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Radiative decay of the Λ∗(1520)
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A recently developed non-perturbative chiral approach to dynamically generate the 3/2− baryon
resonances has been extended to investigate the radiative decays Λ∗(1520) → γΛ(1116) and
Λ∗(1520) → γΣ0(1193). We show that the Λ∗(1520) decay into γΛ is an ideal test for the need of
extra components of the resonance beyond those provided by the chiral approach since the largest
meson-baryon components give no contribution to this decay. The case is different for γΣ decay
where the theory agrees with experiment, though the large uncertainties of these data call for more
precise measurements.

PACS numbers: 24.10.Eq, 25.20.Lj, 11.30.Rd

I. INTRODUCTION

New light has been brought in the study of the meson-baryon interaction by the unitary extensions of chiral
perturbation theory UχPT , showing that some well-known resonances qualify as being dynamically generated. In
this picture the Bethe-Salpeter resummation of elementary interactions derived from chiral Lagrangians guarantees
unitarity and leads at the same time to genuine non-perturbative phenomena such as poles of the scattering amplitude
in the complex plane which can be identified with resonances. Coupled channels play an essential role in this scheme,
as the chiral Lagrangians provide the corresponding transitions within the multiplets, and even physically closed
channels can contribute effectively. It is interesting to note that, even without chiral Lagrangians, the use of basic
interactions for the coupled channels calls for an interpretation of some resonances like the Λ(1405) as quasibound
states of the scattering problem [1, 2].

After earlier studies in this direction explaining the Λ(1405) and the N∗(1535) as meson-baryon (MB) quasibound
states [3, 4, 5, 6, 7] from the interaction of the meson octet of the π with the baryon octet of the N , new efforts
have been undertaken [8, 9] to investigate the low lying 3/2− baryonic resonances which decay in s-wave into 0−

mesons (M) and 3/2+ baryons (B∗) of the decuplet. The latter particles, the 0− mesons and 3/2+ baryons, provide
the building blocks of the coupled channels needed in the study of the meson-baryon s-wave interaction in the 3/2−

channel. A parameter free Lagrangian accounts for this interaction at lowest order and the model exhibits poles in
the different isospin and strangeness channels in the complex

√
s-plane, which have been identified with resonances

such as Λ∗(1520), Σ∗(1670), ∆∗(1700), etc.
However, the 3/2− resonances have also large branching ratios for (0−, 1/2+) MB decays in d-wave, in many cases

being even larger than the s-wave branching ratio due to larger available phase space. For a realistic model that can
serve to make reliable predictions in hadronic calculations, the d-wave channels corresponding to these decays should
be included as has been been done recently in Ref. [10] for one of the 3/2− resonances from Ref. [9], the Λ∗(1520).
For the MB → MB∗ s-wave to d-wave and MB → MB d-wave to d-wave transitions, chiral symmetry does not fix
the coupling strength so that free parameters necessarily enter the model. On the other hand, this freedom allows for
a good reproduction of d-wave experimental data for KN → KN and KN → πΣ via the Λ∗(1520), see Ref. [10, 11].
Once the free parameters are determined by fitting to the experimental data of these reactions, the predictivity of
the model can be tested for different data sets as has been done in Ref. [11] for the reactions K−p → π0π0Λ,
K−p → π+π−Λ, γp → K+K−p, and π−p → K0K−p, finding in all cases good agreement with data.

In the present study we extend the chiral coupled channel approach — without introducing new parameters —
to investigate the radiative decays Λ∗(1520) → γΛ(1116) and Λ∗(1520) → γΣ0(1193) for which new experimental
results exist [12]. These reactions are of particular interest because they provide further insight into the nature of
the Λ∗(1520): A pure dynamically generated resonance would be made out of meson-baryon components, a genuine
resonance would be made of three constituent quarks, but an admixture of the two types is possible and in the real
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world non-exotic resonances have both components, although, by definition, the meson-baryon components would
largely dominate in what we call dynamically generated resonances. Yet, even in this case it is interesting to see if
some experiments show that extra components beyond the meson-baryon ones are called for.

The radiative decay of the Λ∗(1520) provides a clear example of this: in one of the decays, Λ∗(1520) → γΛ(1116),
isospin symmetry filters out the dominant channels πΣ∗ and πΣ of the present approach so that a sizable fraction of
the partial decay width could come from a genuine three quark admixture. In contrast, these dominant channels add
up in the isospin combination for the Λ∗(1520) → γΣ0(1193) reaction, and a match to the experimental data would
point out the dominant component for this channel being the quasibound meson-baryon system in coupled channels.

This situation is opposite to the quark model picture of Ref. [13] where the decay into γΣ0(1193) is suppressed.
This appears as a consequence of selection rules occurring in the limit in which only strange quarks are excited to
p-wave bag orbits. Indeed, the photon de-excitation of the strange quark with a one-body operator does not affect
the isospin of the u, d quarks and hence I = 1 baryons in the final state are forbidden in this limit [13]. However, as
said above, it is precisely the γΣ0(1193) final state which in our hadronic interaction picture appears enhanced. We
should also mention other quark models [14, 15, 16, 17] that enlarge and complement Ref. [13], as well as algebraic
models [18] where the Λ(1520) radiative decay has been evaluated.

In the quark model of Ref. [13] it is shown that the partial decay widths of the Λ∗ depend sensitively on the
q4q admixture which would correspond to meson-baryon components and, thus, could be related to the dynamically
generated Λ∗.

II. FORMULATION

Before we proceed further, and in order to justify the procedure we follow, we present a general perspective of the
ideas and techniques employed in the approach.

The first remark is that the method of dynamically generating resonances is not a tool to describe all resonances
of the particle data group (PDG) [19]. Restricting ourselves to the baryonic resonances, thus far, only the low lying
1/2− and 3/2− resonances qualify as such. The quantum numbers of these resonances are such that they can also be
in principle interpreted as ordinary three constituent quark states with one quark in a p-wave which means that one
should be ready to accept some three constituent quark components in the wave function. Conversely, the coupling
of meson-baryon components to a seed of three constituent quarks is also unavoidable, as given for instance from
the existence of meson-baryon decay channels. Nature will make this meson-baryon cloud more important in some
cases than others, and those where the dress of meson cloud overcomes the original three constituent quark seed are
candidates to be well described in the chiral unitary approach and appear as what we call dynamically generated
resonances where the three constituent quark components are implicitly assumed to be negligible.

