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Abstract

By using techniques of unitarized chiral perturbation theory, where
the Λ(1405) and Λ(1670) resonances are dynamically generated, we
evaluate the magnetic moments of these resonances and their transi-
tion magnetic moment. The results obtained here differ appreciably
from those obtained with existing quark models. The width for the
Λ(1670) → Λ(1405)γ transition is also evaluated leading to a branch-
ing ratio of the order of 2 × 10−6.

1 Introduction

The evaluation of static properties of baryonic resonances, like the magnetic
moment, is a standard exercise when one has a wave function for the states.
This is the case of the quark models where a thorough investigation of mag-
netic moments and other static properties [1], such as masses and couplings
to the πN system [2], has been done.

The introduction of unitary chiral techniques has allowed one to show
that the octet of the lowest energy JP = 1/2− baryonic resonances can be
generated dynamically from the lowest order chiral Lagrangian and by the use
of natural size cut-offs or regularizing scales to make the divergent loop inte-
grals finite. These findings allow one to classify those states as quasibound
meson-baryon states, or equivalently, ordinary multiple scattering resonances
in coupled channels. The Λ(1405) was one of the first resonances to receive
attention from the chiral unitary perspective [3, 4, 5]. The N∗(1535) was also
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generated within chiral unitary schemes in [6, 7, 8] and has been recently re-
vised in [9] with the inclusion of ππN channels. Recently the Λ(1670) and
Σ(1620) [10] and the Ξ(1620) states [11] have also been generated within the
same scheme, thus completing the octet of dynamically generated states.

In the chiral unitary method, one computes scattering matrices in all me-
son and baryon channels and poles for resonances are searched in the second
Riemann sheet. The poles provide the mass and the width of the resonance
states and, in addition, the residues at the poles provide the product of the
couplings of the resonance to the initial and final states of the considered tran-
sition scattering matrix element. In this method, it is not straightforward
to evaluate other properties of the resonance, like magnetic moments, since,
unlike ordinary quantum mechanical problems, in the present approach we
do not have wave functions and operators manifestly. Therefore, we need to
explore an alternative method to compute resonance magnetic moments from
scattering matrices. This is the subject of the present work. We compute
the magnetic moments of the Λ(1405) and Λ(1670) resonances, as well as the
transition magnetic moment from the Λ(1670) to the Λ(1405), which allows
us to determine the partial decay width for the decay Λ(1670) → Λ(1405)γ.
We also compare the results obtained here with those of ordinary quark mod-
els showing that there are appreciable differences between them. This offers
an evidence that the nature of these states as dynamically generated from
multiple scattering of coupled channels of mesons and baryons differs from
an ordinary quark model description.

The paper is organized as follows. In section 2, we briefly describe the
model that we use and show in detail the method to compute scattering
matrices. In section 3, we compare the scattering matrices with a resonance
dominant form and extract the magnetic moments. In section 4, we present
our numerical results, which are compared with quark model results in section
5. The final section summarizes our findings.

2 Evaluation of the magnetic moment

The procedure to evaluate the magnetic moment of the resonances proceeds
in an analogous way to that for the N∗N∗π coupling in [7]. We evaluate the
T -matrix for the process MB → M ′B′γ using the chiral Lagrangian for the
coupling of the mesons and baryons and for the photon to the mesons and
baryons. We sum the Feynman diagrams which generate the resonance both
on the left and on the right of the photon coupling. Isolation of resonance
poles from these diagrams then allows us to evaluate the resonance magnetic
moment.

The Λ(1405) resonance is generated in [4] by means of the Bethe-Salpeter
equation with a cut-off to regularize the loop integrals. The Bethe-Salpeter

2



equation is given by
T = V + V GT , (1)

where in the present method the term V GT is given as a matrix product
of the potential V , the meson-baryon propagator G and the T -matrix T .
The diagonal matrix G contains the loop integral of a meson and baryon
propagators. In general, the product V GT involves an integral over off-shell
momenta. In the present approach that integral is greatly simplified reducing
the problem to a matrix product due to the on-shell factorizations of V and T .
The on-shell factorization in [4] was done by incorporating the off-shell part of
the loops into renormalization of couplings of the lowest order Lagrangian, in
analogy to what was done in the meson-meson interaction in [12]. An explicit
demonstration of the cancellation of these terms with tadpole corrections can
also be seen in [13] for the p-wave meson-meson interaction in the ρ channel.
The on-shell factorization allows one to solve eq.(1) to give

T = [1 − V G]−1V , (2)

in a simple matrix inversion. This has also been derived using the unita-
rization with the N/D method and dispersion relations in [5]. In this latter
paper [5] the regularization of the loops is done by means of dimensional reg-
ularization with subtraction constants in the G function. The same method
was used in [10] to obtain the Λ(1405) and Λ(1670) resonances, which is the
one we follow here. The Feynman diagrams summed by eqs. (1) and (2) are
given in Fig.1.

