
in Ref. [23] is for Λ(1405) → πΣ, which implies that a
factor of 3 has been multiplied to account for the isospin.
To compare with the data, we have multiplied our invari-
ant mass distribution , Eq. (19), with the same factor to
obtain the distribution of the πΣ.
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In Fig. 4, the calculated invariant mass distribution of
the Λ(1405) with N∗ parameter sets I and II are com-
pared with the new data of Ref. [23]. The shaded area
indicates the uncertainties of our calculation related to
the determination of the N∗ coupling constants A and
B. For demonstration purposes, we did not include the
ρ exchange contribution. It is seen that within the ex-
perimental uncertainties, our calculations reproduce the
data rather well, particularly the fast drop at the K̄N
threshold. Although both parameter sets reproduce the
data very well, in particular taking into account the large
experimental uncertainties, we would say that parameter
set I is preferred, which is in agreement with the finding
of Ref. [18]. In the following, we would use parameter set
I as our default choice.

Now we would like to study the contribution of the ρ
exchange. The coupling constant GρNN∗ is fixed to re-
produce the estimated N∗(1710) decay width into Nρ,
∼ 15MeV, which yields |GρNN∗ | = 0.62. Its sign, how-
ever, cannot be fixed. In Fig. 5, we present the calculated
invariant mass distribution corresponding to both cases,
i.e. GρNN∗ = −0.62 and GρNN∗ = 0.62. It is seen that
both reproduce the data rather well, in other words, the
quality of the present data cannot discriminate the sign
of GρNN∗ . We further notice that our calculated total
cross section ∼ 5 µb is also in good agreement with the
data 4.5 ± 0.9 ± 1.8 µb.

In Fig. 6, the contribution of the kaon exchange mech-
anism and those of the pion and rho exchanges are com-
pared. It can be clearly seen that the kaon exchange
mechanism leads to an asymmetric peak at ∼ 1410MeV,
while the pion exchange mechanism broadens the shape
and leads to a better agreement with the data. We would
like to stress that the ρ exchange contribution by itself is
very small, only through the interference with the kaon
contribution its effect becomes relevant.

The broad shape of the pion exchange mechanism is
actually made by the collaboration of three very differ-
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FIG. 4: The invariant mass distribution of the πΣ in compar-
ison with the data [23]. The ρ exchange contribution is not
included.
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FIG. 5: The invariant mass distribution of the πΣ in compar-
ison with the data [23].
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FIG. 6: The contribution of the three different mechanisms
with GρNN∗ = −0.62.

ent contributions as can be seen in Fig. 7. One comes
from the tree level diagram (diagram (a) of Fig. 2), which
peaks at low invariant masses. Another one is from the
mechanism with re-scattering (diagram (b) of Fig. 2),
which is dominated by the broad Λ(1405) pole of low en-
ergy. Finally the mechanism of the meson pole, Fig. 3, is
dominated by the narrow high energy pole of the Λ(1405).
The coherent sum of all these mechanisms produces the
broad shape shown in Fig. 6. One can see in this fig-
ure that the pion exchange term provides strength for
the pp→ K+π0Σ0 reaction in the low energy side of the
invariant mass, leading to an apparent broader width of
the Λ(1405) compared with the one we would obtain from
the K exchange mechanism alone, which is mostly dom-
inated by the high energy Λ(1405) pole.

It is interesting to note that the strong amplitudes
tMB→MB are determined by the very precise K̄N branch-
ing ratios r, Rc, and Rn [5]; therefore, most uncertainties
in our model come from the N∗(1710) coupling constants
A, B, and GρNN∗ , which are partly shown in Figs. 4 and
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FIG. 7: The components of the π exchange contribution. See
text for details.

5, and the form factors which take into account the off-
shellness of the exchanged particles.