Then the question arises, which are the mesons and baryons that are used as building blocks in the chiral unitary
approach and which can be dynamically generated. The answer to this is provided by exploiting the chiral theories
in the large Nc limit. The dynamically generated resonances appear as a solution of the Bethe-Salpeter equation and
hence it is the iteration of the kernel through loop diagrams that will lead to the appearance of these resonances. But
these are sub-leading terms in the large Nc counting that vanish in the limit of Nc → ∞. Hence, the dynamically
generated resonances disappear in a theoretical scheme when Nc → ∞ and the resonances that remain are what
we call genuine ones. In this sense, the ∆(1232) (and other baryons of the decuplet) is a genuine resonance which
appears degenerate with the nucleon in the large Nc limit [20]. This statement might seem to clash with a well-known
historical fact, the dynamical generation of the ∆(1232) from the iteration of the crossed nucleon pole term in the
Chew and Low theory [21]. However, attractive as the idea has always been, the input used in this approach, in
particular the simplified πNN coupling, is at odds with present chiral Lagrangians and hence that old idea is no
longer supported in present chiral approaches. A more modern and updated formulation of the problem, according
with requirements of chiral dynamics is given in [22]. There, the ∆, which qualifies as a genuine resonance, appears
through a Castillejo, Dalitz, Dyson pole [23] in the N/D formulation of [24].

A very important work on the meaning of the large Nc limit and the classification of states into dynamically
generated or genuine resonances is Ref. [25], where the author shows what large Nc means in practice, with some
subtleties about the strict Nc = ∞. At the same time one shows that the ρ meson qualifies as a genuine resonance
while the σ, f0(980), and a0(980) qualify as dynamically generated.

Next we discuss an issue of relevance which is the relationship of the N/D method and the Bethe-Salpeter equation.
This has been discussed in Ref. [24] and [7] but we summarize the problem here for the sake of clarity and completeness.

We start from the equation of unitarity in coupled channels and we shall work in s-wave for simplicity (generalization
to other partial waves can be seen in [24]). Unitarity in coupled channels is written as

ImTi,j = Ti,lσlT
∗
l,j (1)
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where σi ≡ 2Mlqi/(8π
√

s), with qi the modulus of the c.m. three–momentum, and the subscripts i and j refer to the
physical channels. This equation is most efficiently written in terms of the inverse amplitude as

Im T−1(
√

s)ij = −σ(
√

s)iδij . (2)

The unitarity relation in Eq. (2) gives rise to a cut in the T –matrix of partial wave amplitudes which is usually called
the unitarity or right–hand cut. Hence, one can write down a dispersion relation for T−1(

√
s)

T−1(
√

s)ij = −δij

{
ãi(s0) +

s − s0

π

∫ ∞

si

ds′
σ(s′)i

(s′ − s − iǫ)(s′ − s0)

}
+ V −1(

√
s)ij , (3)

where si is the value of the s variable at the threshold of channel i and V −1(
√

s)ij indicates other contributions
coming from local and pole terms, as well as crossed channel dynamics but without the right-hand cut. These extra
terms can be taken directly from chiral perturbation theory (χPT ) after requiring the matching of the general result
to the χPT expressions. Note also that

g(s)i = ãi(s0) +
s − s0

π

∫ ∞

si

ds′
σ(s′)i

(s′ − s − iǫ)(s′ − s0)
(4)

is the familiar scalar loop integral.
One can further simplify the notation by employing a matrix formalism. Introducing the matrices g(s) =

diag (g(s)i), T and V , the latter defined in terms of the matrix elements Tij and Vij , the T -matrix can be writ-
ten as:

T (
√

s) =
[
I − V (

√
s) · g(s)

]−1 · V (
√

s) (5)

which can be recast in a more familiar form as

T (
√

s) = V (
√

s) + V (
√

s)g(s)T (
√

s). (6)

This equation has the formal appearance of the Bethe-Salpeter equation (BSE) and it is indeed this equation. However,
there is a peculiar feature worth noting: the term V gT of the equation is a product of functions V (

√
s), g(s), and

T (
√

s) while in the BSE using an ordinary ~r dependent potential, this term has an explicit d4q integration involving
V and T half off-shell. The appearance of V and T on-shell in Eq. (6) is a simple consequence of the dispersion
relation of Eq. (3).

Note that g(s) of Eq. (4) is nothing but the d4q integral of a meson and baryon propagator (the check of the
imaginary part is immediate), hence in simple words we can say that the dispersion relation justifies a BSE in which
the V and T are factorized on-shell outside the integral of the V gT term. Generalization of this technique to higher
partial waves is done in Ref. [24]. In this case, there is a subtraction polynomial instead of the subtraction constant
of Eq. (4), but in a narrow region around a resonance this can be taken as a constant.

There is a caveat in the argument given above: Eq. (3) contains only the contribution of the imaginary part of
the amplitude corresponding to the right-hand, physical cut. The unphysical, or left-hand cut contribution is not
taken into account. Therefore, there is an approximation involved. Yet, this is an approximation which is kept under
control. In [24] a test was done of the contribution of the left-hand cut in meson-meson scattering with the conclusion
that the contribution is small. But more important: It is weakly energy-dependent in the region of physical energies.
This is the key to the success of the method explored here, since any constant contribution in a certain range of
energies can be accommodated in terms of the subtraction constant that appears in the g(s) function of Eq. (4) (see
also a detailed discussion of the contribution of the left-hand cut in πN scattering in [22]). This finding is not unique
to the former procedure but in some works [26, 27] the crossed nucleon pole terms in πN scattering, which would lead
to the left-hand cut contribution in the dispersion relation, are approximated by a local term.

The techniques discussed in this section have been applied successfully to KN interaction in s-wave [5] and p-waves
[28]. In this latter work, the kernel, V , has contact terms and pole terms corresponding to the Λ, Σ, and Σ∗(1385)
particles. A similar procedure is done in [7] also for KN scattering and in [22] in the πN scattering case. The quality
of the results and the sophistication of that latter model is equivalent to that of other successful relativistic approaches
to πN like [26, 27], and fewer parameters are needed. In the case of the KN interaction of [5] and [28] a quite good
description of the data was obtained with only one parameter.

