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η nucleus optical potential in a chiral unitary approach
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D-72076 Tuebingen, Germany
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The self-energy of an η in a nuclear medium is calculated in a chiral unitary model,
and applied to η states in nuclei. Our calculation predicts an attractive η nucleus optical
potential which can accommodate many η bound states in different nuclei.

1. Introduction

In the chiral unitary approach the S-wave scattering matrix is given by

T (
√

s) = [1 − V (
√

s)G(
√

s)]−1V (
√

s) (1)

in terms of the kernel matrix V and the loop matrix G, where
√

s is the invariant energy.
This is a solution of the Bethe-Salpeter equation which uses the fact that the off-shell part
of the amplitudes can be absorbed in a renormalization of the couplings. The kernel V is
given by the lowest order chiral Lagrangian, while the loop G is determined analytically
by the unitarity condition with a subtraction constant fitted to data. We can obtain, for
example, the ηn scattering amplitude from eq.(1) by considering the coupled channels:
{π−p, π0n, ηn, K0Λ, K+Σ−, K0Σ0, π0π−p, and π+π−n}.

Analogously, the model gives scattering amplitudes in the nuclear medium by

T (P 0, ~P ; ρ) =
[

1 − V (
√

s)G(P 0, ~P ; ρ)
]

−1

V (
√

s) (2)

where (P 0, ~P ) is a 4-momentum of the system and ρ is the density of the medium. Here,
the kernel is the same as in the free case, while the loop is replaced by the in-medium one,
which describes the propagation of systems in the medium and hence includes medium
effects. In this case, the scattering matrix T is no longer Lorentz invariant, and we need
to fix a frame.

Supposing we have the in-medium ηn scattering amplitude, as a function of 4-momentum
in the nuclear matter rest frame, we can obtain the self-energy of the η theoretically by
summing the amplitudes over the nucleons in the Fermi sea

Πη(k
0, ~k ; ρ) = 4

∫ kF d3~pn

(2π)3
Tηn(P 0, ~P ; ρ) (3)
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where spin and isospin symmetry is assumed. This self-energy determines η states in
nuclei, which is investigated intensively nowadays since it may provides new information
about medium effects in hadrons. In this paper, we calculate the η self-energy in this way,
and comment about η bound states in nuclei.

2. Our model

In the meson-baryon 2-body sector our kernel matrix V is given by

V (
√

s)ij = −Cij

1

4fifj

(2
√

s − Mi − Mj)

√

Mi + Ei

2Mi

√

Mj + Ej

2Mj

(4)

which is derived from the lowest order chiral Lagrangian. The coefficients Cij reflect
SU(3) flavor symmetry and are slightly modified by a vector meson exchange form factor.
We use phenomenological values: fπ = 93 MeV, fK = 1.22fπ and fη = 1.3fπ. For the
S-wave πN ↔ ππN sector, we use the kernels which are obtained in our previous work,
where the inelasticities of πN scattering are well reproduced both in the isospin 1/2 and
3/2 channels [ 1].

The in-medium loop functions are calculated by

Gl(P
0, ~P ; ρ)

= i
∫

d4q

(2π)4

Ml

El(~P − ~q)

(

θ(|~P − ~q| − kF )
)

P 0 − q0 − El(~P − ~q) − ( δB(ρ) )

∫

∞

0

dω
2ωSl(ω, ~q ; ρ)

(q0)2 − ω2
(5)

or

= i2
∫

d4q1

(2π)4

∫

d4q2

(2π)4

(~q1 − ~q2)
2 MN

EN (~P − ~q1 − ~q2)

θ(|~P − ~q1 − ~q2| − kf)

P 0 − q0
1 − q0

2 − EN (~P − ~q1 − ~q2)

×
∫

∞

0

dω1

2ω1Sπ(ω1, ~q1 ; ρ)

(q0
1)

2 − ω2
1

∫

∞

0

dω2

2ω2Sπ(ω2, ~q2 ; ρ)

(q0
2)

2 − ω2
2

(6)

where the first line is for meson-baryon 2-body channels, while the second line is for ππN
3-body channels. The θ-function provides the Pauli blocking for nucleons. The δB(ρ)
is the difference between the hyperon binding energy and the nucleon one. We use the
conventional value: +40 ρ/ρ0 MeV. The part of the ω-integral is the meson in-medium
propagator in the Lehman representation, where Sl(ω, ~q ; ρ) is the spectral density of the
meson, which is given by

