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Abstract

We study the structure of the baryon resonances Λ(1405) and Λ̄(1405) in J/ψ four body

decays J/ψ → ΣΣ̄ππ in the framework of a coupled channel chiral unitary approach.

With still sufficient freedom for model parameters, the Λ(1405) and Λ̄(1405) resonances

are generated by simultaneously taking the meson baryon and meson anti-baryon final

state interactions into account. The πΣ (πΣ̄) invariant mass distributions peak around

1410 MeV, which favors the assertion that the Λ(1405) (Λ̄(1405)) is a superposition of

the two Λ(1405) (Λ̄(1405)) states which dominantly couple to K̄N (KN̄) and πΣ (πΣ̄),

respectively. We also calculate the amplitude for isospin I = 1 which gives hints on a

possible I = 1 baryon resonance in the energy region of the Λ(1405), which up to now

has not been observed.

http://arxiv.org/abs/nucl-th/0409076v1


1. Introduction

The case of the Λ(1405) is one of the examples of dynamically generated resonances

which was already described within scattering theory with coupled channels in [1]. More

recently the advent of nonperturbative methods with input from chiral Lagrangian has

set that original idea on firmer grounds [2, 3, 4, 5, 6, 7, 8, 9]. The Λ(1405) resonance,

appearing about 30 MeV below the K̄N threshold plays a key role in the K̄N interaction

and related processes and is a subject of debate concerning its nature, whether it is a

genuine three quark system [13, 14] or a molecular-like meson-baryon bound state where

chiral dynamics plays an important role. The recent discovery of the pentaquark [15]

should stimulate again the debate on the nature of the Λ(1405) since the existence of

that exotic state forces an interpretation of that baryon with at least five quarks [16, 17],

although molecular structures with KπN (heptaquark) have also been investigated [18,

19]. Within the chiral approach of [2, 3, 4, 5, 6, 7, 8, 9] the Λ(1405) stands as a quasibound

state of meson baryon, mostly K̄N and πΣ, which is also equivalent to five quark in the

quark picture. The existence of the pentaquark makes more easily acceptable the idea of

other pentaquark non-exotic state and vice versa. No doubt, explorations on the nature

of the Λ(1405) will provide more clues to understand the non-perturbative nature of the

QCD dynamics.

Chiral perturbation theory (ChPT) directly deals with hadron interactions in terms

of meson-baryon degrees of freedom. As an effective field theory which incorporates the

chiral symmetry of QCD, ChPT has proved to be very successful in describing hadron

interactions at low energies by expanding the chiral Lagrangian in powers of the hadron

momentum. However, due to the problem of convergence of ChPT at relatively higher

energies where most meson and baryon resonances appear, the plain ChPT can do little

for the description of resonances. The lowest energy resonance in ππ scattering is the

σ which appears as a pole in the complex plane with a very large width. This is the

case in the chiral unitary approach discussed below [10, 11] and is also the case in the

ππ scattering amplitudes constructed by the Roy equation in [12], where the width is as

big as the real part of ∼500 MeV. Although this pole, far away from the real axis, has

small repercussion at low energies where perturbative chiral calculations can be correctly

applied, the existence of the complex variable theorem stating that a series expansion

has a radii of convergence till the first singularity, already sets the limits on how far the

perturbation expansion can be pushed.

The chiral unitary coupled channels approach, which makes use of the standard ChPT

