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Radiative decay of the dynamically generated open and hidden charm scalar meson
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We present the formalism for the decay of dynamically generated scalar mesons with open- or
hidden-charm and give results for the decay of D3,(2317) to vD} plus that of a hidden charm scalar
meson state predicted by the theory around 3700 MeV decaying into ~.J/v.
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I. INTRODUCTION

The discovery of charmed scalar meson resonances at
Babar, Belle and CLEO [1, 12, 13, [4] has stimulated a
fruitful line of research, suggesting that their structure is
much richer than what one might guess assuming the ¢q
picture, which has proved quite successful in other areas
[5]. Some authors have suggested a gqgq structure |6, 7]
or mixing between the usual ¢ structure and four quark
[8]. Also there have been suggestions that these states
might be molecular states of the pseudoscalar mesons
19,110, [11, [12, 13]. Similar to this latter works, but with
subtle differences that we shall discuss later on, are the
pictures where these states appear as dynamically gen-
erated in the context of unitarized chiral perturbation
theory |14, [15, 116, [17]. The works in [14, [15, [16] rely
upon Lagrangians based on heavy quark symmetry, while
the one of [17] starts from an extension of the SU(3)
chiral Lagrangian to SU(4) which is largely broken due
to the implicit vector meson exchange characterizing the
Weinberg-Tomozawa term of the chiral Lagrangian |18].
Because of this, the terms of the Lagrangian used in [17]
are suppressed by the ratio of the light to heavy mass
squared of the vector mesons. SU(4) Lagrangians with
covariant derivatives adapted to include weak interac-
tions are used in [19]. The Lagrangian in [17] contains the
Lagrangian used in |14, [16], which is suited for the study
of open-charm resonances like the D7;(2317), but it also
contains other terms which allow to study the hidden-
charm states. The comparison of the results using this
Lagrangian with another one using a chiral symmetry
breaking extension to SU(N) of the SU(3) results |20]
allows to have an idea of the uncertainties in the results.
The stability of the D¥,(2317) was confirmed, while the
X (3700) state could sometimes become a cusp instead
of a bound state, but experimentally it would lead to a
bump in the mass distributions in any case. Hence one
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is confident that the new state should also be found.

The radiative decay of resonances has been usually sug-
gested as a test for their nature |21, 22]. In the present
case, we are interested in the decay DZ%,(2317) — D~
and X (3700) — ~.J /1. The first of these decays has been
evaluated assuming varied structures for the resonance,
within quark models, vector meson dominance, light cone
QCD sum rules, ete [23, 24, 125, 126, 27, [28, 129, 130, 131, [32]
and more recently from the point of view of the D¥;(2317)
as a molecular state [33]. The X (3700) has also been pre-
dicted in [34] as a molecular state assuming a reasonable
interaction Lagrangian between the D and D states. The
radiative decay of this predicted state is reported here for
the first time.

II. FORMULATION FOR THE RADIATIVE
DECAY

In a picture of the scalar mesons as dynamically gener-
ated one needs to couple the photon to the meson compo-
nents of the coupled channels. Here the reactions studied
are

20(2317) — 7D}
X (3700) — 7/

and the technical way to evaluate them is considering the
loop diagrams of Fig. [

These are the same diagrams used in the evaluation of
the radiative decay of the D};(2317) as a DK molecule
in [33]. The differences are that here we do not need the
wave function of the D%;(2317), we only need the cou-
plings of the resonance to the PP channels which are
obtained in the study of these resonances as dynamically
generated in [17]. Another difference is that we have
more channels than DK, and this has some numerical
effects in the results because of cancellations of terms in
the most important channels DY K°, DK ™. Finally, al-
though it provides a small contribution in [33], there is
a term where the photon couples to the D}. This term
involves a transition D?,(2317) — D} which is allowed
for a virtual D} as it would be the case here. Such terms
mix the longitudinal part of the vector meson propagator
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FIG. 1: Diagrams considered in the evaluation of the radia-
tive decay D3y(2317) — yDj;. P and P are the pseudoscalar
mesons that couple to the D}y (2317).

with the scalar meson. However, in order to prevent the
appearance of a pole of a scalar in the vector meson prop-
agator, in a covariant formalism like the one we use, this
transition amplitude must vanish for P? = m%, with P
and mg the total momentum and the mass of the scalar
meson, respectively [35, 136]. This is discussed in a re-
lated work on the radiative decay of axial vector mesons
[37], but we address the problem in detail in appendix A.
There is also a diagram with the photon attached to the
scalar resonance (for charged states), which is shown to
vanish in the amplitude in |33] due to the lorentz condi-
tion of the vector meson.

