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We study the e+e− → φ π π reaction for pions in an isoscalar s-wave which is dominated by
loop mechanisms. For kaon loops we start from the conventional RχPT , but use the unitarized
amplitude for KK − ππ scattering and the full kaon form factor instead of the lowest order terms.
We study also effects of vector mesons using RχPT supplemented with the conventional anomalous
term for V V P interactions and taking into account the effects of heavy vector mesons in the K∗K

transition form factor. We find a peak in mππ around the f0(980) as in the experiment. Selecting
the φf0(980) contribution as a function of the e+e− energy we also reproduce the experimental data
except for a narrow peak, yielding support to the existence of a 1−− resonance above the φf0(980)
threshold, coupling strongly to this state.

I. INTRODUCTION

The initial state radiation e+e− → γISR + γ∗ → γISR + X in electron-positron machines is being used to study
electron-positron annihilation into hadronic states X , scanning energies below the original design in the so-called
radiative return method. This method has proved to be useful both in the study of the properties of low lying
resonances in φ factories [1] as well as in the measurement of the cross section for electron-positron annihilation into
different hadronic final states in B factories [2]. In the latter case it is possible to study electron-positron annihilation
into hadronic states over the range from 1 GeV up to 5 GeV with a clean identification of the desired final states
over the hadronic background. Detailed analysis of some of these processes show enhancements of the corresponding
cross sections whose proper description seems to require the existence of new resonances. Indeed, a broad structure
was found in the e+e− → γISRJ/ψπ

+π− cross section showing the existence of a resonance with a mass of about
4.26 GeV [3]. More recently, in studying the cross section as a function of the center of mass for e+e− → γISRφππ
with the dipion mass close to the f0(980), another structure was found around 2.2 GeV indicating the existence of a
new resonance with a mass of about 2.175 GeV and a width of 58 MeV [4].

For final pions in a C even state, the leading electromagnetic contributions to the e+e− → φππ process come from
the exchange of a virtual photon. The quark lines of the φ and ππ final states are disconnected thus at tree level
the γ∗ → φππ can only be induced by sequential decays like γ∗ → ωππ → φππ which are suppressed by the small
ω − φ mixing. We explored this possibility finding this contribution rather small. The natural mechanisms appear
at one loop level. In particular for a dipion mass close to the f0(980) this process involves the γ∗φf0 vertex function
with a photon with a virtuality above 2 GeV . The very same vertex function appears also in one of the mechanisms
(dominant in the case of neutral pions) for the radiative decay φ → ππγ recently measured in electron-positron φ
factories [5] but there photons are on-shell. The vertex function at k2 = 0 , the φf0γ coupling, appearing in these
decays is an important piece in the elucidation of the structure of the lowest lying scalar nonet.

The φ → ππγ decays have been studied in effective models for non-perturbative QCD [6] incorporating scalar

degrees of freedom and in unitarized chiral perturbation theory [7] (see also applications to φ → K0K0γ in [8]). In
both formalisms, the dynamics is dominated by the chain φ→ Sγ → ππγ where the φ→ Sγ decay is induced at one
loop level through charged kaon loops which couple to the explicit scalar fields in the former case or generate them
dynamically through KK − ππ rescattering in the latter case. The very same dynamics must be at work in the case
of virtual photons and should be the dominant one for low photon virtualities. The calculation of such effects is the
subject of this paper.

Unlike the case of the φ → S γ decay where the real photon tests only the electric charge, here we have a highly
virtual photon which couples to higher multipoles and the way to incorporate systematically the effects of kaon loops
is to consider the full kaon form factor FK+(k2) in the γK+K− interaction. Furthermore, although the contribution

of neutral kaons vanishes for real photons, in the case of virtual photons the γ∗K0K0 coupling is not null and we must
consider also neutral kaon loops with the corresponding form factor. The challenge here is the proper characterization
of the kaon form factor at the energy of the reaction. Fortunately we have at our disposal both a theoretical calculation
of the neutral and charged kaon form factors in UχPT [9] and direct measurements [10] in the energy region of interest.
In the former case, the kaon form factor is matched with the perturbative QCD predictions at high energy and to
χPT at low energy and, although the calculated form factor cannot account for the effects of excited vector mesons
lying around 1.6 GeV , it is in agreement with the scarce experimental data above 2 GeV . Concerning the KK − ππ
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scattering, it remains in the same energy range as in φ→ ππγ decays and we can safely use the amplitudes calculated
in unitarized chiral perturbation theory which contains naturally the scalar poles.

The high virtuality of the exchanged photon makes probable the excitation of higher mass hadronic states. The
quark structure of the φ suggests that the K∗K intermediate state can also give important contributions to e+e− →
φππ via the production of virtual K∗K , with the virtual K∗ decaying into a φ K and the final rescattering of
kaons into pions. In this concern it is worth mentioning that experimental data on e+e− −→ K0K±π∓ at

√
s =

1400 − 2180 MeV shows that this reaction is dominated by intermediate neutral K∗0K0 production with the K∗0

decaying into K±π∓[11], hence there is a sizable coupling of a virtual photon to the K∗K system at the mentioned
energies. The proper description of this mechanism requires the knowledge of the transition K∗K electromagnetic
form factor but, again, it can be extracted from experimental data on e+e− −→ K0K±π∓ which shows that, in
addition to the contributions from the exchange of lowest lying vectors, this form factor receives also contributions
from the exchange of φ′ and ρ′. Remarkably there is no evidence for contributions coming from the exchange of ω′ to
this form factor.

In this paper we study the above mentioned mechanisms for e+e− → φππ for the dipion system in an isoscalar
s−wave. The paper is organized as follows: In section II we calculate the γ∗φππ vertex function using UχPT . In
section III we calculate intermediate vector meson contributions using UχPT supplemented with the anomalous term
describing V V P interactions and incorporate contributions from heavy mesons to the K∗K transition form factor.
In section IV we analyze the different contributions and our summary and conclusions are given in section V.

II. UNITARIZED χPT PREDICTIONS FOR e+e− → φ (ππ)
I=J=0

.

