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Abstract

The aim of this research work1 is to study the influence of tissue heterogeneities in
the dosimetry of brachytherapy. Specifically, we have developed an algorithm that
takes into account calcifications located inside the prostate and corrects the reference
dose in water. This algorithm is based on an analytical model and is applicable to
commercial Treatment Planing Systems (TPS).

The analytical model has a consistent theoretical background, and it is based on
the values of reference (the homogeneous case) and on the definition of an effective
path, which scales the distances inside the calcification into larger ones. The energy
released in the heterogeneous case along a certain step is associated with the energy
released in water along a longer (scaled) step.

The results given by the algorithm show a remarkable agreement with the complete
Monte Carlo simulations taking into account the calcifications. Several geometries
and compositions of the calcification have been checked successfully.

The algorithm is also applicable for any type of heterogeneity or shielding. The
real-time calculation of the algorithm makes it feasible for use in clinical treatment
planning and thus for improving its quality.

Resumen

El objetivo de este trabajo de investigación1 es el estudio de la influencia de het-
erogeneidades de los tejidos en la dosimetŕıa de braquiterapia. En concreto, hemos
desarrollado un algoritmo que tiene en cuenta las calcificaciones localizadas dentro
de la próstata y corrige la dosis de referencia en agua. Este algoritmo está basado
en un modelo anaĺıtico y es aplicable a Sistemas de Planificación del Tratamiento
(TPS) comerciales.

El modelo anaĺıtico tiene un fundamento teórico consistente, y se basa en los
valores de referencia (caso homogéneo) y en la definición de una longitud efectiva,
que transforma el recorrido dentro de la calcificación en distancias mayores. La
enerǵıa depositada en el caso heterogéneo a lo largo de un cierto tramo está asociada
con la enerǵıa depositada en agua a lo largo de un tramo mayor (escalado).

Los resultados del algoritmo muestran un acuerdo significativo con la simulación
de Monte Carlo completa teniendo en cuenta las calcificaciones. Se han comprobado
satisfactoriamente diferentes geometŕıas y composiciones de la calcificación.

El algoritmo también es aplicable a cualquier tipo de heterogeneidad o blindaje.
El cálculo a tiempo real del algoritmo hace factible su utilización en la planificación
cĺınica del tratamiento y permite por tanto su mejora.

1Author: Fernando Hueso González - ferhue@alumni.uv.es; Tutor: Javier Vijande Asenjo - javier.vijande@uv.es
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1 Introduction

Brachytherapy (BT), from the Greek word βραχνζ=brachys meaning short-distance, is a
type of radiotherapy (RT) where radioactive seeds (see fig. 1) are placed surgically in the body
regions affected by a tumor. This technique, whose origins date back to 1901 [1, Baltas], is
frequently used nowadays for treating prostate, cervix, skin and breast cancer.

Despite the limited knowledge about radioactivity in the first years of the 20th century (Bec-
querel discovered it in 1896; a year after Röntgen discovered X-rays), in 1903 the first two
patients were treated in St. Petersburg for facial basal cell carcinoma placing small radiation
sources of radium in the cancerous area [1]. Shortly after, this treatment was also implemented
in the Curie Institute of Paris, and in St. Luke’s and the Memorial Hospital in New York.

Fig. 1: Brachytherapy seeds.

The widespread implementation of this procedure was slowed down due to the medical doc-
tors’ exposure to the radiation. The reason was that seeds needed to be handled manually.
Nevertheless, the technological advances in radiological protection, shielding and the creation of
remote afterloading systems together with the advances in imaging acquisition and more pow-
erful computers have transformed BT in an effective and widely used treatment for many types
of cancer. This technique allows the localization of the treatment (see fig. 2a), is less invasive
than surgery and has lower risk of adverse side effects than other forms of RT.

In 1995, the Task Group No 43 (TG-43) of AAPM2 Radiation Therapy Comittee published
recommendations on dosimetry parameters and formalism in order to standardize the dosimetry
calculation for BT treatments (see [1]). This formalism is consistent, simple to implement and
is used nowadays as reference values for the dosimetry calculations. However, the formalism
assumes that the predominant compound of the treated organ is equivalent to water. This
premise is correct for most body tissues, but in organs like the prostate gland or the breast,
the presence of calcifications (heterogeneities) affects considerably the dosimetry. In most cases,
these heterogeneities are not taken into account in the planing of the treatment.

