IF1C-00-1013, FTUV-00-1013

CHIRAL UNITARY APPROACH TO THE K~ DEUTERON
SCATTERING LENGTH

S.S. Kamalov®*, E. Oset® and A. Ramos®
¢ Departamento de Fisica Tedrica and IFIC, Centro Mixto Universidad de Valencia-CSIC,
Institutos de Investigacion de Paterna, Aptdo. Correos 22085, 46071 Valencia, Spain
b Departamento d’Estructura i Constituents de la Materia, Universitat de Barcelona,
Diagonal 647, 08028 Barcelona, Spain

Abstract

Starting from a recent model where the KN amplitudes are evaluated from
the chiral Lagrangians using a coupled channel unitary method, we evaluate
here the scattering length for K~ deuteron scattering. We find that the double
scattering contribution is very large compared to the impulse approximation
and that the charge exchange contribution of this rescattering is as large as
the sequential K~ scattering on the two nucleons. Higher order rescatter-
ing corrections are evaluated using coupled channels Faddeev equations with
K~ and K9. The higher order corrections involving intermediate pions and
hyperons are found negligible.

I. INTRODUCTION

The low energy scattering of K~ with deuterium has been the subject of much study in
the past [1,2] and it is one of the processes where the impulse approximation is manifestly
insufficient, the rescattering terms being quite large. The input in all these studies is ele-
mentary amplitudes for K N scattering which are either taken from experiment or evaluated
within theoretical models. The theoretical models for KN are rather involved since there
are many coupled channels which have to be dealt with consistently (concretely, 10 physical
channels in the K~p channel, K~p, K, 7%=, 7= %+, 7080 70A, 30, nA, K+=-, K°=°).
Theoretical studies with coupled channels were used in Refs. [3-5] fitting the input to the
data. In Ref. [5] the strength of the different transition potentials was determined from fits
to the data allowing only modifications of up to 50 percent from the SU(3) relations.

The introduction of chiral Lagrangians in the meson baryon sector [6] has allowed one
to deal with this interaction from the modern chiral perspective. Yet, a unitary treatment
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with coupled channels is necessary in this case since perturbation theory cannot be applied,
among other reasons due to the presence of the A(1405) resonance below the KN threshold.
Coupled channel Lippmann Schwinger equations are used in Refs. [7,8] including the channels
which are physically open, and some terms from higher order chiral Lagrangians are obtained
from fits to experiment. In Ref. [9] the n3 and nA channels are also included and a good
description of the low energy data is obtained, amongst them the properties of the A(1405)
resonance, which is generated dynamically from the lowest order chiral Lagrangian with the
coupled channel equations. In this later case only the lowest order Lagrangian was used
together with a cut off which was the only free parameter of the theory. A justification of
the success of the method omitting the higher order Lagrangians can be seen by comparing
the similar success in the meson meson sector of the coupled channel equations using the
lowest order Lagrangians [10] and the more refined Inverse Amplitude Method in coupled
channels [11], case which also includes the O(p?) Lagrangian (see also discussions to this
respect in Refs. [12] and [13]).

The case of K~ deuteron scattering requires also the explicit treatment of the coupled
channels. The Faddeev equations rely already on partial summations over the different chan-
nels which lead to the KN t matrix on each individual nucleon, but even then the explicit
channels appear in the multiple collisions with two different nucleons and the Faddeev equa-
tions can be generalized to these channels [14-16]. In the present work we follow these lines
but we observe that the relevant channels in the Faddeev equations are the K~ N and K°N
channels. The channels involving 7, and other inelastic ones by analogy, require at least
three successive collisions on the nucleons of the deuteron and provide a negligible contribu-
tion to the deuteron scattering length. The Faddeev equations with the KN channels lead
to an analytical formula involving several of the scattering lengths of KN, which improves
on the one used in Ref. [17], where only the elastic collisions of the K~ with the nucleons
are considered and the charge exchange is neglected.

The measurement of the K~ deuteron scattering length can thus provide information
on some of these amplitudes provided the others are already known. Assuming isospin
symmetry, the knowledge of the K~ p scattering amplitude allows one to obtain the K™n
scattering length using the Faddeev formula. However, one of the findings of this work and
the one of Ref. [9] is that isospin symmetry is not very accurate for energies close to threshold
so one has to admit certain uncertainties when extracting the elementary amplitudes from
the deuteron scattering data. In any case the deuteron results will provide extra checks of
accuracy of the modern chiral theories used for the KN interaction.