Following [7], the process e+e− → φππ is induced at one loop level by the kaon loops. In the calculations the
vertices are borrowed from Resonance Chiral Perturbation Theory (RχPT ) [12]. We follow the conventions in [12]
and the relevant interactions in their notation are

L = L(2) + L(F ) + L(G) (1)

L(2) =
1

4
f2tr

(
(DµU)†DµU + χU † + χ†U

)
(2)

L(F ) =
FV

2
√

2
tr(Vµνf

µν
+ ) (3)

L(G) =
iGV√

2
tr(Vµνu

µuν), (4)

where

uµ = iu† DµU u†, U = u2, u = e
− i√

2

Φ
f , Φ =

1√
2
λiϕi (5)

fµν
+ = u Fµν

L u† + u† Fµν
R u, DµU = ∂µU − i [vµ, U ] . (6)

We introduce the photon field through vµ = eQAµ and Fµν
L = Fµν

R = eQFµν (e > 0) where Fµν denotes the
electromagnetic strenght tensor. For further details in the notation we refer the reader to Ref. [12]. The relevant
diagrams are shown in Fig. (1), where for simplicity a shaded circle and a dark circle account for the diagrams
i) plus j) and k) plus l) respectively, which differentiate the direct photon coupling from the coupling through an
intermediate vector meson. We will address the corresponding diagrams as a), b), when we have the direct photon
coupling and a′), b′), when the coupling goes through the exchange of a vector meson. The kaon form factor at lowest
order contains the exchange of vector mesons in diagrams a′), b′) which in RχPT are intrinsically gauge invariant.

One interesting feature of the use of meson-meson chiral amplitudes is that in the different processes one can factorize
the amplitude on-shell inside the loops. This is the case in the construction of the unitary meson-meson amplitudes
where the factorization can be seen as a consequence of the reabsorption of the off-shell terms into renormalization
of elementary couplings [13], or using the N/D method of unitarization that relies upon the imaginary part of the
amplitudes which involves the on-shell part [14]. These two methods have been generalized to the case of meson-

baryon interaction in [15] and [16] respectively. More concretely, for the case close to ours in φ → K0K0γ it was
demonstrated, using arguments of gauge invariance, that only the on-shell part of the meson-meson amplitudes was
needed inside the loops [8]. Explicit cancellation of the off-shell terms can be seen in our formalism and we only sketch
the derivation since there are basic principles that tells us this factorization should always be possible. The reason is
that the off-shell part of the meson-meson amplitude is unphysical and can be changed with a unitary transformation
of the fields, that, however, should not change the physical amplitudes. Technically the cancellations in our formalism
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FIG. 1: Feynman diagrams for e+e− → φππ in RχPT .

go as follows. As discussed in [13, 17], to lowest order in the chiral expansion the KK − ππ amplitude (denoted by

Ṽ 0
Kπ) for arbitrary values of the particle momenta pi has the form

Ṽ 0
Kπ = V 0

Kπ + β
∑

i

(p2
i −m2

i ), (7)

where V 0
Kπ denotes the on-shell amplitude. In the following we use the convention that all external particle momenta

of the γ∗(k)φ(Q)π(p)π(p′) vertex function flow into the vertices and will change this direction only in the numerical
results. Considering the off-shell part of the meson-meson interaction in diagrams a), b), associated to the line of
momentum l − k cancels the corresponding meson propagator and generates a topological structure like the one of
diagram f). On the other hand, diagram f) is a genuine diagram that can be calculated by using the Lagrangian
L2 of Eq. (2) expanded to four mesons. When this is done one finds an exact cancellation of the off-shell terms
against diagram f). On the other hand, there are similar cancellations between the off-shell part of the meson-meson
amplitude associated to the line with momentum l + Q in diagrams a), b) and c) with the genuine contributions in
diagrams d) and e). A remnant contribution appears after the cancellations, which vanishes for real photons and
involves derivatives in the vector fields. Exact cancellation of this part would require the introduction of counterterm
Lagrangians involving derivatives of V µν and fµν

+ and such Lagrangians are sometimes used for this purpose [18].
Finally the off-shell part of diagram h) which involve charged kaons only cancels exactly diagram g) with charged kaons
in the loops. Remaining tadpole contributions from neutral kaons can be cancelled by appropriate counterterms. In
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summary, all one has to do is to evaluate the diagrams a), b), c), and h) with the meson-meson amplitudes factorized
on-shell and omiting the rest of diagrams. This lowest order amplitude is iterated in the coupled channel framework
used in [13, 17] to obtain the unitarized KK̄ → ππ amplitudes which contain the scalar poles. In a coming section
we will study the contributions of loops involving vector meson propagators. In this case we do not have enough
information on the higher order Lagrangians to explicitly show the cancellations but we shall equally assume that the
meson-meson amplitude can be factorized on-shell out of the loops.

Let us start with the simplest diagrams a), b) with charged kaons in the loops, point-like K+K−γ interaction and
charged pions in the final state. A straightforward calculation yields

− iMa+b
K+ = −e

2
√

2GV

f2

t0Kπ√
3

Lµ

k2
TµνQαη

αν (8)

where k2 = (p+ + p−)2, Lµ ≡ v(p+)γµu(p−), Q denotes the momentum of the φ and ηαν denotes the polarization
tensor of the anti-symmetric field φµν used to describe the φ meson. The on-shell unitarized amplitude for isoscalar

s-wave KK − ππ scattering is denoted as t0Kπand it is related to the physical tK+π+ amplitude as tK+π+ =
t0Kπ√

3
. It

factorizes on-shell out of the loop tensor integral given by

Tµν = i

∫
d4l

(2π)4
2(2l − k)µlν

� (l +Q)�(l)� (l − k)
, (9)

with �(l) ≡ l2 −m2
K + iε.

The ”seagull” diagram c) yields

− iMc
K+ =

e2
√

2GV

f2

t0Kπ√
3

Lµ

k2
GK(m2

ππ)gµν (Q+ k)α η
αν , (10)

where m2
ππ = (Q+ k)2 and GK denotes the loop integral

GK(p2) ≡
∫

d4l

(2π)4
i

� (l)� (l+ p)
. (11)

Using dimensional regularization we get

GK(m2
ππ) = µ2ε

∫
ddl

(2π)d

i

� (l +Q)� (l − k)
=

1

(4π)
2

(
a(µ) + log

m2
K

µ2
+ IG(m2

ππ)

)
(12)

with

IG =

∫ 1

0

dx log

(
1 − m2

ππ

m2
K

x(1 − x) − iε

)
= −2 + σ log

σ + 1

σ − 1
, (13)

where σ(m2
ππ) =

√
1 − 4m2

K

m2
ππ

. The substraction constant has been fixed in Ref. [17] to a(µ0) = 1 for µ0 = 1.2 GeV

matching the cutoff regularized integral for a cutoff Λ = 1 GeV . It is related at different scales as a(µ) = a(µ0)+log µ2

µ2
0

in such a way that the loop function is scale independent.
There is no direct coupling of the photon to neutral kaons and adding up all contributions we obtain

− iMa+b+c
K = −e

2
√

2GV

f2

t0Kπ√
3

Lµ

k2

(
T abc

µν Qα −GK(m2
ππ)gµνkα

)
ηαν (14)

where

T abc
µν = Tµν −GK(m2

ππ)gµν . (15)

Notice that in diagrams a), b), c) pions appear only through t0Kπ. Since the KK − ππ amplitude with neutral pions

satisfy tK+π0 =
t0Kπ√

3
the amplitude for e+e− → φππ with neutral pions in the final state is also given by Eq. (14).