The s-wave meson-baryon interaction potential V is derived from the
second order terms in the meson field of the chiral Lagrangian [14, 15]:

Vij = −Cij
1

4f 2
(2
√
s−Mi −Mj)

(

Mi + E

2Mi

)1/2
(

Mj + E ′

2Mj

)1/2

, (3)

where the coefficients Cij(= Cji) are given in [4] and the meson decay con-
stant f is taken as an average value f = 1.123fπ. The G function for each
meson-baryon channel is given by

Gl(
√
s) = i2Ml

∫

d4q

(2π)4

1

(P − q)2 −M2
l + iǫ

1

q2 −m2
l + iǫ

=
2Ml

16π2

{

a(µ) + ln
M2

l

µ2
+
m2

l −M2
l + s

2s
ln
m2

l

M2
l

(4)

+
q̄l√
s

[

ln(s− (M2
l −m2

l ) + 2q̄l
√
s) + ln(s+ (M2

l −m2
l ) + 2q̄l

√
s)

− ln(−s+ (M2
l −m2

l ) + 2q̄l
√
s) − ln(−s− (M2

l −m2
l ) + 2q̄l

√
s)
]}

,

where m and M are taken to be the observed meson and baryon masses,
respectively, and µ is a regularization scale which is chosen to be 630 MeV
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as in [10]. The subtraction constants al are of the order of −2, which is a
natural size as shown in [5]. The values chosen in [10], which reproduce the
results of [4] calculated with just one cut-off, are

aK̄N = −1.84, aπΣ = −2.00, aπΛ = −1.83

aηΛ = −2.25, aηΣ = −2.38, aKΞ = −2.67 (5)

The elementary couplings of the photon to the components of the meson-
baryon amplitude at lowest order of the chiral expansion are shown in fig.2.
Now if we want to generate the resonance on the left and right sides of the
photon coupling we must consider the diagrams shown in fig.3. The diagrams
of row b) in fig.3 vanish, given the s-wave nature of the meson-baryon vertices
and the ~ǫ ·~qL coupling of the photon to the mesons, which makes the integral
over the loop variable qL vanish. The remaining couplings are those of the
photon to the baryons and the analogous ones with two extra meson lines.
The spin dependent part of these couplings needed for the evaluation of
magnetic moments is given by [16]

L = − i

4Mp
bF6 〈B̄[Sµ, Sν][F+

µν , B]〉 − i

4Mp
bD6 〈B̄[Sµ, Sν ]{F+

µν , B}〉 (6)

with

F+
µν = −e(u†QFµνu+ uQFµνu

†) (7)

Fµν = ∂µAν − ∂νAµ , (8)

where Mp is the mass of proton, Aµ is the electromagnetic field, and bF6 and
bD6 are parameters to be fitted so as to reproduce the magnetic moments of
the ground state baryons. In eq.(6), 〈· · ·〉 means the trace over flavor indices,
B is the SU(3) matrix for the baryon field [14, 15], and Sµ are spin matrices
as explained below. In eq.(7) Q is the charge matrix for the u, d, s quarks:
Q = 1

3
diag(2,−1,−1) and u2 = U = exp(i

√
2Φ/f) where Φ is the SU(3)

matrix of the pseudoscalar meson field [14, 15, 17]. In the baryon rest frame
the operator Sµ becomes ~σ/2 and then,

[Sµ, Sν ]Fµν → −(~σ × ~q ) · ~ǫ (9)

in the Coulomb gauge (ǫ0 = 0, ~ǫ · ~q = 0) and for an outgoing photon. Thus
the vertex from the Lagrangian of eq.(6) can be written as