1



Lagrangian together with an implicit or explicit expansion of Re T−1, instead of the T

matrix, has proved to be very successful in describing meson meson [10, 11] and meson

baryon [6] interactions at higher energies. By employing the Chiral Lagrangian at the

lowest order and solving the Bethe-Salpeter equation, this method was able to reproduce

well the low-lying meson and baryon resonances in the PDG [10, 11, 20]. When doing the

extrapolation of ChPT at higher energies one usually neglects crossing symmetry since

only the right hand cut is used as a source of imaginary part of the amplitude and the

left hand cut (unphysical cut) is neglected. This, however, can be improved, as was done

in [21] for the meson meson interaction. Also in [4] a systematic method is proposed

to also account for the left hand cut by including perturbative crossed loop diagrams in

the kernel of a dispersion relation for T−1. In [21] it was found that the effect of the

left hand cut was very small in a wide range of energies for the meson meson interaction

below
√
s=1.2 GeV. Similarly, in [4] the effect of the left hand cut was estimated to be

even smaller since crossed terms are reduced by factors of ( q

2M
)2 (with M the baryon

mass) in the meson baryon interaction which are very small at the energies where the

low lying baryon resonances appear. The accuracy of the approximation neglecting the

left hand cut has an important technical advantage since, as proved in [4], the dispersion

relation requires only the imaginary part of the meson baryon loop (on shell part) and

this leads to a Bethe-Salpeter (BS) type equation, identical to the one used in [6, 10],

where the kernel (potential) is needed only on shell. This converts the BS equation

into an algebraic equation, much as it happens with the use of a separable interaction,

although there is no need to define such a separable kernel.

With this chiral unitary approach the authors of [22] calculated the photoproduction

of the Λ(1405) on the proton and nuclei and found different shapes of πΣ invariant mass

distributions in different πΣ charge channels, which was lately experimentally confirmed

in [23] and gave support to the assumption that the Λ(1405) is a meson baryon loosely

bound state. Additionally, it was found in [25] that the SU(3) symmetry breaking leads

to two poles of K̄N scattering matrix that might be responsible for the nominal Λ(1405),

one dominantly coupling to πΣ and the other to K̄N , and these poles are the mixing of

the SU(3) singlet and octet. It was concluded there that there are two Λ(1405) resonances

and the experimentally observed one is a superposition of the two states. However,

whether the two poles really exist in the Λ(1405) region is still unsolved experimentally.

For this aim the authors of ref. [26] suggested isolating the pole of Λ(1405) that couples

dominantly to K̄N in a photo-induced K∗ vector meson production process. It will be

interesting to further study the structure of Λ(1405) in particular processes.
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Figure 1: Diagrams for J/ψ → BB̄MM decays including the meson baryon and meson anti-
baryon final state interactions.

In this work we propose to extract the structure of the Λ(1405) in the decay processes

J/ψ → ΣΣ̄ππ using the coupled channel chiral unitary approach to account for meson

baryon and meson anti-baryon final state interactions (FSI). It is worth noting that in

these processes the Λ̄(1405) could be generated through the MB̄ FSI, together with the

Λ(1405) generated through the MB FSI, and this would provide valuable information

on the structure of the resonances. The J/ψ four body decays have been proposed

to provide further information on the low-lying meson resonances in ref. [27], where

the chiral unitary approach was employed to account for meson meson FSI without

considering the MB FSI. A natural continuation of the work of [27] is to look for the

meson baryon FSI that can lead to the formation of resonances, particularly those which

in the chiral unitary approach are dynamically generated. Experimental interest on the

issue have been shown in a recent effort to search for the penta quark state in J/ψ four

body decays J/ψ → K0
SpK

−n̄ and J/ψ → K0
S p̄K

+n [28].

2. The model

We proceed now to construct the amplitudes for J/ψ → BB̄MM simultaneously

taking MB and MB̄ FSI into account, which is diagrammatically described in Fig. 1.