Sl(ω, ~q ; ρ) = −1

π

Im[Πl(ω, ~q ; ρ)]

|ω2 − ~q 2 − m2
l − Πl(ω, ~q ; ρ)|2 (7)

with Πl(ω, ~q ; ρ) its self-energy. We construct the pion self-energy from the N -hole, ∆-hole
and Roper-hole excitations, where a recoil, a short range correlation and a form factor
are introduced in a traditional way. We use a theoretical ΠK(ω, ~q ; ρ) = 0.13m2

K ρ/ρ0 for
the kaon [ 2]. The self-energy of the η which we calculate is used again in the calcula-
tion iteratively untill convergence is reached, hence implementing selfconsistency in the
calculation.

The above loop integrals diverge and we renormalize our model by means of cut-off
regularization and subtractions. We fix them so that in-medium loops coincide with free
ones in the zero density limit. The free loops can be fixed using scattering data.
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Figure 1. Self-energy of η with zero momentum as a function of energy, for four different
densities and in three different approximations. In the left (a), the free space ηn amplitude
is used. In the center (b), the Pauli blocking is taken into account. In the right (c), both
the Pauli blocking and hadron dressing are taken into account.

3. Results

Fig.1 shows the obtained self-energy of the η with zero momentum as a function of
energy. We have calculated it with three different approximations for the nuclear medium.
The left (a) is obtained with the free space ηn scattering amplitude shown in Fig.2, and
corresponds to so called Tρ approximation with Fermi average. The amplitude clearly
shows the coupling to a resonance, N∗(1535), which is generated in the present model.
Although we cannot confirm this amplitude by direct comparison with data, it should be
realistic because data of isospin 1/2 πN scattering are reproduced fairly well in the present
model even in the ηn threshold region [ 1], including a N∗(1535) width of 93 MeV, which
agrees with the newest experimental data of 95 ± 15 MeV at Beijing Electron-Positron
Collider [ 3]. The ηn scattering length is aηn = 0.264 + i0.245 fm in this model.

The center (b) is calculated with the Pauli blocking effects. We see that the resonant
shape is strongly enhanced compared to the left one (a). This enhancement corresponds
to a reduction of the resonance width due to the Pauli blocking. On the other hand, we
see that the position of the resonance, or equivalently the mass of the resonance, is almost
not shifted . The reason is that the kaon-hyperon components dominate the resonance in



4

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

1400 1450 1500 1550 1600 1650

T
ηn
 
[
M
e
V

−1
]

√s [MeV]

Re

Im

Figure 2. Free space ηn scat-
tering amplitude as a function of
the invariant energy. The arrow
shows the threshold.

the present model. This feature is in contrast to the Λ(1405) case.
The right (c) is our full calculation, where hadron dressing effects are taken into account

in addition to the Pauli blocking. We see that the shape is broadened significantly. This
broadening is due to the distributed meson mass including the η itself. As a consequence,
our final self-energy is quite different from the one in (a), where a naive Tρ approximation
is used.

The following potential at the normal nuclear matter density

Uη(ρ0) ≡
Πη(mη,~0 ; ρ0)

2mη

= −54 − i29 [MeV] (8)

is helpful to get a feeling of our self-energy. This is more attractive than other ones in
the literature, for example, −20 − i22 MeV in ref. [ 4].

It is interesting to apply our self-energy to η states in nuclei. This has been done in [ 5]
by solving the Klein-Gordon equation using the local density approximation to go from
infinite matter to finite nuclei
[

−~∇2 + µ2 + Πη( Re[E],~0 ; ρ(~r))
]

Ψ = E2Ψ (9)

where µ is the η nucleus reduced mass. As shown in [ 5], many bound states are found in
different nuclei, where the half widths of the bound states are comparable or even larger
than the separation between the levels. According to these results, it is not easy to see
these states in experiments unfortunately. It was also shown in [ 5] that in heavier nuclei
more several bound states can appear and that the optimal region to see bound states is
around the 24Mg nucleus.
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