A. s-wave channels

Following Ref. [9], we briefly recall how the Λ∗(1520) appears as a dynamically generated resonance in the s-wave
interaction of the 3/2+ baryon decuplet with the 0− meson octet. The lowest order term of the chiral Lagrangian
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relevant for the interaction is given by [20] (we use the metric gµν = diag(1,−1,−1,−1))

L = −iT̄ µD/Tµ (7)

where T µ
abc is the spin decuplet field and Dν the covariant derivative given by

DνT µ
abc = ∂νT µ

abc + (Γν)d
aT µ

dbc + (Γν)d
bT

µ
adc + (Γν)d

cT
µ
abd (8)

where µ is the Lorentz index, a, b, c are the SU(3) indices, and Γν the vector current. Let us recall the identification
of the SU(3) components of T to the physical states [29, 30]:

T µ = Tadeu
µ, Tµ = T

ade
uµ,

T111 = ∆++, T112 =
∆+

√
3

, T122 =
∆0

√
3
, T222 = ∆−, T113 =

Σ∗+
√

3
,

T123 =
Σ∗0
√

6
, T223 =

Σ∗−
√

3
, T133 =

Ξ∗0
√

3
, T233 =

Ξ∗−
√

3
, T333 = Ω−. (9)

The phase convention that we follow implies the phases for the isospin states, |π+〉 = −|1, 1〉, |K−〉 = −|1/2,−1/2〉,
|Σ+〉 = −|1, 1〉.

In Ref. [9] the expansion of the Lagrangian is done up to two mesons of incoming (outgoing) momentum k(k′)
which leads to an interaction kernel of the form

Vij = − 1

4f2
Cij(k

0 + k
′0) (10)

for the s-wave transition amplitudes, as in Ref. [5]. For the quantum numbers strangeness S = −1 and isospin I = 0
the relevant channels are πΣ∗ and KΞ∗ with the corresponding coefficients Cij given in Sec. II B.

The matrix V is then used as the kernel of the Bethe-Salpeter equation to obtain the unitary transition matrix [5].
This results in the matrix equation

T = (1 − V G)−1V (11)

where G is a diagonal matrix representing the meson-baryon loop function given in Ref. [10]. The loop function
contains an undetermined subtraction constant, which accounts for terms from higher order chiral Lagrangians that
make it finite. In Ref. [10] the value of this constant has been fixed to ai = −2 for a renormalization scale of µ = 700
MeV. However, once the d-wave channels are introduced in the coupled channel formalism, this constant will be
allowed for fine tuning within close limits.

B. Introduction of d-wave channels

As mentioned in the Introduction, a realistic coupled channel model for the Λ∗(1520) should include also meson-
baryon channels (MB) of the octet of π with the octet of p as the branching ratios into KN and πΣ are large. These
latter states are then automatically in a d-wave state. For the present study we include the d-wave channels following
Ref. [11]. In a previous work [10] the Λ∗(1520) resonance was studied within a coupled channel formalism including
the πΣ∗, KΞ∗ in s-wave and the K̄N and πΣ in d-waves leading to a good reproduction of the pole position of the
Λ∗(1520) of the scattering amplitudes. However, the use of the pole position to get the properties of the resonance
is far from being accurate as soon as a threshold is opened close to the pole position on the real axis, which is the
present case with the πΣ∗ channel.

Apart from that, in the approach of Ref. [10] some matrix elements in the kernel of the Bethe-Salpeter equation
were not considered. Therefore, a subsequent work [11] aimed at a more precise description of the physical processes
involving the Λ∗(1520) resonance. Hence, other possible tree level transition potentials in d-wave are introduced here
following Ref. [11]: K̄N → K̄N , K̄N → πΣ and πΣ → πΣ. For these vertices, effective transition potentials are used
which are proportional to the incoming and outgoing momentum squared in order to account for the d-wave character
of the channels which will be formalized in the following.

Consider the transition K̄N (d-wave) to πΣ∗ (s-wave) as shown in Fig. 1. We start with an amplitude of the form

− itK̄N→πΣ∗ = −iβK̄N |k|2
[
T (2)† ⊗ Y2(k̂)

]

0 0
(12)
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K

Σ∗

π

d−wave s−wave
k

N (1/2,m) (3/2,M)

FIG. 1: The K̄N → πΣ∗ vertex

where T (2) † is a (rank 2) spin transition operator defined by

〈3/2 M | T (2)†
µ |1/2 m〉 = C(1/2 2 3/2; m µ M) 〈3/2|| T (2)† ||1/2〉 ,

Y2(k̂) is the spherical harmonic coupled to T (2)† to produce a scalar, and k is the momentum of the K̄. The third
component of spin of the initial nucleon and the final Σ∗ are denoted by m and M respectively as indicated in
the Clebsch-Gordan coefficients. The coupling strength β is not determined from theory and has to be fixed from
experiment as has been done in Ref. [11] with the results outlined below. Choosing appropriately the reduced matrix
element we obtain

− itK̄N→πΣ∗ = −iβK̄N |k|2 C(1/2 2 3/2; m, M − m)Y2,m−M (k̂)(−1)M−m
√

4π. (13)

In the same way the amplitude for πΣ (d-wave) to πΣ∗ (s-wave) is written as

− itπΣ→πΣ∗ = −iβπΣ |k|2 C(1/2 2 3/2; m, M − m)Y2,m−M (k̂)(−1)M−m
√

4π (14)

and similarly for the rest of the transitions mentioned above. The angular dependence disappears in the loop integra-
tions [10]. The loop function of the meson-baryon system in d-wave is strongly divergent, but an on-shell factorization
can be achieved [10] using arguments from the N/D method from Ref. [24] as explained in the former subsection.
The on-shell factorization ensures at the same time the unitarity of the amplitude after solving the Bethe-Salpeter
equation (11).