Our treatment involves only the evaluation of the strong interaction scattering length.
Coulomb corrections to the Deser formula [18] to extract the scattering length from the
measurement of the width and shift of the 1s level of the K~ deuteron atom planned at
Frascati [19] have been worked out in Ref. [17].

II. K~ N SCATTERING LENGTHS

As mentioned in the introduction, the dynamics of KN scattering at low energies is
dominated by the presence of the A(1405) resonance and needs to be described by non-
perturbative methods. In this section we review the approach followed in Ref. [9] and
present the results for the scattering lengths of the elementary KN reactions needed in



the calculation of the K~d scattering amplitude, namely K p — K p, K~n — K™n,
K — K% and K—p — K.

The starting point is the lowest-order chiral Lagrangian coupling mesons and baryons,
which in the case of meson-baryon transition amplitudes reduces to

L = <Biv“4—;2
where ® and B denote the octets of pseudoscalar mesons and 1/2% baryons, respectively,
and the symbol () stands for the trace of SU(3) matrices.

From the Lagrangian of Eq. (1) one derives all possible transition amplitudes between
the different meson-baryon states of a given charge and strangeness that can be built from
the meson and baryon octets. There are ten such channels for K~ p scattering, namely
K=p, Ko, m°A, 7950, 72~ 7=3F, nA, n¥°, KT=" and K°=", and six in the case of K™n
scattering, namely K n, 7’27, 7729 77A, 2~ and K°Z~. At low energies all the possible
amplitudes reduce to the form
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where k?, k? are the initial, final energies of the mesons and the explicit values of the coeffi-
cients C;; can be found in Ref. [9].

Using average masses for each particle multiplet, it is also possible to work in isospin
formalism. Making the appropriate basis transformation, the transition coefficients of good
isospin, Dy; for I = 0 channels (KN, 7%, nA, K=) and Fj; for I = 1 ones (KN, 7%, A,
n¥, KE), can be easily derived from the C;; coefficients involving K ~p and related channels
and are also given in Ref. [9].

The lowest-order amplitudes of Eq. (2) are then inserted in a coupled-channel Bethe-
Salpeter equation

tiy =Vi; +Vu G t5 (3)

from where one extracts the elastic and transition scattering amplitudes. The indices 7,1, j
run over all possible meson-baryon channels and G is the loop function containing the
propagators of the meson and baryon in the intermediate states. Although in the former
equation the last term on the right hand side involves in principle the off-shell dependence of
the amplitudes, the simple form of V;; in Eq. (2) allows to reabsorb the off-shell pieces of the
amplitude into renormalization of the coupling constant f, as shown in Ref. [9]. Therefore,
the V and t amplitudes simply factorize on-shell out of the loop integral and the problem
reduces to one of solving a coupled set of algebraic equations, with G; given by
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where M;, E; and m; stand, respectively, for the baryon mass, the baryon energy and the

meson mass in the intermediate state, and /s is the total energy in the center-of-mass (CM)
frame.



The approach of Ref. [9] and summarized here depends on one parameter, the loop
regularization cut-off, ¢u.x. Using the particle basis, a value of 630 MeV was adjusted
to reproduce the K~ p scattering branching ratios at threshold. At the same time the
weak decay constant was slightly modified to f = 1.15f;, a value lying in between the
empirical pion and kaon weak decay constants, in order to optimize the position of the
A(1405) resonance. The scattering cross sections, which were not used in the fit, were
shown to be in good agreement with the low energy data.

The scattering lengths are obtained from the amplitudes ¢;; through

ij = — == tij 5]
i A \f5 (5)

and the relevant ones for the study of K~d scattering are shown in Table 1 for two different
energies. The value 1432.6 MeV corresponds to mg + my, where myg is the K~ mass and
my an average of the neutron and proton masses. The value 1431.49 includes binding effects
by assigning half of the deuteron binding energy of 2.22 MeV to each nucleon. We also give
results for the scattering lengths from the isospin formalism, obtained by first solving the
Bethe-Salpeter equation for the various isospin channels and then transforming the isospin
amplitudes back to the particle basis. Note that the scattering lengths more affected by a
slight change in the energy value or by the particular basis used are a,, a, and a2, which
contain the isospin I = 0 component where the A(1405) resonance shows up.