L → e
~σ × ~q

2Mp
· ~ǫ
(

− i

2
bF6
〈

B̄[(u†Qu+ uQu†), B]
〉

(10)

− i

2
bD6
〈

B̄{(u†Qu+ uQu†), B}
〉

)

. (11)
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p n Σ+ Σ− Σ0 Λ (ΛΣ0) Ξ− Ξ0

di
1
3

−2
3

1
3

1
3

1
3

−1
3

1√
3

1
3

−2
3

fi 1 0 1 −1 0 0 0 −1 0

Table 1: di and fi coefficient of eq.(12).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 −1
2

− 1
4
√

3
1
4

−1
4

3
4
√

3
0 1 0 0

K̄0n 0 0 0 0 0 −1
2

0 0 0
π0Λ 0 0 0 0 1√

3
1√
3

− 1
4
√

3
0

π0Σ0 0 0 0 0 0 1
4

0
ηΛ 0 0 0 0 −1

4
0

ηΣ0 0 0 0 3
4
√

3
0

π+Σ− 0 0 1 0
π−Σ+ 0 0 −1

2

K+Ξ− 0 −1
2

K0Ξ0 0

Table 2: Xij coefficient of eq.(14). Xij = Xji

By expanding u in terms of the meson field we obtain the expressions for
both the γBB′ and γBB′MM ′ vertices. By taking u = 1 we obtain the
magnetic moments of the ground state octet baryons,

µi = dib
D
6 + fib

F
6 , (12)

where the coefficients di and fi are given in table 1. One immediately real-
izes that by setting bD6 = 0 and bF6 = 1 one obtains the ordinary magnetic
moments of the baryons without anomalous contributions. Fitting the values
of eq.(12) to the observed magnetic moments of the baryons one obtains

bD6 = 2.40, bF6 = 1.82 (13)

very similar to those given in [16], bD6 = 2.39, bF6 = 1.77.
Similarly, by expanding u up to two meson fields we obtain the vertices

of diagram a) of fig.2 with the result

− it
a)
ij =

e

2Mp
(~σ × ~q ) · ~ǫ 1

2f 2
[Xijb

D
6 + Yijb

F
6 ] , (14)

where the coefficients Xij and Yij are given in tables 2 and 3.
The evaluation of the amplitudes corresponding to the diagrams of fig.3

(the magnetic part) is straightforward. We obtain,

− itγij = −it̃ij
e

2Mp
(~σ × ~q ) · ~ǫ (15)
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K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p −2 −1
2

− 3
4
√

3
−1

4
−3

4
− 3

4
√

3
0 −1 0 0

K̄0n 0 0 0 0 0 1
2

0 0 0
π0Λ 0 0 0 0 0 0 3

4
√

3
0

π0Σ0 0 0 0 1 −1 1
4

0
ηΛ 0 0 0 0 3

4
0

ηΣ0 0 0 0 3
4
√

3
0

π+Σ− 2 0 1 0
π−Σ+ −2 0 −1

2

K+Ξ− 2 1
2

K0Ξ0 0

Table 3: Yij coefficient of eq.(14). Yij = Yji

and

− it̃ij =

(

∑

lm

tilGlAlmGmtmj +
∑

l

tilG̃ltljµBl

)

. (16)

In this equation tij is the scattering amplitude from the channel i to j,

Alm =
1

2f 2
[Xlmb

D
6 + Ylmb

F
6 ] , (17)

and

G̃l(p) = i
∫

d4k

(2π)4
D(k)G(p− k)G(p− k) (18)

with D and G the meson and baryon propagators. Here, by keeping up to
linear terms in q, we have neglected the small momentum of the photon in
the second baryon propagator. Therefore, we can write

G̃l(
√
s) = − ∂

∂
√
s
Gl . (19)

This approximation allows us to obtain an analytic expression for G̃l(
√
s).

In eq.(16), we omit to write contributions from the Λ-Σ0 transition magnetic
moment. The contributions are negligible since the Λ-Σ0 transition changes
the isospin, therefore either the left or right resonances must have isospin 1,
which is not the present case.