Denoting the πΣ∗, KΞ∗, K̄N , and πΣ channels by 1, 2, 3 and 4, respectively, the kernel V of the Bethe-Salpeter
equation (11) is written as:

V =




C11(k
0
1 + k0

1) C12(k
0
1 + k0

2) γ13 q2
3 γ14 q2

4

C21(k
0
2 + k0

1) C22(k
0
2 + k0

2) 0 0

γ13 q2
3 0 γ33 q4

3 γ34 q2
3 q2

4

γ14 q2
4 0 γ34 q2

3 q2
4 γ44 q4

4


 , (15)

with the on-shell CM momenta qi = 1
2
√

s

√
[s − (Mi + mi)2][s − (Mi − mi)2], meson energy k0

i =
s−M2

i
+m2

i

2
√

s
, and

baryon(meson) masses Mi(mi). The elements V11, V12, V21, V22 come from the lowest order chiral Lagrangian
involving the decuplet of baryons and the octet of pseudoscalar mesons as discussed in Sec. II A; see also Ref. [9, 31].

The coefficients Cij obtained from Eq. (7) are C11 = −1
f2 , C21 = C12 =

√
6

4f2 and C22 = −3
4f2 , where f is 1.15fπ, with

fπ (= 93 MeV) the pion decay constant, which is an average between fπ and fK as was used in Ref. [5] in the related
problem of the dynamical generation of the Λ(1405).

In the kernel V we neglect the elements V23 and V24 which involve the tree level interaction of the KΞ∗ channel with
the d-wave channels because the KΞ∗ threshold is far from the Λ∗(1520) mass and its role in the resonance structure
is far smaller than that of the πΣ∗. This is also the reason why the KΞ channel in d-wave is completely ignored.

Summarizing, the parameters of the model are five d-wave coupling strengths γij . Additionally, the subtraction
constants can be fine-tuned around their natural values of −2 and −8 for s-wave loops and d-wave loops, respectively.
The fit to KN → KN and KN → πΣ data has been performed in Ref. [11] and the results for the parameter values
can be found there.

In the study of the radiative decay of the Λ∗(1520) we will need only the coupling strengths of the resonance to
its coupled channels at the resonance position [11]. The effective s-wave (d-wave) couplings gΛ∗MB∗ (gΛ∗MB) are
obtained by expanding the amplitude around the pole in a Laurent series. The residue is then identified with the
coupling strength as described in Sec. IV and we display the result for the g’s in the isospin I = 0 channel from Ref.
[11] in Tab. I.
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TABLE I: Coupling strength of the dynamically generated Λ∗(1520) to (MB∗) in s-wave and (MB) in d-wave [11].

gΛ∗πΣ∗ gΛ∗KΞ∗ gΛ∗KN
gΛ∗πΣ

0.91 −0.29 −0.54 −0.45

Σ* Σ*

Σ* Σ*

Σ*Σ

Σ*

Σ
οΛ ( )

Σ
οΛ ( )

Σ
οΛ ( )

Σ
οΛ ( )

T

π π

(a)

π π

(b)

π

(c)

π

(d)

γ

γ

γ

γ
K

π

π

K

π

N

FIG. 2: Coupling of the photon to the Λ∗(1520). Diagrams (a) and (b) show the coupling to a πΣ∗ loop, which enters together
with the corresponding diagrams in the KΞ∗ channel. The rescattering series that generates the pole of the Λ∗(1520) in the
complex scattering plane is symbolized by T . Diagrams (c) and (d) show the γ coupling to the d-waves of the resonance.

III. RADIATIVE DECAY

For the radiative decay of the Λ∗(1520) we study the reactions shown in Fig. 2 corresponding to γY → πΣ∗.
We consider in the loops all the meson-baryon states of the coupled channels and couple the photon to the first
loop as shown in Fig. 2. In the loop attached to the photon we can have either πΣ∗ or KΞ∗ that couples to the
Λ∗(1520) in s-wave or KN, πΣ which couple in d-wave. We show in the figure with the symbol T the diagrams which
are accounted by the T (i → πΣ∗) amplitude with i any of the four channels πΣ∗, KΞ∗, KN , πΣ. For the photon
coupling we restrict ourselves to the Kroll-Ruderman (KR) and meson-pole (MP) coupling as shown in the figure.
Formally, the photon should be also coupled to the meson and baryon components of the iteration of intermediate
loops forming the Λ∗(1520) but then the first loop vanishes for parity reasons (p-wave and s or d-wave in the first
loop). For the same reason the coupling of the photon to the Λ(Σ0) initial baryon would vanish. The coupling of the
γ to the baryon in the first loop vanishes in the heavy baryon limit and is very small otherwise. A general discussion
of issues of gauge invariance, chiral invariance, etc., within the context of unitarized chiral theories can be found in
[32, 33]. In Ref. [32] one proved that gauge invariance is preserved when the photon is coupled to internal as well as
external lines and vertices. An extra discussion on this issue is given in [33]. According to these findings our present
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TABLE II: Coefficients d for the Feynman rule Eq. (19) with Λ or Σ0 in initial state.

π−Σ∗+ π+Σ∗− K+Ξ∗−

d, Λ → MB∗
−

1√
2

1√
2

1√
2

d, Σ0
→ MB∗

−
1√
6

−
1√
6

−
1√
6

approach fulfills gauge invariance with errors of the order of 2% from the approximations done.
For the diagrams from Fig. 2, the MBB∗ vertices and the Kroll-Ruderman coupling γMBB∗ are needed, for which

we use the Lagrangian from Ref. [30], with the part relevant for the present reaction given by

L = C
(
TµAµB + BAµT µ

)
= C




1,··· ,3∑

a,b,c,d,e

ǫabc T
ade

uµ Ab,µ
d Bc

e +

1,··· ,3∑

a,b,c,d,e

ǫabc B
e

c Ad
b,µ Tade uµ



 (16)

with the same phase conventions as in Eq. (7) and the spin and flavor structure as given in Ref. [9] and Eq. (9). In
Eq. (16), the axial current is expanded up to one meson field,

Aµ =
i

2

(
ξ∂µξ† − ξ†∂µξ

) one Φ−→ ∂µΦ√
2fπ

, ξ = exp

(
iΦ√
2fπ

)
, (17)

Φ, B, B are the standard meson and baryon SU(3) fields [34], and fπ = 93 MeV. For the Kroll-Ruderman vertex
γMBB∗, we couple the photon by minimal substitution to Eq. (16). The coupling strength C is determined from the
∆(1232) decay,

C√
2fπ

=
f∗
∆πN

mπ
(18)

with f∗
∆πN = 2.13. The SU(3) breaking in the decuplet beyond that from the different masses is of the order of 30%

as a fit of Eq. (16) to the partial decay widths of ∆(1232), Σ∗, and Ξ∗ shows [30, 35]. In the present study, we do not
take this breaking into account in order to be consistent with the model for the dynamical generation of the Λ∗(1520)
where the SU(3) breaking from other sources than mass differences is also neglected.