Let us now consider diagrams a′), b′) with charged kaons in the loops and charged pions in the final state. These
diagrams involve the propagation of vector particles. The propagator for a vector meson in the tensor formalism is
given by

Παβµν(p) =
i∆αβµν(p)

p2 −M2
V + iε

(16)
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where

∆µνρσ(p) =
1

M2
V

[(
p2 −M2

V

)
gµρgνσ − gµρpνpσ + gµσpνpρ − (µ↔ ν)

]
. (17)

This tensor is anti-symmetric under the exchange µ ↔ ν or ρ ↔ σ, symmetric under the exchange µν ↔ ρσ and
satisfy

pµ∆µνρσ(p) = gνρpσ − gνσpρ, ∆µνρσ(p)pσ = gνρpµ − gµσpν . (18)

The Lagrangian in Eq. (1) yield the following vertices for the γ(k, µ)V (k, αβ) and V (Q,αβ)P (p)P ′(p′) interactions

ΓγV
µαβ =

eFV

3
kαgµβCV , ΓV PP ′

αβ = −
√

2GV CV PP ′

f2
pαp

′
β , (19)

with the SU(3) factors given by

Cφ = −
√

2, Cω = 1, Cρ = 3; (20)

CφK+K− = C
φK0K

0 = 1, CωK+K− = C
ωK0K

0 = − 1√
2
, CρK+K− = − 1√

2
, C

ρK0K
0 =

1√
2
. (21)

The amplitude for diagrams a′), b′) whith charged kaons in the loops is

− iMa′+b′

K+ =

√
2e2GV

f2

Lµ

k2

t0Kπ√
3
F̃K+(k2)T a′b′

µανη
αν (22)

where F̃K+(k2) stands for the vector meson contributions to the charged kaon form factor

F̃K+(k2) =
1

2

∑

V =ρ,φ,ω

FV

3

√
2GV CV CV K+K−

f2

k2

k2 −M2
V

=
GV FV

2f2

(
k2

m2
ρ − k2

+
1

3

k2

m2
ω − k2

+
2

3

k2

m2
φ − k2

)
. (23)

and the loop tensor integral is given by

T a′b′

µαν =
1

k2
kσ∆σµγδ(k)i

∫
d4l

(2π)4
4(l− k)γ lδlα(l +Q)ν

�K(l)�K (l +Q)�K (l − k)
. (24)

This is an explicitly gauge invariant tensor due to the anti-symmetry of ∆σµγδ(k) under σ ↔ µ. Using ∆σµγδ(k)k
γkδ =

0 and ηαν = −ηνα it can be rewritten to

T a′b′

µαν = −
(
T abc

µν +
GK(m2

ππ)

k2

(
k2gµν − kµkν

))
Qα. (25)

The amplitude for diagrams a′), b′) can in turn be rewritten as

− iMa′+b′

K+ =
−e2

√
2GV

f2

t0Kπ√
3

Lµ

k2
F̃K+(k2)

(
T abc

µν +
GK(m2

ππ)

k2

(
k2gµν − kµkν

))
Qαη

αν . (26)

There are also contributions of neutral kaons in the loops. The calculation of these contributions is similar to the
charged kaon loops due to the related SU(3) factors in Eq. (21). The only difference comes from the sign of the ρ
factors in Eq. (21) which changes from the charged to the neutral case. The total amplitude is obtained from Eq.(26)

just replacing F̃K+ by F̃K++ F̃K0 where the intermediate ρ contributions cancel. Including neutral and charged kaon
contribution we obtain

− iMa′+b′

K =
−e2

√
2GV

f2

t0Kπ√
3

Lµ

k2
F̃iso(k

2)

(
T abc

µν +
GK(m2

ππ)

k2

(
k2gµν − kµkν

))
Qαη

αν , (27)

with

F̃iso(k
2) = F̃K+(k2) + F̃K0(k2) =

FV GV

3f2

(
k2

m2
ω − k2

+
2k2

m2
φ − k2

)
. (28)
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For neutral pions in the final state we obtain the same result due to relations tK+π0 =
t0Kπ√

3
and tK0π0 =

t0Kπ√
3

.

The calculation of diagram h) requires to work out the γ(k, µ)φ(Q,αν)K(p)K(p′) vertex contained in LF in Eq.
(3). For neutral kaons this vertex vanishes and for charged kaons we obtain

Γµαν =
eFV√
2f2

gµνkα. (29)

The amplitude for diagram h) is

− iMh = − e2FV√
2f2

Lµ

k2

t0Kπ√
3
GK(m2

ππ)gµνkαη
αν . (30)

Adding up contributions of all diagrams in Eqs. (14,27,30) we obtain the kaon loop contributions for both final pion
charge states as

−iMK = −e
2
√

2GV

f2

t0Kπ√
3

Lµ

k2

(
F 0

V MD(k2)T abc
µν + F̃iso(k

2)
GK(m2

ππ)

k2

(
k2gµν − kµkν

))
Qαη

αν (31)

+
e2
√

2

f2
(GV − FV

2
)
t0Kπ√

3

Lµ

k2
GK(m2

ππ)gµνkαη
αν ,

where

F 0
V MD(k2) = 1 + F̃iso(k

2) = 1 +
FV GV

3f2

(
k2

m2
ω − k2

+
2k2

m2
φ − k2

)
. (32)

accounts for the lowest order terms of the kaon isoscalar form factor (the sum of the charged and neutral kaon form
factors) in RχPT [9] which is valid at low photon virtualities. Notice that the second term in Eq. (31) contains only
the vector meson contributions to the kaon form factor but the constant term due to the electric charge is missing.
This term should come from Lagrangians with higher derivatives of the fields ( specifically from the term ∂αVαν∂µf

µν
+

) which is absent in our basic interactions in Eq. (1). We will assume in the following that the constant term due to

the charge is provided by such missing interactions and, hence, write F 0
V MD instead of F̃iso in the second term of Eq.