The two diagrams discussed above, together with those
considered in figure [[l provide a set of gauge invariant
terms, as shown explicitly in [33]. The two terms with
the photon coupling to the external particles in the loop
diagram play a role in the gauge invariant test of the

theory, as shown in [33], but they vanish in the radiative
decay amplitude, as we show in appendix A.

The procedure to evaluate the radiative decay followed
here for the dynamically generated scalar resonances has
been tested with success in the decays ¢ — f,(980)~ and
® — ap(980)~ [38, 139, 40] with the fy and ag resonances
dynamically generated from the interaction of the lowest
order meson-meson chiral Lagrangian [41]. The present
reaction is the time reversal reaction, in the charmed sec-
tor, of the radiative ¢ decay into a scalar and a photon.
The same ideas presented here are used in the study of
the radiative decay of the f,(980) and a((980), as dy-
namically generated resonances, into yp and yw in [22].

The channels to which the D¥*,(2317) and the X (3700)
resonances have appreciable couplings in [17] are the fol-
lowing:

:0(2317) : DJFKOuDO;[{Jer;rnuD:nc

X (3700) : DYD~,D°D% DF D,

We shall demonstrate that, using arguments of gauge
invariance, we can overcome the evaluation of the dia-
gram c) of Fig [[] and, as a consequence, we must only
evaluate the diagrams of Fig [2 for the D};(2317) and of
Fig Bl for the X (3700)

Dy’ (2317) D

Dy (2317)

FIG. 2: Diagrams needed in the evaluation of the D7(2317)
radiative decay.

Let us proceed to the explicit evaluation of the dia-
grams. The amplitude of the diagram of Fig[2a) is read-
ily evaluated as:

: dq
—iT = /W(_Z)QD:O(%N)—»PP

1 1

8 (g+ K)? —m?2 +ieq> —m? +ie
) ) .
X (Q_q)z_m%+Z-€(_Z)€Q1€V(7)(Q+Q+K)
1 MyGy
X (H)ﬁ f:fDVEu(DS)(q—QﬂLq)“/\v (1)

where mj and mso are the masses of the upper and lower
pseudoscalar mesons in the loop diagram, eQ; is the
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FIG. 3: Diagrams needed in the evaluation of the X (3700)
radiative decay.
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In eq. () we have chosen to substitute f? in the de-
nominator by f.fp following the prescription in [17] of
associating f, (the pion decay constant, f, =93 MeV) to
the light pseudoscalars and fp =165 MeV to the charmed
pseudoscalars.

All the other diagrams are easily obtained by changing
the couplings of the resonance to the channel and the
constant Ay to account for the different VPP vertices.
The different values of Ay are given in Table [[Il

By using the Lorentz condition for the photon and the
vector meson,

eu(D*)QM = 0 (5)
&K = 0, (6)

the amplitude of eq. () is simplified and we obtain:

charge (e > 0) of the upper pseudoscalar meson, My
the mass of the vector meson and Gy the VPP coupling
(Gy = 55MeV). The constant 9D~ (2317)— D+ Ko provides
the coupling of the resonance to the D K°. In Table 1
we show the calculated couplings for the poles from [17]
located at 2317.25 MeV and (3718.93-i0.06) MeV. For
this last one we have neglected its imaginary part.

The coupling of the vector meson to the pseudoscalars
is obtained from the SU(4) generalization (see [17]) of
the ordinary SU(3) Lagrangian.

Lopy = —Tigmm V) 2)

with g = —My Gy /f? and the SU(4) matrices ¢ and V#
given by

K+ DY
e 0 -
+ 7 K D 5
__277_|_ e D~
Ve V12 s
+ —31c
D1 )
* n*0
Kﬂ+ Dy,
J/wu *0 *—
I D;, "
0 —2wy J/Yu *—
v P P
*+ —3J/%
D, \/ﬁ“

. 4 MVGV *
T = _ZgD:0(2317)—>P156Q1/\Vﬁ i eu(Dg)en(v)

X

/ dq 1 1
(2m)4 (g + K)2 — m? +ie g2 — m? + ie
1
” 7
Qe miracl ! "

Upon integration of the ¢ variable one has the expres-
sion:
T = T"eu(V)eu(y) (8)

and Lorentz covariance provides the most general form
for TH as:



TABLE I: Couplings of the resonances to the pseudoscalars.