From Eq. (16) and from the minimal coupling with the photon, Feynman rules for (Λ, Σ0) → MB∗, γ(Λ, Σ0)
→ MB∗, and the ordinary γMM vertices are obtained where the meson momentum q is defined as outgoing and the
photon momentum k as incoming,

(−it)B→M(q)B∗ =
d f∗

∆πN

mπ
S† · q, (−it · ǫ)KR = − e c d f∗

∆πN

mπ
S† · ǫ,

(−it · ǫ)γ(k)M(q−k)→M(q) = iec(2q− k) · ǫ,
(19)

with the coefficients d given in Tab. II. In Eq. (19) e > 0 is the electron charge and c = +1 (c = −1) for π+, K+

(π−, K−) and c = 0 for processes with neutral mesons. The photon with the polarization ǫµ is real and we use the
Coulomb gauge ǫ0 = 0, ǫ · k = 0.

For the first diagram in Fig. 2 in which π−Σ∗+, π+Σ∗−, K+Ξ∗− couple in s-wave to T , we construct the amplitude
for the reactions γΛ → πΣ∗ and γΣ → πΣ∗ with isospin I = 0. For this purpose, an isospin combination for the first
loop is constructed according to

|πΣ∗, I = 0〉 = − 1√
3
|π+Σ∗−〉 − 1√

3
|π0Σ∗0〉 +

1√
3
|π−Σ∗+〉,

|KΞ∗, I = 0〉 =
1√
2
|K+Ξ∗−〉 − 1√

2
|K0Ξ∗0〉 (20)
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with the phase conventions from above. Note that states with neutral mesons do not contribute to the loops. Using
the Feynman rules from Eq. (19), the results are [indicating, e.g., πΣ∗ in the first loop by (πΣ∗)]

(−it · ǫ)(I=0)
KR [γΛ → (πΣ∗)

Λ∗

→ πΣ∗] = 0,

(−it · ǫ)(I=0)
KR [γΛ → (KΞ∗)

Λ∗

→ πΣ∗] = −e

2

f∗
∆πN

mπ
G2 T (21) S† · ǫ,

(−it · ǫ)(I=0)
KR [γΣ0 → (πΣ∗)

Λ∗

→ πΣ∗] = −
√

2e

3

f∗
∆πN

mπ
G1 T (11) S† · ǫ,

(−it · ǫ)(I=0)
KR [γΣ0 → (KΞ∗)

Λ∗

→ πΣ∗] =
e

2
√

3

f∗
∆πN

mπ
G2 T (21) S† · ǫ (21)

with T (ij) being the matrix element obtained from the Bethe-Salpeter equation (11) with the channel ordering (ij)
as in Eq. (15). In Eq. (21), G1 and G2 are the ordinary loop functions for πΣ∗ and KΞ∗ given by

Gi =

∫
d3q

(2π)
3

1

2ω

1√
s − ω(q) − E(q) + iǫ

(22)

with the total CM energy
√

s, meson and baryon energy ω and E. For the regularization a cut-off Λ is used. This cut
off is determined such that the Gi functions of Eq. (22) have the same value as obtained in [11] using dimensional
regularization. For this purpose we match the MB∗ loop function in both regularization schemes (dimensional and
cut-off) at s1/2 = 1520 MeV which results in ΛπΣ∗ = 418 MeV for the πΣ∗ channel. This value is then used as the
cut-off for Eq. (22). For the KΞ∗ channel such a matching is not possible at energies so far below the KΞ∗ threshold,
and we set ΛKΞ∗ = 500 MeV. In any case, the final numbers are almost independent of the value of ΛKΞ∗ , first,
because the contribution is tiny and, second, because the cut-off dependence of the s-wave loops is moderate.

In order to evaluate the contribution of the meson-pole term in the second diagram of Fig. 2, we must project the
operator ǫ · (2q − k) S† · (q − k) onto s-wave; for this we neglect k which is relatively small in the radiative decay
(the numerical test keeping the k terms proves this to be a very good approximation). Then, we get as a projection
S† · ǫ 2

3 q2 and we have a new loop function

G̃i = i

∫
d4q

(2π)
4

q2

(q − k)2 − m2
i + iǫ

1

q2 − m2
i + iǫ

1

P 0 − q0 − Ei(q) + iǫ
,

= −
∫

d3q

(2π)
3

q2

2ωiω′
i

1

k + ωi + ω′
i

1

k − ωi − ω′
i + iǫ

1√
s − ωi − Ei(q) + iǫ

1√
s − k − ω′

i − Ei(q) + iǫ
,

[
(ωi + ω′

i)
2

+ (ωi + ω′
i)

(
Ei(q) −

√
s
)

+ kω′
i

]
(23)

where ωi and ω′
i are the energies of the mesons of mass mi at momentum q and q − k, respectively, k is the energy

of the on-shell photon and Ei the energy of the decuplet baryon. For the regularization of the loop we use the same
cut-offs as for Eq. (22) from above. The diagrams with meson-pole terms can be easily incorporated by changing

Gi → Gi + 2
3 G̃i in Eq. (21), resulting in

(−it · ǫ)(I=0)
KR+MP [γΛ → (πΣ∗)

Λ∗

→ πΣ∗] = 0,

(−it · ǫ)I=0
KR+MP [γΛ → (KΞ∗)

Λ∗

→ πΣ∗] = −e

2

f∗
∆πN

mπ

(
G2 +

2

3
G̃2

)
T (21) S† · ǫ,

(−it · ǫ)(I=0)
KR+MP [γΣ0 → (πΣ∗)

Λ∗

→ πΣ∗] = −
√

2e

3

f∗
∆πN

mπ

(
G1 +

2

3
G̃1

)
T (11) S† · ǫ,

(−it · ǫ)(I=0)
KR+MP [γΣ0 → (KΞ∗)

Λ∗

→ πΣ∗] =
e

2
√

3

f∗
∆πN

mπ

(
G2 +

2

3
G̃2

)
T (21) S† · ǫ. (24)

A. Radiative decay from d-wave loops

The third and fourth diagram in Fig. 2 show the photon coupling to the d-wave components of the Λ∗(1520). The
first loop implies two p-wave and one d-wave couplings which lead to a non-trivial angular momentum structure. Note
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TABLE III: Coefficients a and b for the Feynman rule Eq. (25), meson momentum outgoing.