To estimate the theoretical uncertainties related to
the N∗(1710) decay widths and the cutoff values, we
perform a Monte-Carlo sampling of the parameter val-
ues within their uncertainties, more specifically, we al-
low the N∗(1710) total width to vary in the range of
200 ± 30MeV, ΓππN in the range of 100 ± 15MeV, ΓπN

in the range of 40±6MeV, ΓρN in the range of 5-25MeV,
Λπ within 1.0 ± 0.1GeV, Λρ within 2.0 ± 0.2GeV, while
ΛK within 1.25±0.125GeV. Since GρNN∗ can have either
negative or positive sign, we assign half of the Monte-
Carlo generated values positive sign and half of them
negative sign. The so-obtained averaged invariant mass
distribution and the band corresponding to ȳ ± σ with
ȳ = 1

N

∑

yi and σ2 = 1
N−1

∑

(yi − ȳ)2 are displayed
in Fig. 8. The total cross section is estimated to be
4.7 ± 0.7µb, which should be compared with the data:
4.5 ± 0.9 ± 1.8 µb [23].

The strength of the present reaction has brought a new
information concerning the kaon exchange diagram in
Fig. 1, where we implemented a form factor in the pKK̄
vertex. Should we have not taken this form factor into
account, the contribution of the kaon exchange, which
is the dominant mechanism, would have been larger and
the cross section would have been about a factor of three
times bigger than what we have evaluated. We can state
this, but cannot be more conclusive with respect to the
shape of the form factor, Eq. (18), because the present
experiment selects only one value of q2 approximately,
q2 ≈ −|~p1|2 ≈ −(1150 MeV)2. Similarly, we cannot in-
duce whether a form factor should be implemented in
only one or both vertices of the kaon exchange. All that
the experiment is telling us is that for the off-shellness
of this process, with q2 ≈ −(1150 MeV)2, the kaon ex-
change amplitude is reduced by about a factor of two
with respect to the ordinary kaon exchange with no form
factors.
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Data (σ=4.5±0.9±1.8 µb)

FIG. 8: The invariant mass distribution of the πΣ with the-
oretical uncertainties estimated using Monte-Carlo sampling
method (see text for details), in comparison with the data [23].

V. SUMMARY AND CONCLUSIONS

We have performed a theoretical study of the pp →
pK+Λ(1405) reaction recently investigated at COSY-
Jülich. Based on unitary chiral theory, we constructed
a model including three different mechanisms: single-
kaon exchange, single-pion exchange, and single-rho ex-
change. We showed that the kaon exchange mecha-
nism was mostly sensitive to the high energy pole of
the Λ(1405) and produced by itself a relatively narrow
structure. Yet, the mechanism of pion exchange, itself a
combination of various terms, provided a different shape
for the π0Σ0 invariant mass, that added to the one of
kaon exchange had the effect of producing strength in
the low invariant mass part, resulting in a broadening of
the invariant mass distribution and a better agreement
with experiment. The rho exchange contribution has a
similar (but smaller) effect as the pion exchange if the
sign of GρNN∗ is negative.

The total strength of the cross section demanded a
reduction of the dominant kaon exchange mechanism,
where the kaon appears largely off shell. The reduction
is of the order of a factor of two in the amplitude for
q2 ≈ −(1150 MeV)2. Thus we introduced a monopole
form factor with ΛK ≈ 1.25 GeV, which is of natural
size. With this value chosen, an error analysis was per-
formed by changing input parameters within experimen-
tal boundaries, or changing the cutoff parameters of the
form factors by about 10% of their central values. The
result is a band of cross sections with a certain dispersion
at low invariant masses, compatible with experiment, and
a fast fall down around 1430 MeV, rather independent of
the input, which is also clearly seen in the data.