Resonance|Channel g, pp [MeV]

50(2317) [ DTK? -7358
K™D 7358

DI 5993

Dine 1541

X(3700) | DT D~ 7353
D~ DT 7353

DID; 6740

D; DI 6740

TABLE II: Coefficients Ay for the coupling of the vector me-
son to the pseudoscalars.

Vector Meson | Channel| Av
D: DTK® 1
KTDY -1

Din |-2/V6

Djnc 2/\/§

J/p DYD™ |-2/V3

D=DV | 2/V3

DD, |-2/V3

D, D: | 2/V3

TH = agh +bQMQ + cQUKY + dK"Q
+ eK*KY 9)

The Lorentz condition of egs. (B) and (B removes the
contributions of the b, ¢ and e terms, such that only the
a and d terms contribute. In addition, gauge invariance
(which is guaranteed when all the terms in fig. [ are
accounted for) T"¥ K,,=0, implies b = 0 and a+dQ.K =0
SO

)

a = —dQ.K (10)

such that only one term is needed in the evaluation. We
choose to evaluate the d term because it is finite and only
comes from the diagrams of figs. Bland Bl The procedure
outlined here has been used before in the evaluation of
the ¢ — YK KO decay [42, 43].

The amplitude 7 is now easily written as:

T = —dQ.Kg"™ — K'Q")eu(V)e(r) (1)

The evaluation of d is straightforward following the
Feynman formalism. We write:

ai: /dw/ dy (a+( —a):cl+(c—b))(12)

with
= (Q@—q?—-mj (13)
b = ¢ —mi (14)
c = (g+k)?Z—mi (15)

Upon a transformation ¢ = ¢’ + Q(1 — z)
left with the integral:

— Ky we are

diq' (q’ +Q(1—=z)— Ky)#
/ (2m)4 (¢"? 4+ s +i€)3

x (¢ +QU—2) - Ky) (16)

with s = Q%z(1 —2) +2Q.K(1 —2)y — m3 + (m3 —m?)x,

which shows that the contribution to the d term comes
from:

d*¢ KrQ"(1—=z)y
/i 17

2m)* (¢ + s+ ie)3
where two powers of ¢ have disappeared from the integral

and hence it is convergent. The ¢’ integral is also readily
done following the Feynman formalism:

/d4’ 1 N NS BN
(2m)4 (@2 + s +ie)3  (2m)4 25 + e

and the d coeflicient is readily obtained as:

MyGy V2
d = ~9IDx( 2317)—>PP6Q1/\VW87T2

/ do / Ho (19)

As mentioned above, one can see, following the same
procedure, that the diagram in fig. [l ¢) only contributes
to the ag"” term of eq. (@) and thus we do not need to
calculate it.

The finiteness of the results is also noted in [33] where
the wave function is governed by a range parameter A,
and the results remain finite in the limit of A — oo.

One must sum coherently the contribution of each term
of the diagrams in fig. 2lto the d coefficient and then the
radiative decay width is given finally by

r= 21 Rpk@rar (20

81 m?2,.
D*,(2317)

where |l€ | is photon three momentum in the rest frame
of the D%,(2317).

The decay of the X(3700) proceeds identically through
the same lines using the appropriate couplings and
masses in the diagrams of fig. [3



TABLE III: Results
Diagram| d [fm] [T [KeV]

K™DV [0.01284 | 2.518
DTK° |-0.00529| 0.427
Dfn |-0.00197| 0.059
Dfn. 10.00007 | 0.000
Total | 0.00565 | 0.488

TABLE IV: Results
Diagram| d [fm] [T [KeV]

DTD~ [-0.00314] 3.709
D~D* [-0.00314| 3.709
DY D7 |-0.00129| 0.622
D DF |-0.00129| 0.622
Total |-0.00886] 29.481

III. RESULTS

In Table [Tl we show the results for the d coefficient
from each term in fig.

As we can see, the largest contribution comes from the
K* DV intermediate state. The DT K? is smaller than the
KT DO since it involves two heavy pseudoscalar propaga-
tors instead of two light ones. Next and weaker than the
others is the contribution of the D¥ 7 channel, and finally
the D} 7. channel provides a negligible contribution.