Due to the lack of the knowledge on the dynamics of charmonium decays, we employ

the phenomenological Lagrangian used in [27] which incorporates SU(3) symmetry to
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account for the vertex of J/ψ four body decays. Assuming that the J/ψ is a SU(3) singlet

[29], the most general BB̄MM Lagrangian of SU(3) scalar nature without derivatives in

the fields have the following possible structures:

L1 = g Tr[B̄γµBΦΦ]Ψµ, L2 = g Tr[B̄γµΦBΦ]Ψµ,

L3 = g Tr[B̄γµΦΦB]Ψµ, L4 = g Tr[B̄γµB]Tr[ΦΦ]Ψµ, (1)

with Φ, B the ordinary SU(3) matrices for pseudoscalar mesons and 1
2

+
baryons, respec-

tively, Ψµ the J/Ψ field and g a constant to provide the right dimensions. In constructing

the effective Lagrangians we have imposed SU(3) symmetry to the Lagrangians together

with the requirement of a minimum number of derivatives in the fields. We deliberately

do not search for Lagrangians implementing chiral symmetry, which in view of the large

number of particles involved and the fact that derivatives in the field are implied, would

blow up the number of possible structures. Chiral Lagrangians are particularly useful to

show how the interaction would change in the chiral limit when quark masses go to zero,

but if the purpose is to have a parametrization of an amplitude accounting for the possible

SU(3) structures, a procedure like the one done here is sufficient within a limited range

of energies. This is more the case in an approach like ours, in which, as noted above, a

factorization of on shell vertices is implicit in the loop, which will not make derivative

couplings to bring extra divergences. Similar effective Lagrangians, without derivatives

in the fields, have been used in related problems of J/ψ decay, like J/ψ → φππ [30, 31].

As discussed in [30], the use of other Lagrangians involving derivative of the fields does

not change the results and conclusions.

We then take the Lagrangian of our problem as a linear combination of La, a =

1, 2, ..., 4,

L =
4

∑

a=1

xaLa. (2)

This leads to the vertex for J/ψ → (MB̄)i(MB)j

Ṽij = −c̃ij g ūj(p
′)γµvi(p)ǫµ(J/ψ), (3)

where we have already specified that we have a baryon anti-baryon production, rather

than the baryon destruction and creation that one has for the meson baryon amplitude.

The eight coupled (MB)i (i=1, 2, ..., 8) channels that we consider are K−p, K̄0n, π0Λ,

π0Σ0, ηΛ, ηΣ0, π+Σ− and π−Σ+. And the (MB̄)i channels are K+p̄, K0n̄, π0Λ̄, π0Σ0,
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ηΛ̄, ηΣ0, π−Σ− and π+Σ+. The KΞ state were shown in [6] to have no relevance in the

Λ(1405) dynamics. We list the c̃ij coefficients in Table I and we note that c̃ji = c̃ij.

Table I : c̃ij coefficients for J/ψ → (MB̄)i(MB)j decays

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+

K+p̄
x1 +

x3+2x4

x3
x1

2
√

3
+

x2

2
√

3
− x3√

3

x1

2 + x2

2 − x1

6 +
5x2

6 + x3

3

− x1

2
√

3
+

x2

2
√

3

x2 x1

K0n̄
x1 +

x3+2x4

− x1

2
√

3
−

x2

2
√

3
+ x3√

3

x1

2 + x2

2 − x1

6 +
5x2

6 + x3

3

x1

2
√

3
−

x2

2
√

3

x1 x2

π0Λ̄

x1

3 + x2

3 +
x3

3 + 2x4

0 0 x1

3 + x2

3 +
x3

3

0 0

π0Σ0
x1 +x2 +
x3 + 2x4

x1

3 + x2

3 +
x3

3

0 x2 x2

ηΛ̄
x1 +x2 +
x3 + 2x4

0 x1

3 +
x2

3 + x3

3

x1

3 +
x2

3 + x3

3

ηΣ0

x1

3 + x2

3 +
x3

3 + 2x4

− x1√
3
+

x3√
3

x1√
3
− x3√

3

π−Σ−
x1 +

x3+2x4

x2

π+Σ+
x1 +

x3+2x4

In the rest frame of J/ψ, ǫ0r(J/ψ)=0 for the three polarization vectors and eq.(3) in the

non-relativistic approximation for the nucleons can be written as

Ṽij = c̃ij g ~σ · ~ǫ(J/ψ) (4)

with ~σ the standard Pauli matrices.