π−Σ+ π+Σ− K−p

a, Λ → MB 1√
6

1√
6

−

√
2

3

b, Λ → MB 1√
6

1√
6

1√
6

a, Σ0
→ MB −

1√
2

1√
2

0

b, Σ0
→ MB 1√

2
−

1√
2

1√
2

that there is no coupling of the Kroll-Ruderman type because the combination of s and d-wave couplings vanishes by
parity in the loop integration.

The MBB p-wave coupling is obtained from the lowest order chiral meson-baryon Lagrangian [34] which leads to
the Feynman rule (meson momentum p outgoing)

(−it) = iL = −
√

2

fπ
σ · p

(
a

D + F

2
+ b

D − F

2

)
(25)

with a and b given in Tab. III where only the channels including charged mesons are denoted. As in the last section,
the isospin zero channel is constructed from the particle channels according to

|πΣ, I = 0〉 = − 1√
3
|π+Σ−〉 − 1√

3
|π0Σ0〉 − 1√

3
|π−Σ+〉,

|KN, I = 0〉 =
1√
2
|K0

n〉 +
1√
2
|K−p〉. (26)

Using the Feynman rules from Eq. (25) and from Eq. (19) for the γMM vertex, the amplitudes read

(−it · ǫ)(I=0)
[γΛ → (πΣ)

Λ∗

→ πΣ∗] = 0,

(−it · ǫ)(I=0)
[γΛ → (KN)

Λ∗

→ πΣ∗] =
e√
2fπ

(
D

3
+ F

)
G̃′

3T
(31) S† · ǫ,

(−it · ǫ)(I=0) [γΣ0 → (πΣ)
Λ∗

→ πΣ∗] = −4eF

3fπ
G̃′

4T
(41) S† · ǫ,

(−it · ǫ)(I=0) [γΣ0 → (KN)
Λ∗

→ πΣ∗] =
e√
6fπ

(F − D) G̃′
3T

(31) S† · ǫ (27)

with the channel ordering i = 1, · · · , 4 being πΣ∗, KΞ∗, KN , πΣ as in the last sections. As above, we have chosen πΣ∗

as the final state which will become clear in Sec. IV when the coupled channel scheme is matched with a formalism
with explicit excitation of the resonance.

The loop function G̃′
i in Eq. (27) for the first loop is given by

G̃′
i = i

∫
d4q

(2π)
4

q2

(q − k)2 − m2
i + iǫ

1

q2 − m2
i + iǫ

1

P 0 − q0 − Ei(q) + iǫ

M

Ei(q)

(
q2

q2
on

)
(28)

which is similar to G̃ from Eq. (23) up to a factor M/E from the non-relativistic reduction of the baryon propagator
and a factor q2/q2

on. As in the case of the MB∗ s-wave loops, the divergence in Eq. (28) is regularized by a cut-off
whose value is obtained by matching dimensional regularization and cut-off scheme of the meson-baryon d-wave loop
at s1/2 = 1520 MeV as explained following Eq. (22). With the subtraction constant from Ref. [10, 11], values for
the cut-off of ΛKN = 507 MeV and ΛπΣ = 558 MeV follow. In the following subsection we present the technical
details which have led to Eqs. (27) and (28), projecting the meson-pole term over d-waves and performing the angular
integrations.
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1. The spin-polarization structure of d-wave loops

The structure of the two p-wave couplings of the first loop in the fourth diagram of Fig. 2 is given by

ǫµ(2q − k)µ σ · (k − q) (29)

where the meson momentum of the MBB vertex is given by q − k and the two mesons in the γMM vertex are at
momentum q−k and q. As ǫ0 = 0 in Coulomb gauge, the spin structure takes the form ǫ·q σ ·q (neglecting the photon
momentum k which is small in the radiative decay). The d-wave structure obtained from σiqiǫjqj → σiǫj(qiqj− 1

3q
2δij)

will combine with the d-wave structure Y2(q̂) coming from the K̄N → πΣ∗ vertex to produce a scalar quantity after
the loop integration is performed (for the second loop, we choose the πΣ∗ channel in the following, but the calculations
hold for any of the four channels in the second loop).

We write

σiǫj(qiqj − 1
3q

2δij) = A
[
[σ ⊗ ǫ]2µ Y2(q̂)

]0

0
(30)

which indicates that the two vector operators ~σ and ~ǫ couple to produce an operator of rank 2 which couples to the
spherical harmonic Y2(q̂) to produce a scalar. The right-hand side can be written as

A
∑

µ

(−1)µ[σ ⊗ ǫ]2µ Y2,−µ(q̂) = A
∑

µ,α

(−1)µY2,−µ(q̂) C(1 1 2; α, µ − α)σαǫµ−α (31)

where C denotes the Clebsch Gordan coefficient. To find the value of A we take the matrix element of both sides of
Eq. (30) between the states m and m′ so that

〈m|σiǫj(qiqj − 1
3q

2δij)|m′〉 = A
∑

µ

(−1)µ Y2,−µ(q̂) ǫµ−m+m′

× C(1 1 2; m − m′, µ − m + m′) C(1
2 1 1

2 ; m′, m − m′) (32)

where we have used 〈m|σα|m′〉 =
√

3 C(1
2 1 1

2 ; m′, α, m). Taking specific values of spin 1/2 components, m and m′,
we obtain

A =

√
8π

15
q2 . (33)

Following Ref. [10], we now include the K̄N → πΣ∗ vertex given by

− itK̄N→πΣ∗ = −iβK̄N |q|2 C(1
2 2 3

2 ; m, M − m)Y2,m−M (q̂)(−1)M−m
√

4π (34)

so that the total spin structure of the d-wave loop in Fig. 2 is essentially given by

J =
∑

m

∫
dΩq

4π
〈m|σiǫj(qiqj − 1

3q
2δij)|m′〉 C(1

2 2 3
2 ; m, M − m)Y2,m−M (q̂)(−1)M−m

√
4π (35)

where we have performed an average over the angles in the integration over the loop momentum q. Using Eqs. (32)
and (33) this can be written as

J =

√
2

3
q2 (−1)1−M+m′

ǫm′−M

×
∑

m

C(1
2 1 1

2 ; m′, m − m′) C(1
2 2 3

2 ; m, M − m) C(1 2 1; m − m′, M − m) (36)

where we have used the well-known relations
∫

dΩq Y2,−µ(q̂) Y2,m−M (q̂) = (−1)µδµ,m−M

and

C(1 1 2; m − m′, m′ − M) = (−1)1−m+m′

√
5
3 C(1 2 1; m − m′, M − m) .
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Σ*Λ (Σ  )ο

Λ (1520)

πγ

FIG. 3: Effective resonance representation of the radiative decay.