Once more we show in this paper that the association
of a shape of the π0Σ0 distribution to a universal Λ(1405)
resonance is a delicate subject and that one should rather
make a thorough study of the different reaction mecha-
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nisms entering the process, since the observed final shape
is a subtle combination of contributions from background
and the two Λ(1405) poles which are weighted differently
in the various mechanisms.
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Appendix

For the strong vertices, we have used the following
Feynman rules:

1. p→ pπ0:

− it = − gA

2fπ
~σ · ~q. (22)

2. pπ0 → N∗:

− it =
A

fπ
~σ · ~q. (23)

3. pρ→ N∗:

− it = iGρNN∗ψ̄γµ~τ · ~ǫµψ. (24)

4. p→ pρ:

− it = −iψ̄
{

GV γµ +GT 1

2imp
σµνqν

}

~τ · ~ǫµψ, (25)

with GV = 2.9 ± 0.3 and GT /(2mp) = 1.35 ±
0.12m−1

π , which provide GT /GV = 6.27 [33].

5. N∗ → K+MB:

− it = i
B

f2
π

CMB(ωM − ωK+), (26)

with the CMB couplings tabulated in Table I.

6. p→ pK+K−:

− it = i
1

2f2
K

(ωK− − ωK+). (27)

7. MM →MM

− it = i
1

12f2
π

〈(∂ΦΦ − Φ∂Φ)2 +MΦ4〉, (28)

with Φ the meson octet and M the quark mass
matrix.

8. MB → B

− it = i

[

D + F

2
〈B̄γµγ5uµB〉 +

D − F

2
〈B̄γµγ5Buµ〉

]

,

(29)

with B the baryon octet of the proton. In the present
work, the following parameter values have been used:
fπ = 93 MeV, fK = 1.22fπ, gA = 1.26, D = 0.795,
and F = 0.465.

When calculating the meson-pole diagram, as ex-
plained in detail in Ref. [18], one can put the MMMM
vertex on shell, the off shell part after canceling a meson-
propagator, will be canceled by the MMBBB contact
term [18]. Furthermore, with the present experimental
setup, one can assume that the outgoing mesons and
baryons are almost at rest, which we take for the evalu-
ation of matrix elements. Below, we give the meson-pole
amplitudes appearing in Eq. (9) in the order of K−p,
K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ−, and
K0Ξ0:

M1 = Mπ
1 + Mη

1 , (30)

Mπ
1 = −D + F

6f3
π

s1
D1(mπ)

, (31)

Mη
1 =

D − 3F

24f3
π

1

D1(mη)
(32)

×
[

3s1 −
1

3
m2

π −m2
η − 8

3
m2

K

]

,

M3 =
3F +D

12
√

3f3
π

1

D3(mK)
(33)

×
[

−s3 + 2(m2
π +m2

K) − (m2
K −m2

π)2

s3

]

,

M4 =
F −D

12f3
π

1

D4(mK)
(34)

×
[

−s4 + 2(m2
π +m2

K) − (m2
K −m2

π)2

s4

]

,

M5 =
3F +D

24f3
π

1

D5(mK)
(35)

×
[

−3

2
s5 −

(m2
π −m2

K)(m2
η −m2

K)

2s5

+
7

6
m2

π +
m2

η

2
+

1

3
m2

K

]

,
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M6 =

√
3(F −D)

24f3

1

D6(mK)
(36)

×
[

−3

2
s6 −

(m2
π −m2

K)(m2
η −m2

K)

2s6

+
7

6
m2

π +
m2

η

2
+

1

3
m2

K

]

,

M8 =
D − F

4f3
π

1

D8(mK)
(37)

×
[

s8 −m2
π −m2

K +
s28 − (m2

K −m2
π)2

2s8

]

,

M2 = M7 = M9 = M10 = 0. (38)

The meson propagator is given by

1

Di(m)
=

1

(q0 − ωi −mK)2 − ~q2 −m2
, (39)

with the energy of the meson ωi and the invariant mass
squared of the meson-pair si given by

ωi =
M2

I +m2
i −M2

i

2MI
, (40)

si = (mK +MI −Mi)
2, (41)

where MI is the invariant mass of the Λ(1405) and mi

(Mi) the meson (baryon) mass of channel i. The last
equation, Eq. (41), is obtained assuming final particles
with small momentum, in line with the comments made
above, and is sufficiently good for our purpose.
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