We then construct the J/ψ → (MB̄)i(MB)j amplitudes involving both MB and

MB̄ FSI. The decay amplitude with only MB FSI can be written as

Tij = Ṽij +
∑

k

Ṽik Gk tkj, (5)

where tkj are the scattering amplitudes for (MB)k → (MB)j which have been calculated

in ref. [6]. The (MB)k loop integrals

Gk = i
∫

d4q

(2π)4

Mk

Ek(~q)

1

k0 + p0 − q0 −Ek(~q) + iǫ

1

q2 −m2
k + iǫ

=
∫

d3q

(2π)3

1

2ωk(q)

Mk

Ek(~q)

1

p0 + k0 − ωk(~q) − Ek(~q) + iǫ
(6)
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only depend on the MB invariant mass p0 +k0 =
√
s, where p and k are the momentum

of the final baryon and meson, respectively, the masses of the particles and the cutoff

of the meson three momentum in the loop qmax. In Eq. (6) Mk, Ek are the mass and

energy of the baryon in the loop, respectively, and ωk =
√

~q2 +m2
k is the energy of

the meson with the mass mk in the loop. The amplitudes Tij in Eq. (5) are functions

of
√
s once qmax is fixed. In our calculation we take qmax=630 MeV. The value of

qmax was fixed in [6] in order to get an agreement of the theory with the lower energy

parameters of the K−p interaction, and with this only parameter the K−p scattering

cross sections and the invariant mass distribution of the Λ(1405) resonance were well

reproduced. Proper behavior of the loop functions requires that this cut off be reasonably

bigger than the on shell momenta of the particles inside the loops. This puts some limit

to the range of energies where this can be used. A dimensional regularization of the

loops was done in [4] and [20] but, as shown in [4], the two procedures are practically

equivalent by establishing a correspondence between the cut off and the subtraction

constant in dimensional regularization. In [20] it was found that the cut off method

could be safely used up to energies of
√
s=1670 MeV where the Λ(1670) resonance is

dynamically generated.

The final amplitudes for J/ψ four body decays taking both MB and MB̄ FSI into

account can be constructed as

T̃ij = Tij +
∑

k

t̄ikḠkTkj

= Ṽij +
∑

k

ṼikGktkj +
∑

k

t̄ikḠkṼkj +
∑

kl

t̄ikḠkṼklGltlj , (7)

where t̄ik is the scattering amplitudes for (MB̄)i → (MB̄)k and Ḡk is the (MB̄)k loop

integration as given in Eq. (6). It can be seen that Eq. (7) exactly corresponds to the

diagrammatic description in Fig. 1. Taking the same value as the qmax of the G loop

integration for the cutoff in the Ḡ loop integration, the t̄ and Ḡ matrices are identical

to the t and G matrices derived in ref. [6], respectively, although they are functions of

the MB̄ invariant masses
√
s′. Hence the amplitudes T̃ij in Eq. (7) are functions of

√
s

and
√
s′.

In Eqs. (5) and (7), the MB and MB̄ amplitudes in the loops are taken on shell. It

was shown in [6] that the contribution of the off shell parts could be reabsorbed into a

redefinition of coupling constants in MB scattering. Analogously, for the loop involving

the vertex Ṽij in Eq. (5), which has a different structure from the one involving the

MB amplitude, the contribution of the off shell part in the loop could be absorbed by
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renormalizing the coupling constant g in Eq. (1) since the integration for the off shell

part in just one loop has the same structure as the tree diagram [6]. Similar arguments

also apply for the off shell part of MB̄ loops in Eq.(7).