(31).
The high virtualities involved in our process requires to work out the complete γKK vertex functions. The

calculation of these vertex functions has been done in the context of UχPT in Ref. [9]. We use this result and
replace in the following the leading order terms so far obtained, F 0

V MD(k2), by the full isoscalar form factor F 0
K(k2) =

FK+(k2) + FK0(k2).
The evaluation of Eq. (31) requires to work out the loop tensor T abc

µν . It can be easily shown that T abc
µν is finite and

gauge invariant. The most general form of this tensor is

T abc
µν = a gµν + b QµQν + c Qµkν + d kµQν + e kµkν (33)

where a, b, c, d, e are form factors. Gauge invariance requires

kµT abc
µν =

(
a+ ck ·Q+ ek2

)
kν + (bk ·Q+ dk2)Qν = 0, (34)

imposing the following relations among the form factors

a = −c k ·Q− e k2, b k ·Q = −d k2, (35)

thus T abc
µν has the following explicitly gauge invariant form

T abc
µν = −c(Q · k gµν −Qµkν) − d

k ·Q (k2Qµ − k ·Qkµ)Qν − e (k2gµν − kµkν). (36)

The second term vanishes upon contraction with Qαη
αν and we are left only with two form factors

T abc
µν = −c(Q · k gµν −Qµkν) − e (k2gµν − kµkν). (37)

A straightforward calculation using conventional Feynman parametrization yields

c = − 1

4π2m2
K

IP , e = − 1

4π2m2
K

JP . (38)
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where

IP =
∫ 1

0
dx
∫ x

0
dy y(1−x)

1− Q2

m2
K

x(1−x)− 2Q·k
m2

K

(1−x)y− k2

m2
K

y(1−y)−iε
(39)

JP = 1
2

∫ 1

0
dx
∫ x

0
dy y(1−2y)

1− Q2

m2
K

x(1−x)− 2Q·k
m2

K

(1−x)y− k2

m2
K

y(1−y)−iε
. (40)

In terms of the a and e form factors we get the amplitude for kaon loops contribution to e+e− → γ∗ → φ[ππ]I,J=0 as

−iMP =
e2
√

2GV

f2

t0Kπ√
3

Lµ

k2
F 0

K(k2)

[
c(Q · k gµν −Qµkν) +

(
e− GK

k2

)
(k2gµν − kµkν)

]
Qαη

αν (41)

+
e2
√

2

f2
(GV − FV

2
)
t0Kπ√

3

Lµ

k2
GK(m2

ππ)gµνkαη
αν .

The vertex function for γ∗(k)φ(Q,αν)[π(q)π(q′)]I,J=0 is straightforwardly obtained just removing the factor − eLµ

k2

and it is worthy to analyze our results in terms of this vertex function. Notice that in addition to the terms associated
to the full kaon form factors we get a contact term which survives in the real photon limit and has been already
noticed in the studies of radiative φ decays [7]. The combination GV − FV

2 is small and it vanishes in the context of
Vector Meson Dominance [19]. We will keep this term and discuss below its impact on the cross section but we must
be clear from the beggining that it can not be taken seriously at high photon virtualities without its dressing by a
form factor.

Tensor and vector fields are related as ∂µVµν = MV Vν and for an on-shell φ it is convenient to rewrite Eq. (41)
in terms of the conventional polarization vector related to the polarization tensor as ηαν(Q) = i

Mφ
(Qαην −Qνηα) in

such a way that

Qαη
αν(Q) = iMφη

ν(Q), gµνkαη
αν(Q) =

i

Mφ

(Q · kgµν −Qµkν)ην . (42)

Using these relations we get

−iMP =
ie2

√
2Mφ

f2

t0Kπ√
3

Lµ

k2

[(
GV F

0
K(k2)c+ (GV − FV

2
)
GK(m2

ππ)

M2
φ

)
(Q · k gµν −Qµkν) (43)

+GV F
0
K(k2)

(
e− GK

k2

)
(k2gµν − kµkν)

]
ην

Using now Eqs. (38) we obtain

− iMP =
−ie2

2π2m2
K

t0Kπ√
3

Lµ

k2

[
AP L(1)

µν +BPL
(2)
µν

]
ην (44)

with the Lorentz structures

L(1)
µν ≡ Q · kgµν −Qµkν , L(2)

µν = k2gµν − kµkν , (45)

and

AP =

√
2Mφ

2f2

(
GV F

0
K(k2)IP − (GV − FV

2
)
m2

K

4M2
φ

gK(m2
ππ)

)
, (46)

BP =

√
2MφGV

2f2
F 0

K(k2)

(
JP +

m2
K

4k2
gK

)
. (47)

where we defined gK(p2) ≡ (4π)2GK(p2).

III. CONTRIBUTIONS FROM VECTORS IN THE LOOPS

The process e+(p+)e−(p−) → φ(Q, η) π(p) π(p′) can also proceed through e+(p+)e−(p−) → K∗(p) K(p′) →
φ(Q, η) K(p) K(p′) with the kaons rescattering to a pion pair as shown in Fig. (2). The V V ′P interaction is dictated
by the anomalous Lagrangian which we rewrite in terms of the tensor field as

Lanom =
G√
2
ǫµναβtr(∂

µV ν∂αV βΦ) =
GT

4
√

2
ǫµναβtr(V

µνV αβΦ). (48)
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w µ αβ γδ

l

στ
ρν

l − k

l + Q

φη

FIG. 2: Feynman diagram for e+e− → K∗K̄ → φKK̄ → φππ.

with GT = MV MV ′G. The required vertex for V (k, µ, ν)V ′(q, α, β)P is

Γµναβ(k, q) =
iGTCV V ′P

4
√

2
ǫµναβ (49)

with the SU(3) factors given by

CφK∗+K− = CφK∗0K0 = 1, CρK∗+K− = −CρK∗0K0 = CωK∗+K− = CωK∗0K0 =
1√
2
. (50)

The amplitude from the diagram in Fig. (2) gets contributions from K∗+K−and K∗−K+ in the loops plus K∗0K0and

K∗0K0. The first two contributions can be summed to

− iM+ = −2e2F lo
K∗+K−(k2)

GT√
2

(
MK∗

16

)
t0Kπ√

3

Lµ

k2
Tµανη

αν . (51)

Here the K∗K transition form factor is given as

F lo
K∗K(k2) =

∑

V =ρ,ω.φ

GTCV K∗+K−√
2

FV CV

3MK∗

1

k2 −M2
V

=
FV G

6

(
Mω

k2 −M2
ω

± 3Mρ

k2 −M2
ρ

− 2Mφ

k2 −M2
φ

)
(52)

where the upper (lower) sign corresponds to the charged (neutral) case. The explicitly gauge invariant tensor Tµαν is
given by

Tµαν = i

∫
d4l

(2π)4
kα∆α γδ

µ (k)ǫγδφη∆φηστ (l)ǫσταν

�K (l +Q)�K∗(l)�K (l− k)
. (53)