III. MULTIPLE SCATTERING SERIES

It is well known that the impulse approximation fails to describe the K~ deuteron scat-
tering length. Furthermore even the contribution of a few terms of the multiple scattering
series does not give accurate values for the scattering length. This indicates that the mul-
tiple scattering series does not converge rapidly for K ~d elastic scattering at low energies.
Therefore, in this case more sophisticated approaches based on the solution of the Faddeev
equations are required.

On other hand, there are many difficulties in the solution of the Faddeev equations for
the K ~d elastic scattering. The first one is related to the coupling to many inelastic channels
with 3, A, and = baryons which make the solution of the problem technically difficult. The
second problem is related to the isospin symmetry which is often used in the solution of the
Faddeev equations. Indeed, as seen from the considerations in the former section, isospin for
K~ N scattering is a good quantum number only with accuracy of 20%. In such a situation
the use of the physical channels for the coupled equations becomes more realistic than using
an isospin formalism. This of course increases the number of the coupled channels making
the numerical procedure more complicated.

Thus getting an unambiguous information about K~ N scattering lengths from elastic
K~d scattering becomes a difficult task. However, below we present one theoretical scheme
which should considerably facilitate the solution of this problem.



A. Single scattering (impulse) approximation

We will start our considerations with the well known results of the impulse approximation
where only contributions from one (single) kaon scattering are taken into account. In this
case, we can get the following expression for the s-wave K~ d scattering t-matrix (Tx4) in
terms of the elementary s-wave t-matrices which describe K~ N scattering on the proton
(t,) and neutron (t,):

TKd(k/7 k) = [tp(klv k) + tn(k,7 k)] Fd(Q) ) (6)

where Q = (k’ — k)/2 is the momentum transfer with initial and final kaon momentum k
and K, respectively. Fy(Q) is the elastic deuteron form factor

FiQ) = [ | gu(x) [* dr (7)

normalized to unity at @Q = 0. Therefore | ¢4(r) [*=| u(r) |> + | w(r) |?, where u(r) and
w(r) are the S- and D-components of the deuteron wave functions taken from Ref. [20].

For the low energy limit, when k, k' — 0 , taking into account the relations between
t-matrices and scattering lengths (or amplitudes)

4 M, 4
MAK% tp,n — Tr(mK + mN)@p,n (8)

Md my

Tka=—

we obtain the following simple expression for the K~d scattering length in the impulse
approximation

Ay = (14 5 (0,4 0,) = (-0.49 +12.08) fm, (9)
where M, and my are the deuteron and nucleon masses, respectively, and mg is the kaon
mass. The numerical value was obtained using the elementary amplitudes a, and a, in the
physical basis at W = 1431.49 MeV, which includes the effects of the deuteron binding
energy, 2.22 MeV, and given in Table 1.

Note that in general within the impulse approximation the effects from the motion of the
nucleons has to be taken into account in the evaluation of the elementary ¢-matrix. However,
numerous investigations [21-24] show that the substitution for the nucleon momentum py —
Perr. = —(k —k')/2 is a very good approximation. In the case of S-shell nuclei such
approximation is even exact for the linear terms in py. Therefore, we expect that in the
limit k — 0 the static approximation, py = 0, is reliable.

B. Double scattering contribution

The first correction to the impulse approximation is related to the contributions coming
from the diagrams depicted in Fig. 1. We evaluate them using Feynman diagram rules.
Then for the S-matrix we get
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where K = (wk, k) and K’ = (W), k') are kaon 4-momenta in the initial and final states
and @y, is the proton (neutron) wave function normalized to unity. The plane waves
are normalized to unity in the volume V. The space part of the deuteron wave function
in Eq. (10) can be written in terms of CM and relative coordinates, i.e. ¢,(x) @, (x) =

\k e®aRep,(r). Then the S-matrix can be related to the kaon-deuteron scattering T-matrix
in the following way
27)4 M,
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where E,; and E; are the total energies of the deuteron with momentum K, and K/, in the
initial and final states, respectively.