During the last 20 years, several research groups have published different works3 and algo-
rithms4 in order to account for tissue heterogeneities (mainly bone, lung and air cavities like

2The American Association of Physicists in Medicine.
3See [3, Landry], [5, Sakelliou] for recent publications about heterogeneities and prostate calcifications.
4Recent examples of these algorithms can be consulted e.g. in [6, Julien Smeets] and [4, Emily Poon].
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windpipe and rectum) and boundaries, for shielding and for applicators wall attenuation in the
dosimetry calculations of the BT treatment.

However, as far as we know, no commercial Treatment Planing System (TPS) has fully in-
troduced these corrections. For example, TPS Plato incorporates an approximate correction of
colpostat vaginal shielding and TPS Abacus gives in addition a correction of scatter default for
particular shielded cylinders. But, to our knowledge, no general method applicable to most cases
has been developed yet. The main reasons for this low development on BT TPS, in contrast
with external RT, are both medical and technical.

On the one hand, the medical experience with respect to tumor control and tolerance of organs
at risk has been acquired during many years together with a fixed calculation methodology. Any
substantial change on it is difficult to be accepted by the medical community, where, logically,
caution prevails. For example, many centers with TPS Plato ignore the dose reduction on
bladder and rectum due to the shielding of Fletcher-Williamson colpostats because it has been
done successfully without these corrections for many years.

On the other hand, the main technical reasons are that most of the available algorithms
are very complex and slow5, and require to dismiss the efficient (in terms of computing time),
frequently used and tested cylindrical symmetry assumption and the Dose Rate Tables (DRT) of
reference. In addition, calculations are time consuming, with functions that handle primary and
scatter dose components separately. The methodology of incorporating directly MC calculation
on each patient might be the solution in some decades, if the computing power continues its
growth. But today, this goal is neither feasible nor efficient.

Concerning the TPS, there are already a few algorithms (see [6], [4]) accounting for het-
erogeneities that could indeed improve dose calculation, but the ultrasound imaging technique
usually used in clinical practice is not suited to be applied. In order to apply these algorithms,
one needs to know both the density and the effective Z (atomic number) of heterogeneities,
parameters that are not constant for calcifications. You can not get both data with ultrasound
or with a classic CT, but only with a dual energy CT (as explained by [2, Chibani]). Significant
differences depending on tissue composition, even when considering an homogeneous prostate,
might be observed.

As in external RT with respect to lung corrections, it is a good opportunity to deal with tissue
heterogeneities, the reason being that the RT Departments are in the process of incorporating
a 3D anatomy with X-Ray Computed Tomography (CT) in BT, contouring bladder, urethra,
rectum, and also any tissue heterogeneity, like a calcification inside the prostate gland or the
breast.

Physicians are using more often applicators without shielding compatible with CT and Mag-
netic resonance imaging (MRI) that facilitate the former task and additionally avoid the effects
of shielding. Moreover, scientific organizations (ESTRO6, ABS7, etc.) work on recommenda-
tions to move from the traditional ICRU8 points to DVH9 quantifications, which allow an easier
incorporation of the correction due to tissue heterogeneities.

5A workaround is to take some approximations to fasten the Monte Carlo (MC) simulation (see [2, Chibani]).
6European Society for Therapeutic Radiology and Oncology
7American Brachytherapy Society
8International Commission on Radiation Units & Measurements. Its principal objective is the development of

internationally accepted recommendations for the safe and efficient application of ionizing radiation to medical
diagnosis and therapy, and radiation protection of individuals and populations.

9Dose Volume Histogram (see [1]). It summarizes 3D dose distributions of an arbitrary voxeliced structure in a
graphical 2D format by counting the number of voxels that receive a certain dose.
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As performing a MC simulation on each patient is not feasible, it is advisable to take an
intermediate step that does not solve the problem completely, but contributes to palliate it and
that can be incorporated nowadays in commercial TPS. This step, which is the subject of this
research work, has great potential and could play a relevant role, specially in the case of prostate
calcifications (see fig. 2b).

(a) Treatment with manual application of the needles.