The calculation of this tensor, the separation of the effects at the different scales involved in our reaction and the fixing
of the necessary substraction constants is rather involved and for the sake of clarity we deferred it to the Appendix.
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We calculate this tensor in the Appendix as

Tµαν =
16

M2
K∗

1

16π2

[(
2 + IG − I2 +

1

2
log

m2
K

µ2
+
Q · k
m2

K

JV

)
gµνkα − 1

m2
K

JV (k2gµν − kµkν)Qα

]
, (54)

with

JV =

∫ 1

0

dx

∫ x

0

dy
y(1 − x)

1 − Q2

m2
K

x(1 − x) − 2Q·k
m2

K

(1 − x)y − k2

m2
K

y(1 − y) − (m2
V
−m2

K)
m2

K

(y − x) − iε
(55)

I2 =

∫ 1

0

dx

∫ x

0

dy log[1 − Q2

m2
K

x(1 − x) − 2Q · k
m2

K

(1 − x)y − k2

m2
K

y(1 − y) −
(
m2

V −m2
K

)

m2
K

(y − x) − iε] (56)

IG =

∫ 1

0

dx log

(
1 − m2

ππ

m2
K

x(1 − x) − iε

)
(57)

Altogether we obtain the amplitude as

− iM+ =
−2e2

16π2m2
K

F lo
K∗+K−(k2)

GT√
2MK∗

t0Kπ√
3

Lµ

k2

[
IV kαgµν − JV (k2gµν − kµkν)Qα

]
ηαν (58)

with

IV ≡ m2
K

(
IG − I2 + 2 +

1

2
log

m2
K

µ2

)
+Q · k JV . (59)

Calculations for the amplitude M0 corresponding to neutral K∗ in the loops are are quite similar and can be obtained

from M+ just replacing the charged transition form factor by the neutral one due to t0
K+π+ = t0

K0π+ ≡ t0Kπ√
3

. Adding

up these amplitudes we get

− iMV =
−2e2

16π2m2
K

F̃ 0
K∗K(k2)

GT√
2MK∗

t0Kπ√
3

Lµ

k2

[
IV kαgµν − JV (k2gµν − kµkν)Qα

]
ηαν . (60)

where the isoscalar transition form factor to lowest order is given by

F̃ 0
K∗K(k2) = F lo

K∗+K−(k2) + F lo
K∗+K−(k2) =

FV G

3

(
Mω

k2 −M2
ω

− 2Mφ

k2 −M2
φ

)
. (61)

This amplitude can be written in terms of the conventional polarization vector for an on-shell φ using Eqs. (42,45)
and GT = MφMK∗G. We also replace the lowest order terms in Eq. (61) by the full transition form factor to obtain

− iMV =
−ie2

2π2m2
K

t0Kπ√
3

Lµ

k2

[
AV L(1)

µν +BV L
(2)
µν

]
ην (62)

with

AV =
G

4
√

2
F 0

K∗K(k2)IV , BV = −
GM2

φ

4
√

2
F 0

K∗K(k2)JV . (63)

This contribution is proportional to the isoscalar transition form factor F 0
K∗K(k2) and, similarly to the kaon form

factor in the case of kaon loops, we need a proper description of this form factor at the energy of the reaction, which
could be achieved either by a proper unitarization of this form factor or using experimental data if they exist. At the
energy region of interest the unitarization of this form factor would reproduce the poles of known vector resonances
coupled to the K∗K system. The lowest order result in Eq. (61) already contains the poles corresponding to the lowest
lying vectors. The PDG list the ω(1650), φ(1680) and ρ(1700) resonances in this energy region, which we will call
ω′, φ′, ρ′ in the following. In this concern it is remarkable that studies of e+e− → K0K±π∓ at

√
s = 1400−2180MeV

show that this reaction is dominated by intermediate neutral K∗0K0 production (with a small contribution of the
charged channel and negligible light vector meson contributions) in turn coming from intermediate φ′ and ρ′[11].
There is no evidence for ω′ contributions in these reactions. Furthermore, a direct measurements of the kaon form

factors in e+e− −→ K+K−,K0K
0

[10] at
√
s = 1400−2200MeV shows also evidence for contributions of φ′ and ρ′ to
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the kaon form factors (again no signal for ω′ is found here) around 1700 MeV and there is no signal for contributions
of higher vector resonances in the charged case. Although the inclusion of such effects improves the description of
the kaon form factor around 1700 MeV the values around 2.2 GeV are roughly the same as those of the unitarized
charged kaon form factor [9]. Coming back to the K∗K transition form factor, in Ref. [11] the product

Γ(φ′ → e+e−)BR(φ′ → K∗K) = 0.39 ± 0.11 KeV, (64)

is measured, and assuming that K∗K is the dominant channel for the φ′ meson, it allows us to extract the φ′γ coupling

which we write as gφ′γ =
em2

φ′

fφ′
from

Γ(φ′ → e+e−) =
4πα2mφ′

3f2
φ′

= 0.39 ± 0.11 KeV, (65)

which yields fφ′ = 31. Similarly the φ′K∗K coupling can be extracted from the total width

Γ(V → V ′P ) =
g2

V V ′P

4π
|p|3 (66)

which for the case at hand (|p| = 462 MeV, Γ = 150 MeV ) and assuming same coupling of the φ′ to K∗+K− and
K∗0K0 yields gφ′K∗K = 2gφ′K∗0K0 = 2gφ′K∗+K− = 4.37 × 10−3 MeV −1.

Taking into account the φ′ and ρ′ contribution introduces a factor

gφ′K∗K

2fφ′

(
±3

2

m2
ρ′

k2 −m2
ρ′ + imρ′Γρ′

−
m2

φ′

k2 −m2
φ′ + imφ′Γφ′

)
(67)

in the transition form factor of charged (+) and neutral (−) K∗K in the loops. Contributions from ρ′ cancel in the
sum, thus the isoscalar transition form factor is given by

F 0
K∗K(k2) =

FV G

3

(
Mω

k2 −M2
ω + imωΓω

− 2Mφ

k2 −M2
φ + imφΓφ

)
− gφ′K∗K

fφ′

(
m2

φ′

k2 −m2
φ′ + imφ′Γφ′

)
. (68)

Finally, taking into account both pseudoscalar and vectors in the loops we obtain the total amplitude as

− iM =
−ie2

2π2m2
K

t0Kπ√
3

1

k2
v(p+)γµu(p−)

[
A L(1)

µν +BL(2)
µν

]
ην (69)

where

A = AP +AV (70)