In the CM frame and low energy limit k, k’ — 0 we obtain the following expressions and
numerical values for the contribution from diagrams (a) and (b) of Fig. 1
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and a, is the scattering length (or amplitude) for the kaon charge exchange reaction K~ p —
K%. Thus we can see that the contribution to the real part of Agy from the double
scattering is larger than that from the impulse approximation. This is mainly due to the
cancellation of the proton and neutron contributions from the single scattering.

C. Triple scattering and coupling with the X7 channel

Now let us estimate the contribution from the diagrams depicted in Fig. 2a. The
corresponding S-matrix is
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First let us evaluate the contribution from triple kaon scattering including also charge ex-
change processes. In contrast to the case of the double scattering considered above, now we
have two mesons and one baryon propagators. As a first step we evaluate exactly the energy
variable integration. After this we make the assumption of heavy baryons, i.e. E(p) in
the baryon propagator is replaced by the baryon mass. Then the integration over the three
momentum of the baryon p gives rise to a §*(x — x”) function which brings together the x
and x” coordinates. Formally this is equivalent to the so called fized scatterer approzimation
often used in the literature. Using this approximation and taking into account that at low
energies the on-shell kaon energy wx — mx

J s g 0

2m)3 Wi —mi — q* + ie 4y

we obtain the following expression and numerical value for the triple kaon scattering contri-
bution

3 Mgy m\? 1
A= = (14 25 an(ay+ a,) — (20, = )] ()
= (—3.21 — i0.43) fm, (16)

where < 1/72 >= [dr | p4(r) |* /r? = 0.289fm™? and the amplitude a® describes elastic
scattering of the K meson on the neutron. Note, by comparing Eq. (16) with Egs. (9),
(12a), (12b) that the convergence of the multiple scattering series is rather poor.

To estimate the contribution which would come from the coupling with the ¥ channel
we, as an example, consider the "7~ channel. The corresponding diagram is depicted in
Fig. 2b. For its evaluation we will use again the fixed scatterer approximation. The only
difference is in the treatment of the pion propagator. Now the on-shell pion energy in the
intermediate state is w, = 220 MeV and it is well known that in this region the p-wave
contribution related with the excitation of the A(1232) resonance dominates, especially in
the m~n elastic channel. Therefore, for the estimation we shall consider the contribution only
from the A resonance taking ¢,-, ~ ¢t q-q. In the description of the pion propagation
we will use the so called K-matrix (or on-shell) approximation, i.e

1
w? —m2 —q? + ie

— —im§(w? —m2 —q?). (17)

For these energetic pions this approximation allows one to take into account the largest
part of the pion rescattering contribution. The final expression obtained in this way for the
contribution to the scattering length is the following

Md mpg 2 m .
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where ¢ = 174 MeV is the on-shell pion momenta, j;(z) is the spherical Bessel function and
<q2j12> = ¢* /dr | pa(r) | j2(qr) = 0.083 fm 2. (19)

The value of the p-wave part of the 7™ n elastic scattering amplitude is afrp ) =0.50 +40.09

-n

fm which corresponds to the A(1232) contribution at w, = 220 MeV. Now if we take for
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the amplitude of the K~p — X"~ reaction the value ax = —0.39 + i0.04 fm from Ref. [9],
we obtain that A%; = —0.015 +40.000 fm which is only 0.5% of the contribution from the
triple scattering given by Eq. (16). This estimation allows with a good accuracy to neglect
the contributions from the coupling with inelastic channels, but we must keep the coupling
with the kaon charge exchange channel. For this purpose in the next section we derive a
formalism based on the Faddeev equations.

IV. SOLUTION OF THE FADDEEV EQUATION

As we have demonstrated in the previous section the convergence of the multiple scat-
tering series is very poor. Therefore, we can not use the iteration procedure to calculate
the K~d scattering length. For this purpose we follow a more general scheme based on the
solution of the Faddeev equations. Note that since isospin is not a good quantum number,
we will write these equations in the physical basis and present the elastic scattering T-matrix
as a sum of the two Faddeev partitions

Tka =T, + T,, (20)

where T}, and T,, describe the interaction of the K ~-mesons with the deuteron starting with
a first collision on a proton and a neutron, respectively.