In this paper we do not consider the MM interaction nor the BB̄ interaction. The

neglect of the BB̄ interaction is justified since we are taking the phenomenological La-

grangians of eq. (1) which were used in [27] and fitted to the experimental data without

taking into account the BB̄ interaction. Then the effect of BB̄ interaction in the re-

gion of energies of interest is accounted for phenomenologically in the couplings fitted

to experiment in [27]. This is, however, not the case for the MM interaction since this

one was taken into account explicitly in [27]. However, the choice of different regions of

phase space in [27] and the present work justifies the neglect of the MB interaction in

[27] and of the MM interaction in the present work. The basic point is that the meson

meson interaction is relatively weak except in the region of the resonances. These would

be in the case of meson meson interaction the f0(980) and a0(980) and to a much smaller

extend the broad σ, κ of the ππ, πK interaction. In the case of MB interaction, the

resonance of relevance in the region studied here is the Λ(1405). When we concentrate

in a narrow region around 1405 MeV for the invariant mass of πΣ and in addition in

the same region of energies for the invariant mass of the πΣ̄, one selects a very narrow

region of the four body phase space where there is a large enhancement because of the

double resonance structure of πΣ and πΣ̄. However, this region of phase space contains

the whole range of invariant masses of the meson meson combinations, and then, the

possible effects of the MM resonances is diluted since the MM resonance region will

only appear in a very narrow region of the phase space where one is integrating. A

practical manifestation of this disentangling of the interactions when one look at peaks

of resonances in particular channels is seen in [22] where one studies the γp → K+πΣ

with πΣ in the Λ(1405) resonance region. The MB interaction is considered there but

the MM interaction is neglected and the predictions show good agreement with experi-

mental results [23]. Conversely, in [24] the same reaction was used, paying attention to

the meson meson interaction alone, in order to evaluate cross sections for the production

of scalar mesons.

3. Results and discussions

The mass distribution of the decays J/ψ → (MB̄)i(MB)j with respect to the MB
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and MB̄ invariant masses, which is particularly suited to search for resonances, can be

written as [32]

d2Γij

dMIdM ′
I

=
1

(2π)82MJ

π3

2M2
JM

2
IM

′
I
2 4MIM

′
IMM ′ λ

1

2 (MI
2, m2,M2)

λ
1

2 (M ′
I

2
, m′2,M ′2)λ

1

2 (M2
I ,M

′
I

2
,M2

J )
∑ ∑

|T̃ij(MI ,M
′
I)|2, (8)

with MI and M ′
I being the MB and MB̄ invariant masses, respectively, m and m′ the

meson masses in final states, M and M ′ the B and B̄ masses, respectively, MJ the mass

of J/ψ, and λ(x2, y2, z2) the Kaellen function. Eq. (8) differs slightly from eq. (46) of

[32] because of our different normalization of the fields and the T̃ matrix. It should be

stated that the simple form of this equation holds because of our neglect of the meson

meson and baryon antibaryon interactions. We shall come back to this point at the end

of the results section.

We then perform calculations for the decays J/ψ → ΣΣ̄ππ to search for the Λ(1405)

and Λ̄(1405). We have the xi with i = 1, 2, ..., 4 in Eq. (2) as the model parameters.

Similarly to what was done in [27], we define the ratios ri = xi

x3

with i=1, 2, 4, which

were evaluated by fitting the experimental data of J/ψ → pp̄π+π− decay. It was shown

in [27] that the parameter r1 influences the shape of the ππ spectrum of J/ψ → pp̄π+π−

at higher energies, but its contribution could be included in the variation of r4. The

parameter r2 does not influence the J/ψ → pp̄π+π− but plays an important role for

the decays considered here. In our calculations r4 is given the values of ref. [27], which

reproduces the empirical ππ spectrum in J/ψ → pp̄π+π− decay. We take r4=0.2, which

has been used in ref. [27]. As for r2 we take it as a free parameter and vary it in a wide

range from 0.1 ∼ 2.0. Although the branching ratio obtained varies much, the important

thing from where the conclusions will be drawn is the shape of the distribution and this

does not depend on the precise value of r2. Similarly, changes in r2 for the value r4=-

0.27, which was also able to well reproduce the data for J/ψ → pp̄π+π−, as is shown

in ref. [27] within a reasonable range, also does not change the qualitative character

of the results for the channels considered here. In the following we take r4=0.2 and

r2=0.6 to give characteristic descriptions for the generation of Λ(1405) and Λ̄(1405) in

J/ψ → ΣΣ̄ππ decays. Then we have the value of the constant gα = (x3 + 2x4)g =

1.1×10−6 MeV −2, which determines the shape of the ππ spectrum and the width of the

decay J/ψ → pp̄π+π− [27].