B = BP +BV (71)

with the specific functions in Eqs.(46,47,63). Recall these results are valid for ingoing particles. For the numerical
computations in the following section we reverse the momenta of the final particles and obtain

− iM =
ie2

2π2m2
K

t0Kπ√
3

1

k2
v(p+)γµu(p−)

[
I L(1)

µν − J L(2)
µν

]
ην (72)

with

I =

√
2Mφ

2f2

(
GV F

0
K(k2)IP − (GV − FV

2
)
m2

K

4M2
φ

gK(m2
ππ)

)
(73)

− G

4
√

2
F 0

K∗K(k2)

[
Q · k JV −m2

K

(
IG − I2 + 2 +

1

2
log

m2
K

µ2

)]

J =

√
2MφGV

2f2
F 0

K(k2)

(
JP +

m2
K

4k2
gK

)
−
GM2

φ

4
√

2
F 0

K∗K(k2)JV . (74)
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and for the integrals IP , JP , JV , and I2 we must use Eqs. (39,40,55,56,57) just changing the sign of Q · k. Also, since
our analysis include an energy region relatively far from the φ′ peak we use in Eq. (68) an s-dependent width given
by

Γφ′(s) =
g2

φ′K∗K

4π

(
λ

1
2 (s,m2

K∗ ,m2
K)

2
√
s

)3

. (75)

with

λ(m2
1,m

2
2,m

2
3) = (m2

1 − (m2 −m3)
2)(m2

1 − (m2 +m3)
2). (76)

IV. NUMERICAL RESULTS

The differential cross section for this process is given as

dσ

dmππdΩQ

=
1

(2π)
4

1

8s
3
2

|Q||p̃||M|2. (77)

Here Q stands for the tri-momentum of the φ in the center of momentum system of the reaction and p̃ denotes the
momentum of the final charged pion in the dipion center of momentum system

|Q| =
λ

1
2 (s,M2

φ,m
2
ππ)

2
√
s

, |p̃| =
λ

1
2 (m2

ππ,m
2
π,m

2
π)

2mππ

, (78)

where we neglect terms proportional to m2
e . A straightforward calculation yields

|M|2 =
1

4

∑

pol

|M|2 = |C|2
[
|I|2 1

2

(
M2

φ + |Q|2 x2 + ω2
)
− 2Re(IJ∗ )

√
s ω + |J |2 s

2M2
φ

(
M2

φ − |Q|2 x2 + ω2
)
]
(79)

= |C|2
[
|I| 2 1

2

(
M2

φ(1 − x2) + ω2 (1 + x2)
)
− 2Re(IJ∗ )

√
s ω + |J |2 s

2M2
φ

(
M2

φ(1 + x2) + ω2 (1 − x2)
)
]

(80)

where x = cos θ with θ the φ-beam angle, ω the φ energy

ω =
s+M2

φ −m2
ππ

2
√
s

(81)

and C stands for the global factor

C =
ie2

2π2m2
K

t0Kπ√
3
. (82)

Integrating the solid angle we get

∫
|M|2dΩQ =

4π

3
|C|2

[
|I|2

(
M2

φ + 2ω2
)
− 6Re(IJ∗ )

√
s ω + |J |2 s

M2
φ

(
2M2

φ + ω2
)
]

(83)

The dipion spectrum is finally given as

dσ

dmππ

=
α2

24π5m4
K

|Q||p̃|
s

3
2

|t0Kπ|2
3

h(s,mππ) (84)

where

h(s,mππ) = |I|2
(
M2

φ + 2ω2
)
− 6Re(IJ∗ )

√
s ω + |J |2 s

M2
φ

(
2M2

φ + ω2
)
. (85)
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FIG. 3: Differential cross section as a function of the dipion invariant mass and of the center of mass energy.

We evaluate numerically the integrals and the differential cross section. We are interested in dipion energies mππ

close to the f0(980) mass in whose case the KK̄ → ππ scattering between the kaons in the loops and the final pions
takes place at this energy independently of the value of

√
s and of the momenta in the loops. As a consequence, when

replacing the lowest order terms for this amplitude by the unitarized amplitude as proposed in Section II, we can
safely use the results of [13, 17] and take a renormalization scale µ = 1.2 GeV for the function GK [17], in spite of the
fact that the reaction takes place at a much higher energy

√
s ≥ 2GeV . The unitarized amplitudes naturally contain

the scalar poles and there is no need to include explicitly these degrees of freedom in the calculation. For the kaon
form factor we use the unitarized version calculated in Ref. [9], the values obtained in this analytic form reproduce
the direct measurements of the charged kaon form factor at the energy region of interest [10].

Using the physical masses and coupling constants mK = 495, mφ = 1019.4, α = 1/137, GV = 53MeV , FV =
154MeV , fπ = 93 MeV , and G = 0.016MeV −1 in Eq. (84) we obtain the spectrum shown in Figs. (3) where the
presence of the f0(980) is well visible. This is a consequence of the fact that the f0(980) poles are well reproduced in
the unitarization of meson meson s-wave isoscalar amplitudes present in our calculation. The

√
s dependence in the

differential cross section is dominated by the phase space factor in the lower energy region (the opening of the φf0
channel) and the lowering beyond the φf0 threshold is dictated by the form factors.

Next we integrate mππ from 850MeV to 1100 MeV following the cuts implemented in [4] . The obtained cross
section is shown in Fig (4) (solid curve) where we also show the experimental points quoted in Ref. [4]. We must
remark that all the parameters in Eqs. (73, 74) have been fixed in advance and in this sense there are no free
parameters in our calculations. We should note that in the loops with pseudoscalars there is a term that has no form
factor. At low photon virtualities this term is small and its extrapolation to high k2 requires to dress it with a form
factor which does not come from the Lagrangians that we are using. Thus some uncertainty should be accepted at
this point. However, we find numerically that the contributions of the loops with pseudoscalars is far smaller than
the contributions of the vector meson loops (by themselves one order of magnitude smaller close to the φf0 threshold)
but through interference with vector meson loops they become more relevant). The effect of the term with no form
factor is shown in Fig (4) where we plotted the cross section as a function of

√
s in the case when this term is absent
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FIG. 4: Cross section for e+e− → φ [ππ]
I=0

, integrated in the mππ = 850− 1100 MeV range, as a function of
√

s including all
contributions. Experimental points from Ref. [4], triangled (boxed) points correspond to charged (neutral) pions.

(solid line) and dressed with the kaon form factor (dashed line). As we can see, the effect of this term is negligible
when dressed with the kaon form factor.