Graphically these interactions are illustrated in Fig. 3 and they satisfy the following
system of integral equations

T, =ty +1t,GoT, + 12 Gy T7 (21)
Tn:tn+tnGOTp,
T =t + 12 Go T + 2 Go T,

where () is the free kaon propagator and ¢, and ¢,, are the t-matrices for K~ p and K~ n elastic
scattering, respectively. Note that for the proton partition, 7}, we have also a contribution
from the charge exchange channel with elementary {-matrix, ¢;, and the third Faddeev
partition, 7%, which describes the K%un — K~ pn transition including multiple rescattering
in the intermediate inelastic states. Through this term the coupling with the break-up
channel is realized and it is expressed via the additional elementary charge exchange, ¢;,
and elastic K%n scattering, t°, matrices.

The equations (21) are a set of operator equations. On the other hand, the final ex-
pression for the scattering length appears as an expectation value of the scattering operator
with the deuteron ground state, i.e.

~

Area = WMfdMi/ dr | @a(r) |? AKd(T) ) AKd(T) = Ap(r) + An(r) (22)

Indeed, the analytical expressions for the amplitudes A,(r) and A, (r) in Eq. (22) can be
determined by the solution of the Faddeev equations (21). For that, let us apply recipes
which we have found in the calculations of the multiple scattering series. First, following
Eq. (15) the integral over the kaon propagator Gy is replaced by —1/47mr. Second, using
the relations (8), all the elementary matrices t,, t,, ty = t, and t? are replaced by their
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threshold values of the corresponding scattering lengths a,, a,, a, and al), respectively, up
to a factor. Then we get the following system of equations for the amplitudes A,(r) and

~

A, (r):

R 1 - 1 .
Ay(r)=a,+ &p; Au(r) — &w; Az (r), (23)
~ 1 -
An(r) =a, + &n; A(r),
A(r) =y — @02 AT (r) + s An(r) |
r

where @ = a (1 + mg/my). Note that there is a minus sign in the terms which lead to np
configuration in the final state due to the fact that this configuration appears with minus
sign in the isospin zero wave function of the deuteron, (pn — np)/v/2.

After the solution of the system of equations (23) the amplitude A can be written in
an analytic form

Arealr) Gy + n + (2apdn — b2) /1 — 20260, /12
T g
Kd 1 — Gyan /12 + b2ay /13

, (24)

where b, = a,/y/1+ a%/r is the charge exchange amplitude renormalized due to the K%n
rescattering. If we keep only terms of order 1/r in this solution we get

~ 1
Algi(r) =y + o + (20,8, — a2)~ (25)

which brings us to the (IA + double scattering) results in the multiple scattering approach
[see Egs. (9), (12a), (12b)]. In a similar way, by expanding up to order (1/r)? we can easily
obtain our previous results for triple scattering.

The comparison of the full solution (24) with the results of the first iteration (25) shows
that the main difference is at the small distance: at » — 0 we have Axq — 0 and A%ZI — 00.
This difference is illustrated in Fig. 4. Thus we can conclude that at low energies the
multiple rescattering essentially reduces the contribution from the short distances and hence
the scattering length becomes less sensitive to short range correlation effects than one might
expect from the truncation of the series at the level of A(;fi and Aﬁ?}l, which involve < 1/r >
and < 1/r? >, respectively.

In Table 2 we collect our final results obtained using the elementary amplitudes in the
physical and isospin basis. Here we again demonstrate the poor convergence of the multiple
scattering series. The calculations are done at two energies, one where the deuteron binding
effects are ignored, W = 1432.6 MeV, and another one where we take the physical mass of
the deuteron, W = 1431.49 MeV. The energy dependence of the scattering amplitude makes
the results sensitive to the 2.22 MeV binding of the deuteron, with differences of up to 20%.

We can see that the results obtained here using elementary scattering amplitudes that
relied upon isospin symmetry differ somewhat from those obtained using the elementary
amplitudes calculated with the physical basis. Particularly, the imaginary parts of the
scattering length differ by about 40%. In addition, note that even if we take the a, and
a, amplitudes from the physical basis and for the others we use the isotopic relations a, =
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a, — a, and a) = a,, we get Axg = —2.33 + i2.48. Comparison with the full results,
—1.99 41 2.28, obtained within the physical basis further demonstrates the consequences of
the isospin violation effects for K ~-deuteron scattering.