The product of three Clebsch-Gordan coefficients is then combined into a single one with a Racah coefficient, resulting
in the identity

∑

m

C(1
2 1 1

2 ; m′, m − m′) C(1
2 2 3

2 ; m, M − m) C(1 2 1; m− m′, M − m)

= −
√

1
2 C(1

2 1 3
2 ; m′, M − m′) (37)

so that we finally have

J =
1√
3

q2 S† · ǫ . (38)

The above relation implies that for practical purposes we can use for the d-wave projection of the two p-wave vertices
the simple form 1√

3
q2 S† · ǫ and for the the d-wave vertex of the MB → MB∗ amplitude the factor βK̄Nq2 and

continue with the formalism exactly as in s-wave.
In the on-shell reduction scheme for the d-wave transitions in the generation of the Λ∗, the factor q2

on from the
vertex is absorbed in the kernel V as can be seen in Eq. (15). As we cannot perform this factorization for the first
loop, we continue using the factor βK̄Nq2 for the d-wave vertex in this loop but then have to divide by q2

on which will

cancel the q2
on in V or the T matrix. All these factors considered, we obtain Eq. (27) with G̃′

i given in Eq. (28).

IV. NUMERICAL RESULTS

In the previous sections the amplitudes for the process γΛ
Λ∗

→ πΣ∗ and γΣ0 Λ∗

→ πΣ∗ have been determined and are
written in terms of the T (i1), the unitary solution of the Bethe-Salpeter equation (11) for meson-baryon scattering
with the transitions from channel i to the πΣ∗ final state. In order to determine the partial photon decay widths of
the Λ∗(1520), the T (i1) is expanded around the pole in the complex scattering plane and can be written as

T (i1) =
gigπΣ∗√

s − MΛ∗(1520)
. (39)

The matrix elements from Eq. (24) and (27) with this replacement for T (i1) is now identified with the resonant process
in Fig. 3, which is written as

(−it · ǫ) = (−igΛ∗πΣ∗)
i√

s − MΛ∗

gΛ∗γΛ(Σ0) S† · ǫ. (40)

This identification allows us to write the effective Λ∗γΛ and Λ∗γΣ0 couplings, gΛ∗γΛ and gΛ∗γΣ0 , in terms of the
couplings gi1 of the Λ∗(1520) in the transition of the channel i → Λ∗(1520) → πΣ∗ with its values given in Tab. I,
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TABLE IV: Experimental data, quark model results from Ref. [13], and results from this study for the partial decay width of
the Λ∗(1520) into γΛ and γΣ0.

Γ (Λ∗(1520) → γΛ) [keV] Γ
(
Λ∗(1520) → γΣ0

)
[keV]

From Ref. [36] 33 ± 11 47 ± 17

From Ref. [37] 134 ± 23

From Ref. [38] 159 ± 33 ± 26

From Ref. [12] 167 ± 43+26
−12

From Ref. [13] 46 17

This study 3 71

resulting in

g
(KΞ∗)
Λ∗γΛ = −e

2

f∗
πN∆

mπ

(
G2 +

2

3
G̃2

)
gΛ∗KΞ∗ ,

g
(πΣ∗)
Λ∗γΣ0 = −

√
2e

3

f∗
πN∆

mπ

(
G1 +

2

3
G̃1

)
gΛ∗πΣ∗ ,

g
(KΞ∗)
Λ∗γΣ0 =

e

2
√

3

f∗
πN∆

mπ

(
G2 +

2

3
G̃2

)
gΛ∗KΞ∗ ,

g
(KN)
Λ∗γΛ =

e(D + 3F )

3
√

2fπ

G̃′
3 gΛ∗KN ,

g
(πΣ)
Λ∗γΣ0 = −4eF

3fπ
G̃′

4 gΛ∗πΣ,

g
(KN)
Λ∗γΣ0 =

e(F − D)√
6fπ

G̃′
3 gΛ∗KN . (41)

The upper index in brackets indicates which particles are present in the first loop. Adding all processes, we find using

gΛ∗γΛ = g
(KΞ∗)
Λ∗γΛ + g

(KN)
Λ∗γΛ ,

gΛ∗γΣ0 = g
(πΣ∗)
Λ∗γΣ0 + g

(KΞ∗)
Λ∗γΣ0 + g

(πΣ)
Λ∗γΣ0 + g

(KN)
Λ∗γΣ0 , (42)

the partial decay width for the processes Λ∗(1520) → γΛ and Λ∗(1520) → γΣ0 is given by

Γ =
k

3π

MY

MΛ∗

|gΛ∗γY |2 (43)

where Y = Λ, Σ0 is the final state hyperon and k = λ1/2(MΛ∗ , 0, M2
Y )/(2MΛ∗) the CM momentum of the decay

products.
In Tab. IV the numerical results from this study are compared with experimental data. For the γΣ0 final state, our

result almost matches within errors the value given in Ref. [36], and certainly matches it considering the theoretical
uncertainties that we will estimate below. The experimental value from Ref. [36] is the only direct measurement of
Γ(Λ∗ → γΣ0). In the same experiment [36], the Γ(Λ∗ → γΛ) partial width has also been determined but lies far
below more recent measurements, see Tab. IV. Note, that the value from Ref. [19] for Γ(Λ∗ → γΣ0) is around six
times larger than the value from Ref. [36]. However, this large value is not a direct measurement (see Ref. [39]) but
is extrapolated from Γ(Λ∗ → γΛ) by using SU(3) arguments in Ref. [37]. Summarizing, the experimental situation is
far from being clear. In the present study we compare to the direct measurement of Γ(Λ∗ → γΣ0) = 47 ± 17 keV as
a reference, but an independent experimental confirmation of this value would be desirable. Efforts in this direction
have been announced [40].