3 Comparison to the resonance description

In order to extract a resonance magnetic moment from the scattering am-
plitude, (15) or (16), we assume that resonances are dynamically generated

6



on the left and right of the photon coupling. First we parameterize the
meson-baryon scattering amplitude tij as shown in fig.4(b) by the resonance
dominant Breit-Wigner form:

− itij = −igi
i√

s−MR + iΓ/2
(−ig∗j ) . (20)

Here we have introduced the resonance mass MR, the total decay width Γ and
the decay constant to the channel i, gi. Then the photon coupling amplitude
tγij is parameterized as shown in fig.4(a) by the expression:

− itγij = −igi
i√

s−MR + iΓ/2

eµΛ∗

2Mp
(~σ×~q ) ·~ǫ i√

s−MR + iΓ/2
(−i)g∗j . (21)

Dividing −itγij by tij and by e
2Mp

(~σ × ~q ) · ~ǫ we cancel the coupling constants

and one propagator. Thus by evaluating this ratio at the Λ∗ pole, where the
amplitudes are dominated by the resonance, and recalling eq.(15), we have

µΛ∗ = lim
z→zR

(z − zR)
−it̃ij(z)
tij(z)

= Res
−it̃ij(z)
tij(z)

∣

∣

∣

∣

∣

z=zR

. (22)

where zR denotes the position of the pole in the second Riemann sheet, zR ≡
MR + iΓ/2. In fact, there exist two poles around the region of the Λ(1405)
[5], located at zR = 1426 + 16i and 1390 + 66i MeV. The former pole largely
couples to the K̄N state, whereas the latter one couples predominantly to the
πΣ state. Both poles may contribute to the resonance Λ(1405). We evaluate
the magnetic moment at both poles. For the Λ(1670) the pole position is
zR = 1680 + 20i MeV.

Similarly, we can also evaluate the transition amplitude between the
Λ(1670) and Λ(1405) resonances. This is accomplished by putting differ-
ent energies,

√
s1 and

√
s2, on the transition amplitudes tij appearing on the

left and right of the photon coupling in eq. (16). Then by taking
√
s1 ≡ z1R

for the first resonance (Λ(1670)) and
√
s2 ≡ z2R for the second resonance

(Λ(1405)), we would find

µΛ(1670)→Λ(1405) = lim
z1→z1R
z2→z2R

−it̃ij(z1, z2)gi(1670)g∗j (1405)

tii(z1)tjj(z2)
. (23)

The analysis in the complex plane has the advantage of making the back-
ground contributions negligible since the evaluations are done exactly at the
poles of the resonances. The magnetic moment evaluated in the complex
plane, however, has a complex value, which might induce uncertainties since
one is extrapolating from the real axis to the complex plane. Hence, to avoid
these uncertainties, we also calculate the amplitudes on the real axis in the
first Riemann sheet. The magnetic moments are then defined by

µΛ∗ =
−it̃ij(

√
s)

− ∂
∂
√

s
tij(

√
s)
, (24)
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where both the coupling constants and the resonance propagators cancel
to provide the magnetic moment of the resonance. In order to eliminate
background we choose external channels which have a large coupling to the
resonances and, furthermore, we take the I = 0 isospin combination. In
particular, we take the K̄N state with I = 0 for Λ(1405) and the KΞ state
with I = 0 for Λ(1670) because of their large couplings to the corresponding
channels [10]. For Λ(1405) we also calculate the magnetic moment in the
K̄N → γπΣ channel, since this channel may be used in the experiments to
determine the magnetic moment of the Λ(1405). We show the numerator
and the denominator of eq.(24) in fig.5 with the K̄N channel, in fig.6 with
the K̄N → γπΣ for the Λ(1405) and in fig.7 with the KΞ channel for the
Λ(1670). We take the ratio of these amplitudes around the energy close to the
resonance where the real part of the two functions has maximum strength. In
order to estimate uncertainties we also evaluate the ratio at the point where
either the imaginary part of the numerator or denominator becomes zero, as
well as the ratio of the dominant real parts. In principle, in the absence of
background contamination, these evaluations should give the same value.

As for the transition magnetic moment, in order to cancel the couplings
and propagators, we take the ratio

µ2
Λ(1670)→Λ(1405) =

(−it̃KΞ→γK̄N (
√
s1,

√
s2))(it̃K̄N→γKΞ(

√
s2,

√
s1))

(

− ∂
∂
√

s
tKΞ(

√
s1)
) (

− ∂
∂
√

s
tK̄N(

√
s2)
) (25)

and we proceed as before to evaluate the ratio and the uncertainties. We show
in fig.8 the numerator and the denominator of eq.(25), for fixed

√
s2 = 1681

MeV as a function of
√
s1 in the left panels, and for fixed

√
s1 = 1423 MeV

as a function of
√
s2 in the right panels.