The elaborate theoretical study carried out in this paper, using standard tools to produce the φf0(980) has succeeded
in reproducing the bulk of the experimental data as a function of the energy. Yet, the theory, producing reasonable
numbers around

√
s = 2000 MeV and beyond 2300 MeV , fails to provide the right strenght in the region around

2150 MeV where a peak appears in the data. There is no way, within our theoretical framework, with reasonable
changes of the parameters within existing uncertainties, to obtain this peak. As a consequence of it, we are inclined
to conclude, following the lines of Ref. [4], that there is a 1−− meson resonance around 2150 MeV coupling strongly
to φf0(980), as also concluded in [4]. In as much as our theoretical results provides a ”background” very similar to
the one assumed there, our conclusions about the resonance are the same as in [4] and we refrain from repeating the
same analysis leading to the properties of the new resonance. Recalling the result from [4], the resonance has a mass
of MR = 2175 MeV , a width of Γ = 58 MeV and quantum numbers 1−− as the photon.

From the theoretical point of view such a resonance is a real challenge since their properties are not predicted by
ordinary quark models hinting to a possible exotic character [20].

V. SUMMARY AND CONCLUSIONS

We studied electron-positron annihilation into φππ for pions in an isoscalar s-wave. We find the tree level contri-
butions induced via ω− φ mixing negligible. At one loop level, using the vector mesons interactions arising in RχPT
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we show the cancellation of the contributions coming from the off-shell parts of the meson-meson amplitudes in the
calculation of the kaon loops. The on-shell parts are iterated to obtain the unitarized meson-meson amplitudes. We
obtain contributions proportional to these amplitudes and to the lowest order terms of the kaon form factors. In
addition, we find a term with the unitarized meson-meson amplitudes but without the kaon form factors. The effect
of the latter is negligible when dressed with the kaon form factor. The photon exchanged in e+e− → φππ is highly
virtual and the proper description of this process requires to use the full kaon form factors. Thus, instead of the
lowest order terms arising in the calculation we use the full form factor as calculated in UχPT [9].

The high virtuality of the exchanged photon makes the excitation of higher mass states likely. We calculate the
excitation of K∗K states with rescattering of kaons into the final pions. This contribution is calculated using UχPT
supplemented with the anomalous term describing V V P interactions. There are two different energy scales involved
in the reaction: Mφ,mππ ≈ Λ and

√
k2 & 2GeV and we perform a clear separation of the effects at these scales.

It is shown that the only substraction constant required is the one associated to the meson-meson scattering. The
formalism naturally yields the contribution from light vector mesons to the K∗K transition form factor. However, the
proper description of this form factor at the energy of the reaction requires to include contributions from heavy mesons,
which are extracted from the data on e+e− −→ K0K±π∓ at

√
s = 1400−2180MeV [11]. All the parameters entering

the calculation have been fixed in advance and there is no freedom in their choice. For the differential cross section we
find a peak in mππ around the f0(980) as in the experiment [4]. We select the φ f0(980) events imposing the cuts used
in the analysis of Ref. [4]. The corresponding cross section as a function of the e+e− energy describes satisfactorily the
experimental data except for a narrow peak around 2150 MeV , yielding support to the existence of a 1−− resonance
above the φf0(980) threshold whose structure started to be debated and seems to be non-conventional [20]. On the
other hand, the description of the peaks of mππ around the f0(980) resonance, as well as the agreement with data
on total cross sections (up to the signal of the new resonance), without the explicit introduction of the f0(980) state,
provides extra support for the f0(980) as being dynamically generated from the interaction of pseudoscalar mesons
in coupled channels.
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VI. APPENDIX

We use dimensional regularization to calculate the loop tensor in Eq. (53) which in dimension d = 4 − 2ε reads

Tµαν = iµ2ε

∫
ddl

(2π)d

gµβkα∆αβγδ(k)ǫγδφη∆φηστ (l)ǫσταν

�K (l +Q)�K∗(l)�K (l − k)
, (86)

where µ stands for the renormalization scale. Using Eq.(18) and the anti-symmetry of the Levi-Civita tensors we get

gµβkα∆αβγδ(k)ǫγδφη =
(
gγ

µk
δ − gδ

µk
γ
)
ǫγδφη = 2kδǫµδφη (87)

ǫµδφη∆φηστ (l)ǫσταν =
2

m2
K∗

((
l2 −m2

K∗

)
ǫµδφηǫ

φη
αν + 2ǫµδφηǫ

φ
σ αν l

ηlσ
)

(88)

which allows us to split the loop tensor as

Tµαν =
4

m2
K∗

(
T (1)

µαν + T (2)
µαν

)
, (89)

where

T (1)
µaν = iµ2ε

∫
ddl

(2π)d

kδǫµδφηǫ
φη

αν

� (l +Q)� (l − k)
= (d− 3)(d− 2) (kαgµν − kνgµα)µ2ε

∫
ddl

(2π)d

i

� (l +Q)� (l − k)
(90)

T (2)
µαν = 2iµ2ε

∫
ddl

(2π)d

kδǫµδφηǫ
φ

σ αν l
ηlσ

�K (l+Q)�K∗(l)�K (l − k)
. (91)
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A straightforward calculation yields

T (1)
µaν = 4kαgµν

[
3

16π2
+GK(m2

ππ)

]
(92)

where we used ηαν = −ηνα. Notice that we get a constant contribution coming from the contraction of the Levi-Civita
tensors in dimension d besides the conventional loop function GK .

The second loop tensor contains two different scales: Mφ,mππ ≈ Λ and
√
k2 & 2GeV and we must ensure a clean

separation of the effects at these scales and the correct estimate of the corresponding substraction constants. With
this aim we perform a decomposition of this tensor in terms of scalar integrals. The tensor integral

Cησ = iµ2ε

∫
ddl

(2π)d

lηlσ

�K (l +Q)�K∗(l)�K (l − k)
(93)

can be decomposed as

Cησ = C00gησ + C11QηQσ + C12(Qηkσ + kηQσ) + C22kηkσ. (94)

We will be interested only in the coefficients of gησ and Qηkσ since the remaining terms give vanishing contributions
to the process at hand. Contracting with gησ, Qη and kη we get the following equations for the coefficients

d C00 +Q2C11 + 2Q · kC12 + k2C22 = GK(m2
ππ) +M2

VC0 ≡ R00 (95)

C00 +Q2C11 +Q · kC12 =
1

2

(
1

2
GK(m2

ππ) −
(
Q2 + ∆2

)
C1

)
≡ R11 (96)

Q2C12 +Q · kC22 =
1

2

(
V1(k

2) − 1

2
GK(m2

ππ) −
(
Q2 + ∆2

)
C2

)
≡ R12 (97)