(b) Prostate calcifications of a patient. The area of the calcifications in the image is around 5
cm2. Image of a CT, courtesy of La Fe Hospital (Valencia).

Fig. 2: Prostate brachytherapy treatment.
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2 Aim and premises

The aim of this work is the correction of the dosimetry calculations in Brachytherapy (BT)
due to tissue heterogeneities (particularly calcifications in the prostate) with a simple algorithm
that can be easily incorporated into the Treatment Planing System (TPS) workstations of the
hospitals in order to improve the quality of the BT treatment.

For achieving this goal, the algorithm has to give an estimate of the real dose received by the
patient under the following conditions:

• It has to give a better estimate of the dose than the one obtained through the TG-43
formalism. The estimation does not need to be identical to the real dose, it has only to be
noticeably better than the normal calculation.

• It has to be based on actual Dose Rate Tables (DRT) or TG-43 Tables published and used
by all TPS to interpolate the dose once points and source have been spatially reconstructed.

• It should work over voxeliced CT slices.

• It should be applicable to general cases and geometries in any commercial TPS so that it
could be incorporated in the hospitals without doing substantial changes in the TPS.

• It has to be simple and can not be time consuming.

• It should focus particularly on the prostate BT treatment for Low Dose Rate (LDR) Seeds
of I-125, one of the most commonly used in the hospitals for this type of cancer.

The ultimate goal is to improve the dose calculation without relying on a slow and heavy algo-
rithm. In other words, we can not compromise the computing time by a perfect dose estimation.
It is more appropriate to develop a fast, manageable and easy to implement algorithm that gives
a reasonable and proper estimate of the corrected dose, than a too precise estimate that requires
large amounts of calculations (or a MC simulation) and can not be done in real-time.

The incorporation of the algorithm in patients with tissue heterogeneities would also reduce
adverse side effects that might appear when the physicist corrects the distribution of the seeds
inside the heterogeneity by rule of thumb.

Therefore, this is a research project focused on its application during clinical practice, which
aims to improve significantly the dose calculation and thus the quality of the treatment.

3 Materials and methods

Materials The materials used for this research are personal computers, Monte Carlo Geant4
and PENELOPE codes, and associated methodology of the Medical Physics Group of the Uni-
versity of Valencia.

Methods The main key points and the methodology of this study are:

• To become familiar with BT treatments, the different radioactive seeds used and to study
the TG-43 dosimetry formalism.

• To attend a real operation in La Fe Hospital (Valencia) for learning about the BT treatment
and the TPS, as well as the image acquisition methods and delineations of organs with
the computer’s software.
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• To develop an algorithm which corrects the dose depending on the composition of the
heterogeneity.

• To draw conclusions about the robustness of the algorithm, its applicability to commercial
TPS in hospitals and hypothetical generalization for other organs and treatments.

In this work, the methodology consists of the proposal of an analytical model (based on a
theoretical background and the definition of effective paths) for the correction of the dose due
to heterogeneities, which has to be compared with the values obtained by the MC simulation.
We simulate several calcifications in a space with spherical symmetry and check which model
shows a higher agreement between MC simulation and the algorithm.

Afterwards, we apply this verified algorithm to an asymmetric 3D space in order to check the
validity in a more realistic case and analyze to what extent it improves the corrected dose in
comparison to the dose of reference in water and the real (simulated) dose.

People involved Apart from the author of this work (Physics student), the researchers involved
in this project are the group of Medical Physics of the University of Valencia - La Fe Hospital.

4 Theoretical procedure

In the first steps of the study, we analyze the dose distribution in a tissue under the following
conditions and approximations:

• A single punctual radioactive seed10, centered at the origin of a radial coordinate system
(r = 0).

• Spherical symmetry of the surrounding tissue, whose mass density can be described with
a radial function ρhet(r). Therefore, the whole problem is only dependent on the radial
coordinate (one-dimensional problem).

The tissue is similar to an onion with three layers, as it is seen in fig. 3:

• From r = 0 to r = a, it is water.

• From r = a to r = b, there is a calcification (relative mass density to water ρm = ρc/ρw
constant > 1). The thickness of the calcification is t = b− a.

• For r > b, it is water.