Note that the contribution from the two charge part-
ners in the isospin I=0 DK channel is destructive. Had
the D%,(2317) been an isospin I=1 resonance, the relative
couplings to the two channels would have been opposite,
making thus a constructive interference and we would
have obtained a width of 4 KeV instead of 0.488 KeV,
a factor eight times bigger. Furthermore, because of the
destructive interference, the effect of the DFn channel,
which is quite small by itself, becomes relevant. Indeed,
if we neglect the channels with the D} meson, the width
obtained is I' =0.872 KeV a factor 1.8 times bigger than
when one takes them into account. Then, one can see
that the consideration of all the coupled channels of the
approach is quite relevant, which introduces one novel
element with respect to the ordinary molecular picture
[33] where only the dominant K D channel is taken into
account.

The results for the X(3700) radiative decay are shown
in Table [Vl We see that this radiative decay is consid-
erably larger than for the D%;(2317). In this case all the
terms add constructively.

Next we perform an analysis of the uncertainties in
the results. The fact that we have obtained a very small
width, because of strong cancellations, indicates that it
should be rather sensitive to uncertainties in the input
used for the evaluation.

To evaluate the uncertainties we will follow the same
procedure used in [17]. We will take a random generated

ensemble of sets for the input parameters within a phys-
ical allowed range and calculate the radiative decay for
each set of parameters in the ensemble. The uncertainties
in the results are then given by the standard deviation
from the mean value calculated:

2 Z£1(f_ri)2
A (21)

N

- yor (22)

i
Il

Since the radiative decay of the D7%;(2317) is very small
and the uncertainties are of the same order of magnitude,
we will separately calculate the standard deviation above
and under the mean value. The parameters will be gen-
erated within the ranges [17]:

My = 2060 £ 52 MeV
fp = 182436 MeV
fr= = 100+ 15 MeV
Mp: (2317) = 2316 £ 39 MeV
9p:, (2317)—pK = —6420£1790 MeV
9p*, (2317)—D.y = 9250 = 1430 MeV
9p*,(2317)—D.n, = 1450 £470 MeV
My (3700) = 3698 &35 MeV
9x(3700)—p+p- = 8089+ 3125 MeV

Ix(3700)—pF D= = 53392100 MeV

(23)

When we do the exercise for N=>500 randomly gener-
ated parameter sets, we obtain

Tp: 2317y = 0.47570:550 KeV (24)

and

Tx(s700) = 18.45+ 13.00 KeV (25)

It is instructive to compare our results with those of
[33] for the D*,(2317). They are rather similar. In [33]
the results vary from 0.47 KeV in some approximations
to 1.41 KeV in other approximations. Our uncertainties
stem from different sources, couplings, masses, etc, but
the range of values obtained is very similar. A compari-
son of these results with those of different quark models
is made in [33] and we address the reader to Table III of
this reference. The results obtained with the present pic-
ture are in general smaller than those obtained in quark
models or other pictures. The destructive interference
between the two components of the main isospin chan-
nel is the main reason for it. Precise experiments on
this rate should help us understand better the nature of



this resonance. As for the X(3700), its search as a peak
in some reactions would be a first step. The search for
its radiative decay could follow and, given the large rate
predicted, the investigation of this decay channel does
not look particularly difficult, specially when the ratio
of the radiative decay of the D%*;(2317) — D% to the
D?*,(2317) — 7D} has already been measured [4].

IV. CONCLUSIONS

We have presented here the evaluation of the radiative
decay of the open and hidden-charm scalar mesons which
are dynamically generated from the interaction of two
pseudoscalar mesons. The calculations have been done
for the D},(2317) open-charm scalar state and for the
predicted hidden-charm state X(3700), not yet observed.
We found very different results for the two states. While
the DZ;(2317) decay into yD?* has a width of around 0.5
KeV, the X(3700) has a width into vJ/¢ of the order
of 20 KeV, a factor forty times bigger. One of the rea-
sons, but not the only one, was the large cancellation
between the two charge partners of the isospin compo-
nent of the DK 1=0 state. With the obvious similarities,
we also found subtle differences between the DK molec-
ular picture for the D*,(2317) state and the dynamically
generated picture. The latter one, including more chan-
nels than just the DK, showed sensitive effects from the
Dgn state, particularly because of the large cancellation
found between the dominant Dt KY and K+ DY states.
Yet, within the theoretical uncertainties, the final result
obtained in the two pictures are rather similar.