We present the πΣ invariant mass distributions for the nine J/ψ → ΣΣ̄ππ decay

channels in Fig. 2, where baryons and mesons are assigned physical masses. It can be
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seen that the shapes of the distributions are quite different from each other, where all

coupled channels collaborate to build up the Λ(1405) resonance. The figure has labels

like J/ψ → Σ−π−Σ0π0 etc, which means that one measures simultaneously the Σ−π−

and Σ0π0 and integrates eq. (8) over the invariant mass of Σ−π− to provide the Σ0π0

mass distribution shown in the figure. Similarly we could plot the figure for dΓ
dM ′

I

for

the invariant mass of the Σ−π− and other channels integrating over the invariant mass

of the πΣ system. Certainly channels like J/ψ → Σ−π−Σ−π+ would have identical

distributions for the Σ−π− or Σ−π+ invariant masses. For other combinations one finds

small differences between Σ̄π and Σπ mass distributions because of small mass differences

of the involved Σ baryons and π mesons.

The results in Fig. 2 can be better understood with the isospin decomposition for

πΣ

|π0Σ0〉 =

√

2

3
|2, 0〉 −

√

1

3
|0, 0〉 ,

|π+Σ−〉 = −
√

1

6
|2, 0〉 −

√

1

2
|1, 0〉 −

√

1

3
|0, 0〉 ,

|π−Σ+〉 = −
√

1

6
|2, 0〉 +

√

1

2
|1, 0〉 −

√

1

3
|0, 0〉 (9)

and for πΣ̄

|π0Σ0〉 =

√

2

3
|2, 0〉 −

√

1

3
|0, 0〉 ,

|π−Σ−〉 = −
√

1

6
|2, 0〉 +

√

1

2
|1, 0〉 −

√

1

3
|0, 0〉 ,

|π+Σ+〉 = −
√

1

6
|2, 0〉 −

√

1

2
|1, 0〉 −

√

1

3
|0, 0〉 (10)

with |π+〉 = −|1, 1〉, |Σ+〉 = −|1, 1〉 and |Σ−〉 = −|1, 1〉, we have the amplitudes for the

particular J/ψ → (MB̄)i(MB)j decays

T̃44 =
2

3
T (2) +

1

3
T (0) ,

T̃47 = − 1

3
T (2) +

1

3
T (0) ,

T̃48 = − 1

3
T (2) +

1

3
T (0) ,

T̃77 =
1

6
T (2) − 1

2
T (1) +

1

3
T (0) ,
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T̃78 =
1

6
T (2) +

1

2
T (1) +

1

3
T (0) ,

T̃88 =
1

6
T (2) − 1

2
T (1) +

1

3
T (0) , (11)

and we note T̃ij = T̃ji. It can be seen that the shapes for the particular decay channels

show evidence of some isospin breaking which appears naturally in our framework be-

cause of the different masses of the members of the same isospin multiplet. This is the

case, for instance, of the channels J/ψ → Σ0π0Σ−π+ and J/ψ → Σ0π0Σ+π− (channels

47 and 48) in Fig. 2(a), which according to eq. (11) should give the same distribu-

tions. Similarly, the distributions of the channels J/ψ → Σ−π−Σ0π0 in Fig. 2(b) and

J/ψ → Σ+π+Σ0π0 in Fig. 2(c) (channels 74 and 84, respectively) should also be equal.