With respect to the approach of Ref. [17], which uses a similar method to ours, we have
included the charge exchange channels. We can see from Eqgs. (12a),(12b) that the charge
exchange double scattering is rather important and this is also the case when the full multiple
scattering series is summed, as one can see in Table 2. There we show the results obtained
from the multiple scattering series neglecting the charge exchange contribution (b, = 0) in
Eq. (24), which we call “only el.resc.”. The “charge exch.” results in the table denote the
changes induced by the term b,, i.e. Agg(charge exch.)= Agg4(total)—Agg(only el.resc.).
Our input for the elementary amplitudes is also slightly different than that used in Ref. [17].
Our result for the scattering length, Axy = —1.99 + i 2.28 fm, has larger strength for both
the real and imaginary parts that those found in Ref. [17], around —0.7 + 1.2 fm or those
of Ref. [14], —1.47 + 1.08 fm.

V. CONCLUSION

We have studied K~ scattering on the deuteron at low energies and have evaluated
the K~d scattering length. The input consisted on elementary KN amplitudes previously
calculated using chiral Lagrangians and a coupled channels unitary scheme. We found
that the multiple scattering series on the deuteron was poorly convergent which forced
us to sum it by means of Faddeev equations. We found that we needed to include the
charge exchange channels in the Faddeev approach, but we could omit intermediate inelastic
channels (involving for instance Y states) which, however, were relevant in the evaluation
of the elementary scattering matrices in Ref. [9].

We have found a K~d scattering length of the order —2.0 47 2.3 fm which has somewhat
larger strength, both in the real and imaginary parts, than in other approaches. We also
found here that isospin is only an approximate symmetry for K ~d scattering and violation
of the isospin symmetry can be as large as 40%, hence, one should not rely upon isospin
considerations when evaluating the K ~d scattering length.

Comparison of the present results with the experimental results expected from the DEAR
experiment at Frascati should bring light on some of the issues involved in the problem, like
chiral symmetry and partial isospin breakup.

The findings of this paper should also be of much of use when trying to extract informa-
tion on elementary amplitudes from the deuteron data. The formulas which we obtain would
allow one to deduce a,, from Ay, using isospin relationships, but, as discussed above, this
would induce uncertainties of up to 40%. We have seen that the general formulas, without
assuming isospin symmetry, rely upon four scattering lengths a,, a,, a,, a2. Knowledge of
three of them from other experiments and the use of the deuteron data would allow one
to obtain information on the fourth. Conversely, we can say that the deuteron data will
introduce a further check of consistency between elementary amplitudes determined either
experimentally or theoretically.
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TABLES

TABLE I. K~ N scattering lengths (in fm) in the physical and isospin bases

reactions

Physical basis
W = 1432.60 MeV

Physical basis
W = 1431.49 MeV

Isospin basis
W = 1431.49 MeV

a, (K~p— K™p)

—0.789 +¢0.929

—0.983 +141.148

—0.818 +41.301

0.574 +140.619

0.579 +1¢0.572

0.537 +1¢0.495

—1.099 +:0.522

—1.318 + 7 0.669

—1.355 +¢0.806

—0.387 +1¢1.159

—0.593 +171.192

—-0.818 +171.301

TABLE II. K~ -deuteron scattering length (in fm) calculated using different approximations

approximations Physical basis Physical basis Isospin basis
W = 1432.60 MeV W = 1431.49 MeV W = 1431.49 MeV
1A —0.260 +71.872 —0.489 +:2.079 —0.339 +1¢2.172

IA + double resc.

—2.735 +12.895

—3.585 +1¢3.709

—3.115 + 1 4.468

IA + double+triple resc.

—4.929 +12.084

—6.794 + 1 3.274

—6.679 +15.223

Agq (only el.resc.)
Akq (charge exch.)
Akq (total)

—1.161 +71.336
—0.454 +10.573
—1.615 +41.909

—1.441 +41.443
—0.552 +10.837
—1.993 +12.280

—1.343 +¢1.652
—0.497 +141.122
—1.840 +12.774
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FIGURES
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FIG. 2. Graphical illustration of the triple scattering contributions
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FIG. 3. Graphical illustration of the Faddeev partitions in kaon-deuteron scattering
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FIG. 4. Agq(r) (solid curves) and A%ZI(T) (dotted curves). In the upper panel we also show
the deuteron wave function
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