Experimentally, magnetic moments of resonances may be extracted from
bremsstrahlung processes, which are carefully compared with theoretical
models. On the other hand, the transition magnetic moment between Λ(1670)
and Λ(1405) could be directly investigated from the decay Λ(1670) → Λ(1405)γ.
The width for this transition is given by

Γ =
1

π

MΛ(1405)

MΛ(1670)

q3

(

eµΛ(1670)→Λ(1405)

2Mp

)2

(26)

with q the photon momentum in the Λ(1670) rest frame.

4 Results

Comparison of the numerator and denominator in eq.(24) for the Λ(1405)
with the K̄N → γK̄N and K̄N → γπΣ channel and performing the ratios
discussed in the former section we obtain a value

µΛ(1405) = +0.24 ∼ 0.45 (27)
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Λ(1405) Λ(1650) transition

real axis +0.44 ± 0.06a) −0.29 ± 0.01 0.023 ± 0.009
+0.26 ± 0.07b)

complex plane 0.41 ± 0.01c) 0.23 0.019 ± 0.002c)

(absolute value) 0.30 ± 0.01d) 0.093 ± 0.003d)

Table 4: Magnetic moments obtained by the chiral unitary approach in units
of the nuclear magneton. The values without signs denote the modules. a)
calculation in the K̄N → γK̄N channel. b) calculation in the K̄N → γπΣ
channel. c) taking zR = 1426 + 16i for Λ(1405). d) taking zR = 1390 + 66i
for Λ(1405).

in units of the nuclear magneton µN = e/2Mp. The large uncertainty in the
result obtained comes from the energy range where the amplitudes of the
ratio of eq.(24) are evaluated. As seen in figs. 5 and 6 the value of this
energy, which signals the position of the resonance in the real axis, is around
1418-1422 MeV for the K̄N channel and 1403-1416 MeV for the πΣ channel.
The evaluation in the K̄N channel gives µΛ(1405) = +0.44±0.06, while in the
K̄N → γπΣ we obtain +0.26±0.07. We also evaluate the magnetic moment
using the ratio of eq.(22) at the pole in the second Riemann sheet, which gives
a complex number with the module 0.41±0.01 for the case of zR = 1426+16i
and 0.30±0.01 for zR = 1390+66i. All possible isospin I = 0 combinations,
K̄N , πΣ, ηΛ and KΞ, provide approximately the same value (the channel
dependence is shown in the small error bar of the presented value.) This
channel insensitivity in the evaluation in the complex plane implies that the
ratio of eq.(22) at the pole is dominated by the resonance and is not affected
by background contaminations. It is interesting to note that the values in
the complex plane are comparable with the value of eq.(27). In addition,
recalling that the pole at zR = 1426+16i couples largely to K̄N and that at
zR = 1390 + 66i to πΣ, the channel (or energy) dependence of the magnetic
moment evaluated on the real axis stems from a different contribution of each
pole to the values of the amplitudes in the real axis.

For the case of the Λ(1670) the ratio obtained from fig.7 with the KΞ
channel gives us

µΛ(1670) = −0.29 ± 0.01 (28)

with small uncertainty, and we find that the ratio of eq. (24) is stable around
the resonance region. It is also interesting to note that the analysis in the
complex plane in the pole in the second Riemann sheet (eq.(22)) gives in this
case a value for the modulus of 0.23, which is similar to that of eq.(28). As
in the preceding case, the analysis in the real plane allows us to obtain a real
magnetic moment with a given sign.

Finally for the case of the transition magnetic moment we obtain the
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value from eq.(25) and fig.8
∣

∣

∣µΛ(1670)→Λ(1405)

∣

∣

∣ = 0.023 ± 0.009 (29)

We also evaluate the transition magnetic moment from eq.(23) in the complex
plane, which gives the modulus 0.019 ± 0.002 with z1R = 1680 + 20i, z2R =
1426 + 16i and 0.093 ± 0.003 with z1R = 1680 + 20i, z2R = 1390 + 66i. The
values obtained in the complex plane are less reliable in this case because
they involve an extrapolation of two variables to the complex plane, each of
which induces uncertainties. Even then, the agreement with the evaluation
on the real axis is fair if we take into account the fact that, given the smallness
of these numbers, their differences are of the same order of magnitude than
those for the Λ(1405) case. The results discussed here are summarized in
table 4.