The larger differences that one observes in Fig. 2(b) between J/ψ → Σ−π−Σ−π+ and

J/ψ → Σ−π−Σ+π− (channels 77 and 78, respectively), are due to mixed terms of the

type Re(T (1)T (2)∗) and Re(T (1)T (0)∗), implying, in this case, that these terms are larger

than the differences due to isospin breaking.

In Fig. 2 we have also calculated the averaged cross sections. By using again eqs.

(11) it is easy to see that all the mixed terms Re(T (i)T (j)∗) in the modulus squared of

the amplitudes cancel in these averages and one has only contributions of |T (i)|2. These

averages should not be the same since they come from different combination of |T (i)|2,
but the fact that they are not very different indicates that they are all dominated by the

|T (0)|2 component, which appear in all of them with the same weight, 1
3
|T (0)|2, and that

the other isospin components are much smaller. Hence, this averaged distributions is the

closest thing one can get experimentally for the shape of the Λ(1405) resonance. ¿From

the position of the peak of the distributions around 1410 MeV and the width of around

60 MeV, the results imply that we have a superposition of the two Λ(1405) (Λ̄(1405))

resonances (with poles at (1390-i60) MeV and (1426-i16) MeV) found in [25].

Now we turn to another interesting potential use of these reactions. It was found in

[4] that there was a pole of I = 1 close to the K̄N threshold which would correspond to a

new resonance not accounted for in the Particle Data Book. Under certain circumstances,

with smaller degree of SU(3) breaking, it was also found in [25] using the approach of

[20]. It is interesting to see what these reactions can say to this respect. For instance,

from Eq. (11) we see

|T̃78|2 − |T̃77|2 = |T̃87|2 − |T̃88|2 =
2

3
Re(T (0)T (1)∗) +

1

3
Re(T (1)T (2)∗), (12)

where the T (1)T (2)∗ term is negligible. This means that the subtraction of the mass

distributions of the charged decay channels J/ψ → Σ−π−Σ+π− and J/ψ → Σ−π−Σ−π+
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can give hints on the T (1) amplitude, given that the amplitude T (0) can in principle be

derived by averaging the mass distributions for particular J/ψ → Σ̄πΣπ decays. In Fig.

3 we plot two different results. One is done by calculating T (0) and T (1) from combination

of the amplitudes given in eqs. (11). Then a mass distribution is generated by replacing
∑ ∑ |T̃ |2 in eq. (8) with 2

3
Re(T (0)T (1)∗). The second calculation corresponds to what an

experimentalist could do by subtracting the two mass distributions corresponding to the

J/ψ → Σ−π−Σ+π− and J/ψ → Σ−π−Σ−π+ channels in Fig. 2(b) or J/ψ → Σ+π+Σ+π−

and J/ψ → Σ+π+Σ−π+ channels in Fig. 2(c). The considerable different magnitude

between the results of the two subtractions in Fig. 3 is the manifestation of the isospin

symmetry breaking that we have in this approach. With isospin symmetry the two

subtractions give approximately the same results. The T (1) amplitude could in principle

be extracted from Fig. 3 and be compared to the theoretically calculated one. For this

purpose, in Fig. 4 we show the real part and imaginary part of T (1) directly calculated

in our model for some fixed values of the MB̄ invariant masses. It can be seen that the

shape of the T (1) does not qualitatively change with respect to the selected values of

M ′
I and there exists nontrivial cusps around the energy MI=1420 MeV, which may give

some hints for the possible approximate resonant structure predicted in [4, 25]. Calling

the attention that the reactions discussed here bear potentially valuable information of

this I = 1 amplitude is one of the purposes of the present work.

The calculations have been done using the cut off of qmax=630 MeV used in [6]. This

cut off was the only free parameter there to fit different K̄N cross sections, threshold

values plus the Λ(1405) shape. The freedom in this parameter is very small if a good

fit to these data is demanded. Changes in the parameter from 630 MeV to 620 MeV

or 640 MeV is as much as one can afford. We have reevaluated our results with these

new values of the parameter and find changes of about 10% in the cross sections. These

should be considered as theoretical uncertainties from this source.