We also presented a different technical way to evalu-
ate the amplitudes which makes the formalism simpler
and shows immediately the finiteness of the results using
arguments of gauge invariance.

Concerning the X(3700) state and its radiative decay,
the large width obtained for the decay into y.J/1 should
make its observation easy, in principle, and we also re-
called that the predictions on this state were rather solid
so that it should be observed as a bound state or a strong
cusp, in both of which cases the radiative decay could be
investigated. The observation of this state with its rela-
tively large radiative width would provide a boost to the
idea of the low energy scalar mesons with open-charm
and some particular hidden-charm scalar states as dy-
namically generated resonances.
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APPENDIX A: PHOTON COUPLING TO
EXTERNAL LINES

In addition to the diagrams considered in figure [l one
should also include two extra diagrams, for the case of
the decay of charged particles, where the photon couples
to the external lines, see figure [l

P+q

Dyg (2317)

Y

FIG. 4: Diagrams with the photon conected to the external
lines.

These two diagrams are explicitly considered in [33]
and shown to be relevant in the test of gauge invariance.
However, we show here that they vanish in the amplitude
for on-shell D¥*,(2317) and D*.

To prove this we first evaluate the loop function in
figure [t

dq 9D:DK
J(P?)Pte, (D) =i -
( ) EH( s) Z‘/ (271')4 (P 4 q)Q _ m% + je

gp* DK .
m(P‘FQ(J)”fu(DS) (A1)
2

Both diagrams in figure [ imply vector-scalar mixing,
which appears througth the longitudinal part of the vec-
tor meson propagator. Indeed, let us consider the dia-
grams of figure [3 for the vector meson propagator.
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FIG. 5: Diagrams for the renormalization of the vector meson
propagator.

We have:
(a) e DY) (D3)
iD\W(P) = z; P2~ 02 +ic (A2)
PHPY 1
(a) — [ _gnv
D) ( 9 Tpe >P2—M2+ie
pPrPY
+ o (A3)

Where in eq. (A3 we separated explicitly the propa-
gator into its transverse (first) and longitudinal (second)
components. Analogously, figure Eb provides a contribu-
tion to the D} propagator given by:

" (DY)e" (D3)

iDP(P) =i}y 55 = (=) T (P*)PyiDpy, 217 (P)
A
X (=i)J(P >sz§: 2 M T

where ’ﬁD:O(ggn) (P) is the propagator of the scalar par-
ticle.

One can see that the presence of P, P, in eq. (A4)
eliminates the contribution of the transverse part of the
vector meson propagator, hence, only the longitudinal
part contributes, and we obtain:

1

DO(P) = ———J(P?)? (AD)
M P2 — m%;o(zgn)

The iteration of the last diagram of figure [fl and the
sum of all these terms leads to a geometrical series which
renormalizes the longitudinal part of the vector propaga-
tor and leads to:

prpr
P2)M?2

prpv 1

—
P2)M2 _ P2 J(P2)? 1
e 2,2

M ( ) P mD:U(2317)

PPV P2 — m%;o(zsw) (A6)
= P22 2
P2M= p2 m2D20(2317) — L5 J(P?)?

Now comes an important renormalization condition
which is the physical requirement that the longitudinal
part of the vector meson propagator does not contain a
pole of the scalar meson [44, 45]. This condition is only
fulfilled if

J(P? = m%:0(2317)) = 0. (A7)

Next we evaluate the two terms in the amplitude of
figure [l

—iTW = —ie(2Q + K)“EM(V)Z'@D;O(%N)(Q)
x (=)J(Q*)Q"e,(D3)

This term is zero because of the lorentz condition on
the vector meson, Q¢,(D%) = 0. This was already real-
ized and used in [33].

Next we look at the diagram which contributes to the
amplitude in figure db:

(A8)

—iT® = —iJ(P*)Pte,(DY)... (A9)

As we can see, independently of the yV'V coupling, the
term 7 is proportional to J(P? = m2D:0(2317)), which
we have shown before to be zero due to the renormal-

(A4) ization condition of the longitudinal part of the vector

meson propagator.

Our procedure to evaluate the amplitude, hence, relies
upon:

1) The whole set of diagrams is gauge invariant.

2) The diagrams of figured do not give contribution to
the amplitude.

3) Only the set of diagrams of figure [I] give contribu-
tion.

4) Using gauge invariance and the procedure followed
through egs. (9-11), only the d term has to be evaluated,
to which only the diagrams of figure[Tkh and [Ib contribute.
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