With the value of the transition magnetic moment of eq.(29) and using
eq.(26) we obtain a partial width for the Λ(1670) → Λ(1405)γ decay which
corresponds to a branching ratio 2 × 10−6.

5 Quark Model Results

In this section we compute the resonance magnetic moments in the non-
relativistic quark model. This demonstrates that the nature of the resonances
differ appreciably from the chiral unitary description. In the SU(6) quark
model, the Λ(1405) and Λ(1670) are described as p-wave excitations of the
70-dimensional representation, whose SU(2)×SU(3) decomposition is given
by

70 = 28 + 48 + 21 + 210 . (30)

Here in the notation on the right hand side, 2j+1D, j represents the resonance
spin and D the dimension of the flavor SU(3) representation.

Since the Λ particles are isosinglet, their wave functions are spanned by
the flavor octet and singlet states. Explicitly, these states are given as [20]

|28; jm〉 =
1

2
([ψ(ρ), χρ]jmφλ + [ψ(ρ), χλ]jmφρ

+[ψ(λ), χρ]jmφρ + [ψ(λ), χλ]jmφλ) ,

|48; jm〉 =
1√
2

([ψ(λ), χS]jmφλ + [ψ(ρ), χS]jmφρ) , (31)

|21; jm〉 =
1√
2

([ψ(λ), χρ]jm − [ψ(ρ), χλ]jm)φA .

Here we have employed standard notations:

~ρ =
1√
2
(~x2 − ~x1)

10



~λ =
1√
6
(~x2 + ~x1 − 2~x3)

ψ(~x) : p wave orbital wave functions

χρ,λ,S : flavor wave functions of ρ, λ and S symmetry

φρ,λ,A : flavor wave functions of ρ, λ and A symmetry

Furthermore, in eq. (31), the orbital and spin wave functions are coupled to
the total spin jm.

In the non-relativistic description, the magnetic moment operator is given
by the sum of twice the spin and the orbital angular momentum:

~µ =
e

2m

3
∑

i=1

(

~σ(i) +~l(i)
)

(

1

2
λ3(i) +

1

2
√

3
λ8(i)

)

. (32)

In this equation m is a constituent quark mass for which we take for simplic-
ity a common value m ∼ MN/3 for the three quarks. Furthermore, we have
written the charge matrix as a sum of SU(3) components. Due to the isosin-
glet nature of the Λ particles, the matrix elements of the isovector (λ3) term
vanish and only the λ8-term contributes. The actual computation is straight-
forward and therefore here we present only the final result. By writing a Λ
state as

|Λ〉 = a1|28〉 + a2|48〉 + a3|21〉 , (33)

where the coefficients must satisfy the normalization condition, a2
1+a2

2+a3
3 =

1, we find for the diagonal element:

〈Λ|µz|Λ〉 = − 1

12
a2

2 +
1

9
a1a3 . (34)

Similarly we can compute the off-diagonal matrix element.
The coefficients are determined by assuming suitable interactions between

quarks. Here we employ two parameter sets; Isgur-Karl (IK) [1] and Hey-
Litchfield-Cashmore (HLC) [19], the values of which are shown in Table 5.
We summarize the results for the magnetic moments in Table 6, where the
results for the transition magnetic moment are also shown. We find that the
magnetic moment of the Λ(1405) is small and negative, as opposed to the
result of the chiral unitary method. For the Λ(1670) the HLC parameters
provide a value similar to the chiral unitary method. For the transition
magnetic moment, however, the quark model values are significantly larger
than the chiral unitary ones, by about a factor ten. This in turn results in
the branching ratio in the Λ(1670) decay about hundred times larger than
the chiral unitary result. In general, the magnetic moments are sensitive to
the choice of the mixing coefficients. However, absolute values are small for
a reasonable range of the mixing parameters. In the quark model, there are
two reasons for this:
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Λ(1405) Λ(1670)
a1 a2 a3 a1 a2 a3

IK 0.43 0.06 0.9 0.75 0.58 −0.39
HLC 0.46 0.25 0.85 −0.04 −0.95 0.30

Table 5: Expansion coefficients in (33).