The theoretical value for the γΛ final state in Tab. IV is systematically below experiment although there are large
discrepancies in the data. This suggests that the decay mechanisms could come from a different source than the
coupled hadronic channels. The theoretical value is small because of large cancellations: In the scheme of dynamical
generation, the dominant building channel of the Λ∗(1520) is given by πΣ∗ as can be seen in Tab. I. However,
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Λ or Σ0

γ

Σ− or Σ∗−

π+

Λ∗

π+

γ

Λ or Σ0π+

π−
Λ∗

≡

FIG. 4: Alternative representation of the photonic loop with πΣ and πΣ∗.
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FIG. 5: Cut-off dependency of Γ (Λ∗(1520) → γΛ) [keV]. Contributions for different particles in the first loop and coherent
sum. Dotted line: KΞ∗ in s-wave. Dashed line: KN in d-wave. Thick solid line: Coherent sum.

in the isospin combination from Eq. (20) which is needed in Eq. (24), this channel precisely vanishes because of
the cancellation of the π+Σ∗− and π−Σ∗+ contributions. The same holds for the πΣ channel in d-wave with the
cancellation in Eq. (27) from the isospin combination in Eq. (26). This channel is important as the branching ratio
into πΣ is large. In contrast, the diagrams with π+Σ∗− and π−Σ∗+ add in the I = 0 combination with γΣ0 in the
final state instead of γΛ, as Eq. (24) shows, and the same is true for πΣ in d-wave. As a result, a much larger partial
decay width for the γΣ0 final state is obtained.

The cancellation of the πΣ and πΣ∗ channels can be also understood when we turn the external baryon line around
and redraw the decay process as shown in Fig. 4. First, we consider the case with the Λ. The π+π− system is
necessarily in JP = 1− as these are the quantum numbers of the photon. As a consequence, the condition L+S + I =
even for the two-pion state where L = J = 1 and S = 0 can only be fulfilled if the two-pion state is in I = 1; this
is in contradiction to I = 0 of the ΛΛ∗ system. This is independent of the interaction denoted with the gray dashed
circle in Fig. 4. In contrast, if the baryon on the right side is a Σ0, then the Σ0Λ∗ system is in an isospin one state,
so that a finite contribution is expected. If the π+π− system is replaced with K+K−, there is no restriction imposed
by L + S + I = even, so this process is possible for both Λ or Σ0 on the right side.

The situation is illustrated in Fig. 5 and 6 where the partial decay widths are plotted as a function of the cut-off
in the first loops. Indeed, the large πΣ and πΣ∗ channels that contribute in Fig. 6 are missing in Fig. 5 and
render the width small. Note also that the d-wave loops introduce a relatively strong cut-off dependence. Our cut-offs
from Secs. III and III A have been uniquely fixed by matching the cut-off scheme to the dimensional regularization
scheme of the MB∗ and MB loop functions that generate dynamically the Λ∗(1520). The latter have values for the
subtraction constants which lead to good data description in KN → KN and KN → πΣ [11]. Therefore, assuming
that the strong interaction in these processes fixes the cut-offs, their values should be taken seriously and not changed
for the first loop with the photon. On the other hand, the strong cut-off dependence is a large source of theoretical
error in the model of the radiative decay such that uncertainties as big as 50 % would not be exaggerated. With
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FIG. 6: Cut-off dependency of Γ
(
Λ∗(1520) → γΣ0

)
[keV]. Contributions for different particles in the first loop and coherent

sum. Dotted line: KΞ∗ in s-wave. Dashed line: KN in d-wave. Dashed dotted line: πΣ∗ in s-wave. Double dashed dotted
line: πΣ in d-wave. Thick solid line: Coherent sum.

this uncertainty the Λ∗(1520) → γΣ0 is clearly compatible with the only data available. But the Λ∗(1520) → γΛ is
certainly not. However, the fact that the only measurement for Λ∗(1520) → γΣ0 is done in an experiment where the
Λ∗(1520) → γΛ disagrees so strongly with other measurements calls for caution and and further data on this decay
rate is most needed.

On the other hand, even with large uncertainties our prediction for Λ∗(1520) → γΛ is definitely small. Hence
we have pinned down an observable which is extremely sensitive to extra components of the Λ∗(1520) resonance
beyond the meson-baryon ones provided by the chiral unitary approach. The sensitivity shows up because of the
exact cancellation of the contribution from the most important components provided by the chiral unitary approach.

V. CONCLUSIONS

The chiral unitary model for the Λ∗(1520) has been extended in order to describe the radiative decay of the Λ∗.
The study of the two decay modes into γΛ and γΣ0 can help gain insight into the nature of the Λ∗, as to whether it
is a genuine three quark state, a dynamically generated resonance, or a mixture of both.

For the γΣ0 final state we have seen that the model of dynamical generation matches the empirical value, although
there are certain theoretical uncertainties from the d-wave loops in the model. However, the good reproduction of
the empirical value fits in the picture because the dominant channels of our coupled channel model add up for this
decay, and in some quark models, the dominant three quark component for this decay is small. In contrast, we find
very little contribution from our model for the γΛ final state due to a cancellation of the dominant channels, so that
this decay should be dominated by the genuine three-quark component in a more realistic picture of the Λ∗(1520) as
a hybrid with some three constituent quark component and a substantial meson-baryon cloud.

More precise experimental information and theoretical tools are needed in order to make more quantitative conclu-
sions about the Λ∗(1520), but the findings of the present study point in the direction of the Λ∗ being a composite object
of a genuine 3-quark state and a dynamical resonance, with the first component dominating the Λ∗(1520) → γΛ decay
and the second the Λ∗(1520) → γΣ0 decay. Extra experimental work, measuring other couplings of the Λ∗(1520), like
the one to K̄∗, would also bring relevant information on the nature of the Λ∗(1520), as recently shown in Ref. [41].
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