C00 +Q · kC12 + k2C22 =
1

2

((
k2 + ∆2

)
C2 +

1

2
GK(m2

ππ)

)
≡ R22, (98)

where ∆2 = M2
V −m2

K , C0 stands for the finite scalar integral

C0 = µ2ε

∫
ddl

(2π)d

i

�K (l +Q)�K∗(l)�K (l − k)
, (99)

and C1, C2 stand for the coefficients of the decomposition of the vector integral

Cσ = iµ2ε

∫
ddl

(2π)d

lσ
�K (l+Q)�K∗(l)�K (l − k)

= C1Qσ + C2kσ. (100)

It can be easily shown that C1 and C2 are finite. The functions V1 and V are given by

V1(k
2) =

1

2

[
V (k2) +

∆2

k2

(
V (k2) − V (0)

)]
(101)

V (k2) = µ2ε

∫
ddl

(2π)d

i

�K∗ (l)� (l − k)
. (102)

The required coefficients read

C00 =
1

d− 2
(R00 −R11 −R22) (103)

C12 =
1

d− 2

1

(Q · k)2 −Q2k2

[
Q · k (−R00 +R11 + 3R22) − 2k2R12

]
. (104)

Explicitly

C00 =
1

2(d− 2)

[
GK(m2

ππ) + 2M2
VC0 +Q2C1 − k2C2 + ∆2(C1 − C2)

]
, (105)

C12 = − 1

4
(
(Q · k)2 −Q2k2

)
{
2M2

VQ · kC0 + k2
(
V (k2) −GK(m2

ππ)
)

+ ∆2
(
V (k2) − V (0)

)

+ Q · k
(
Q2 + ∆2

)
C1 −

(
3Q · k

(
k2 + ∆2

)
+ 2k2

(
Q2 + ∆2

))
C2

}
. (106)
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Notice that the dependence of the integrals on the two different scales ( k2 and Q2,m2
ππ ) involved in the process

have been neatly separated. Furthermore, divergences in V (k2) − V (0) and V (k2) −GK(m2
ππ) cancel out rendering

C12 finite as expected. In contrast C00 is divergent but its divergent term appears in GK(m2
ππ) whose finite part has

already been matched to the cutoff regularized integral. As a final result we obtain that effects involving the scale k2

are finite and the only substraction constant required is the one in the loop integral associated to the meson-meson
scattering.

Contracting the Levi-Civita tensors ( in dimension d ) we obtain

T (2)
µαν = −2 [Q · k C12 + (d− 2)C00] (d− 3) (gµνkα − gµαkν) − 2C12 (d− 3)

(
k2gµα − kµkα

)
Qν

+2C12 (d− 3)
(
k2gµν − kµkν

)
Qα. (107)

The anti-symmetry of ηαν allows to rewrite this tensor as

T (2)
µαν = −4 [Q · k C12 + (d− 2)C00] (d− 3) gµνkα + 4C12 (d− 3)

(
k2gµν − kµkν

)
Qα (108)

For the piece containing the divergent integral C00 we obtain

− 4 (d− 3) (d− 2)C00 = −2

[
2

(4π)
2 +GK(m2

ππ) + 2M2
VC0 +Q2C1 − k2C2 + ∆2(C1 − C2)

]
. (109)

The constant term in this equation comes from the dimensional factor d− 3 which in turn arises from the contraction
of the Levi-Civita tensors in dimension d.

In the numerical computation it is easier to work with these integrals written in terms of Feynman parameters. In

order to calculate T
(2)
µαν we use the following Feynman parametrization

1

αβγ
= 2

∫ 1

0

dx

∫ x

0

dy
1

[α+ (β − α)x + (γ − β)y]
3 (110)

with

α = (l+Q)2 −m2
K + iε, β = l2 −m2

V + iε, γ = (l− k)2 −m2
K + iε (111)

After some algebra we get the term contributing to our process as

T (2)
µαν = 4 ǫµδφηǫ

φ
σ ανk

δµ2εi

∫ 1

0

dx

∫ x

0

dy

∫
ddr

(2π)d

rηrσ − (1 − x)yQηkσ

[r2 − m̃]3
, (112)

where

m̃2 = m2
K −Q2x(1 − x) − 2Q · k(1 − x)y − k2y(1 − y) −

(
m2

V −m2
K

)
(y − x) − iε, (113)

A comparison with

T (2)
µαν = 2ǫµδφηǫ

φ
σ ανk

δ[C00 g
ησ + C12 Q

ηkσ] (114)

allows us to identify

C00 =
2

d
µ2εi

∫ 1

0

dx

∫ x

0

dy

∫
ddr

(2π)d

r2

[r2 − m̃]
3 , (115)

C12 = −2µ2εi

∫ 1

0

dx

∫ x

0

dy

∫
ddr

(2π)d

(1 − x)y

[r2 − m̃2]3
. (116)

The C12 integral is finite thus we can set d = 4 wherever it appears to obtain

C12 = − 1

16π2m2
K

JV

with

JV ≡
∫ 1

0

dx

∫ x

0

dy
(1 − x)y

1 − Q2

m2
K

x(1 − x) − 2Q·k
m2

K

(1 − x)y − k2

m2
K

y(1 − y) − (m2
V
−m2

K)
m2

K

(y − x) − iε
. (117)
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As to the term containing the divergent integral C00 we obtain

− 8 (1 − ε) (1 − 2ε)C00 = − 2

16π2

(
a(µ) + 3 + log

m2
K

µ2
+ 2I2

)
(118)

with a(µ) the substraction constant of G(m2
ππ) and

I2 =

∫ 1

0

dx

∫ x

0

dy log[1 − Q2

m2
K

x(1 − x) − 2Q · k
m2

K

(1 − x)y − k2

m2
K

y(1 − y) −
(
m2

V −m2
K

)

m2
K

(y − x) − iε] (119)

Summarizing, the tensors T
(1)
µν , T

(2)
µν are given by

T (1)
µαν =

4

16π2

[
4 + log

m2
K

µ2
+ IG

]
kαgµν (120)

T (2)
µαν =

4

16π2

[(
Q · k
m2

K

JV − 1

2

(
4 + log

m2
K

µ2

)
− I2

)
kα gµν − 1

m2
K

JV (k2gµν − kµkν)Qα

]
, (121)

thus from Eq.(89) we get

Tµαν =
16

M2
K∗

1

16π2

[(
2 + IG − I2 +

1

2
log

m2
K

µ2
+
Q · k
m2

K

JV

)
gµνkα − 1

m2
K

JV (k2gµν − kµkν)Qα

]
. (122)
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