Λ(1405) Λ(1670) |Λ(1405)-Λ(1670)|
IK −0.13 0.01 0.14

HLC −0.15 −0.23 0.26

Table 6: Magnetic moments in the quark model in units of nuclear magneton
e/2mp.

1. Only the isoscalar (λ8) component contributes, which has relatively
small contributions.

2. For spin doublet 28 and 21 states, the spin ~s and orbital angular momen-
tum ~l are aligned such that their contributions roughly cancel. Classi-
cally, to form a (jm) = (1/2, 1/2) state, ~l orients to the +z direction,
while ~s orients to the −z directions; 〈lz〉 = 1 and 〈sz〉 = −1/2. The
magnetic moment of this configuration vanishes:

〈µz〉 = 1〈lz〉 + 2〈sz〉 = 0 . (35)

6 Conclusion

We have introduced here the formalism to evaluate magnetic moments and
the transition magnetic moment of the two Λ∗ resonances, Λ(1405) and
Λ(1670), which are dynamically generated within UχPT . At the same time
we have done the numerical evaluations and have determined the actual value
for these magnitudes. The values obtained are µΛ(1405) = +0.2 ∼ 0.5µN ,
smaller than that of the Λ (∼ −0.6µN) and of opposite sign. For the Λ(1670)
we obtain µΛ(1670) ∼ −0.29µN , also smaller than that of the Λ and with
the same sign, while for the transition magnetic moment we obtain a value
|µΛ(1670)→Λ(1405)| ∼ 0.023µN , which leads to a branching ratio of the Λ(1670)
to Λ(1405)γ channel of the order of 2 × 10−6. The results of the UχPT
method are different from those obtained with the quark models, reflecting
the different nature attributed to the resonances in those models. One of
the interesting results obtained in this work is the abnormally small decay
width for the Λ(1670) → Λ(1405)γ transition, which differs in two orders of
magnitude from the quark model predictions. Short of a measurement of the
transition, which could be difficult given the small numbers predicted, even

12



the determination of an upper bound would provide interesting information
about the nature of these resonances.
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Figure 1: Diagrammatic representation of the Bethe-Salpeter equation in
eqs. (1) and (2). Dashed and solid lines denote the meson and the baryon,
respectively.
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Figure 2: The elementary couplings of the photon to the components of the
meson-baryon amplitude. The wavy line denotes the photon.
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Figure 3: Diagrams for the coupling of the photon to the resonance dynam-
ically generated in meson-baryon scattering.
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Figure 4: a) Diagrammatic representation of the photon coupling to an ex-
plicit resonance. b) Diagrammatic representation of meson-baryon scattering
through the explicit resonance.
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Figure 5: Real and imaginary parts of a) the numerator −it̃K̄N in eq.(24)
and b) the denominator −∂tK̄N/∂

√
s in eq.(24) around the Λ(1405) resonance

region in units of m−2
π .

16



-40

-20

0

20

40

60

80

1390 1400 1410 1420 1430

−it~K–N→γπΣ

K–N→γπΣ

(a)

Re : 
Im : 

-50

0

50

100

150

200

1390 1400 1410 1420 1430

C.M Energy √s [MeV]

(−)∂tK–N→πΣ
∂√s

K–N→πΣ (b)

Re :
Im :

Figure 6: Real and imaginary parts of a) the numerator −it̃K̄N→γπΣ

in eq.(24) and b) the denominator −∂tK̄N→πΣ/∂
√
s in eq.(24) around the

Λ(1405) resonance region in units of m−2
π .
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Figure 7: Real and imaginary parts of a) the numerator −it̃KΞ in eq.(24) and
b) the denominator −∂tKΞ/∂

√
s in eq.(24) around the Λ(1670) resonance

region in units of m−2
π .
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Figure 8: Real and imaginary parts of the numerator, a) and c), and the
denominator, b) and d), in eq.(25) in units of m−4

π . In a) and b)
√
s1 is

fixed at 1680 MeV and the numerator and the denominator are functions
of

√
s2. In c) and d)

√
s2 is fixed at 1420 MeV and the numerator and the

denominator are functions of
√
s1.
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