So far we have taken into account the meson baryon (meson anti-baryon) interaction

only. Since in [27], by studying the same problem, we took into account the meson meson

interaction, with some additional work we can consider the two sources of interactions

to see how our results can change with the inclusion of the meson meson interaction.

The new calculation has been done by adding to the diagrams of Fig. 1 the rescattering

diagrams of Fig. 1 of ref. [27]. This means we would consider the diagrams with meson

rescattering stemming from the first diagram in Fig. 1 of the present paper. The neglect

of the rescattering terms from the other diagrams can be justified in the fact that the

two pions can be produced at reasonably large distances where this interaction should

11



be very weak. We must now modify eq. (8) since the T̃ matrix now depends on other

variables. The standard formula in this case is

dΓ =
(2π)4

2MJ

|T̃ |2 dΦ(P ; p1, p2, k1, k2) (13)

with the four-body phase space being

dφ(P ; p1, p2, k1, k2) = δ4(P − p1 − p2 − k1 − k2)
d3p1

(2π)3

M1

E(p1)

d3p2

(2π)3

M2

E(p2)

d3k1

(2π)3

1

2ω(k1)

d3k2

(2π)3

1

2ω(k2)
, (14)

where P is the four-momentum of J/ψ, pi and ki (i=1, 2) the four-momenta of the

involved baryons and mesons, respectively, Mi the baryon masses and E(pi) =
√

M2
i + p2

i

and ω(ki) =
√

m2
i + k2

i , with mi being meson masses, the baryon and meson energies,

respectively. We perform the integrations with the Monte Carlo method. We show

the results in Fig. 5 for the channel J/ψ → Σ0π0Σ0π0 (results are similar for other

channels). We observe that the strength in the region of energies above 1405 MeV gets

considerably increased, smearing the meson resonance contribution in a large phase space

region. We also observe that the shape of the Λ(1405) peak is not changed but there is

an extra strength which accounts for about 30% of the total. This reflects a constructive

interference between the resonance amplitude and the background from the meson meson

interaction. This extra contribution coming from the consideration of the meson meson

interaction changes the strength of the peak in about the same amount in the different

channels and does not affect the qualitative nature of the conclusions drawn here.

3. Summary

In summary, we investigate the structure of the baryon resonances Λ(1405) and

Λ̄(1405) in J/ψ four body decays J/ψ → ΣΣ̄ππ. It is shown that Λ(1405) and Λ̄(1405)

are generated by simultaneously taking the FSI of πΣ and πΣ̄ into account, which is

calculated in the framework of the chiral unitary approach. By averaging the three πΣ

(πΣ̄) mass distributions in either of the three plots in Fig. 2 we get the real shape for the

nominal Λ(1405) (Λ̄(1405)) resonance, which peaks around 1410 MeV and is a superpo-

sition of the two Λ(1405) states discussed in [25]. On the other hand, the subtraction of

the charged decay channels in either Fig. 2(b) or Fig. 2(c) gives hints on the possible

I = 1 resonance in the energy region of Λ(1405), which up to now has not been observed.

12



From an experimental point of view, although all the nine particular J/ψ → ΣΣ̄ππ de-

cays were considered here for a theoretical analysis, the three of them in either Fig.

2(b) or Fig. 2(c) are practically adequate to extract the structure of Λ(1405), Λ̄(1405)

and the possible I = 1 resonance in this region. It is worth noting that our theoretical

calculations were done with still sufficient freedom of model parameters. However, the

fact that the variation of the parameters within a reasonable range does not change the

qualitative feature of the results, together with the success of the chiral unitary approach

in past work, sets the predictions made here on firmer grounds. Experimental data on

these channels would be most welcome to further fix the model parameters and to get

refined predictions. No doubt, the experimental investigations on the proposed J/ψ four

body decays will provide interesting information of the structure of Λ(1405) and Λ̄(1405)

resonances and valuable test for the approaches employed here.
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