Our starting point for the algorithm are the reference values of the homogeneous case pro-
vided by a single MC simulation11 under the conditions described in fig. 3, but with t=0 (no
calcification, everything is water), that calculates the dose at a distance r from the source. These
results will always be our reference values, which we use to correct the dose for different cases
of a and b. An alternative would be to use the TG-43 Tables in the 1D approximation.

The purpose is to define an effective dose function that depends on the parameters of the
calcification and the reference values in water, in order to avoid making a MC simulation of each
kind of calcification separately and consequently saving considerable time thanks to an effective
analytical algorithm.
10The seed is spherical and considerably small (point-like). This is a reasonable approximation, as the seeds are

small in comparison with the prostate.
11Every MC simulation named in this document was done by the tutor of the work.
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Fig. 3: Cross section of the studied tissue, with a radioactive seed in the center

We start from the conservation of energy: A seed imparts on average an energy ε within a
volume V during its complete radioactive lifetime. If the volume is large enough (V = R3),
there will be no energy leakage and the identity holds:

εV (w) = εV (het) (1)

where w refers to water, that is, the homogeneous case, whereas het refers to the the heteroge-
neous case with a calcification. From the definition of absorbed dose D at any position ~r in a
mass dM (volume dV ) during a time interval12:

D(~r) =
dε

dM
=⇒ dε = D(~r)dM = D(~r)ρ(~r)dV (2)

where ρ is the mass density. If energy is conserved (eq. (1)), it follows:∫
V
Dw(~r)ρw(~r)dV =

∫
V
Dhet(~r)ρhet(~r)dV (3)

We integrate the angular part and since the problem has spherical symmetry (there is only
dependence on the radial coordinate r = |~r|), then

∫
dV =

∫
r2dr

∫
dΩ = 4π

∫
r2dr. We cancel

a 4π-factor on both sides of the identity and obtain:∫ ∞
0

Dw(r)ρw(r)r2dr =

∫ ∞
0

Dhet(r)ρhet(r)r
2dr (4)

where the mass density ρhet(r) is ρc inside the calcification and ρw otherwise (see fig. 3).
The dose rate Ḋw (dose absorbed in unit time within a certain period of time) in the TG-43

formalism in the 1D and point-source approximation, and dismissing the anisotropy factor [1,
p. 317] is defined as:

Ḋw(r) = SkΛgp,w(r)
(r0

r

)2
(5)

where Λ is the dose rate constant and Sk the air kerma strength. gp,w(r) is the radial dose
function (dimensionless) and in our case with radial symmetry is equal to Ḋ(r)r2 except for
constants. We define the dose Dhet analogously to the dose in water:

Ḋhet(r) = SkΛgp,het(r)
(r0

r

)2
(6)

12See Introduction to radiological physics and radiation dosimetry (p.27), Frank H. Attix.
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As the dose is equal to the dose rate except for constants (assuming a time exponential decay
of the source’s activity), we can substitute eq. (5) and (6) in identity (4), that yields:

ρw

∫ ∞
0

gp,w(r)dr =

∫ ∞
0

ρhet(r)gp,het(r)dr (7)

ρw

∫ ∞
0

gp,w(r)dr = ρc

∫
Vc

gp,het(r)dr + ρw

∫
Vw

gp,het(r)dr (8)

where Vc refers to the region inside the calcification and Vw to the region filled with water. We
consider a spherical shell-shaped calcification (see fig. 3) for r ∈ [a, b]. Dividing last equation
by ρw, it follows:∫ ∞

r=0
gp,w(r)dr =

∫ a

r=0
gp,het(r)dr +

ρc
ρw

∫ b

r=a
gp,het(r)dr +

∫ ∞
r=b

gp,het(r)dr (9)

Until now, this derivation is purely formal and it will be the background of our algorithm, that
has to estimate the real dose Dhet in the heterogeneous case with an effective dose function13

Def or alternatively the effective radial dose function gef given by the algorithm.

4.1 Correction algorithm

The analytical model obtained and applied in the algorithm has a consistent theoretical back-
ground and shows, as we will see in further sections, a great agreement with the values obtained
with the simulation. In this section, we write the general analytical expressions obtained as a
result of physical considerations.

Following the result obtained in eq. (9), we assume that the integral in the range [0, a] is the
same on both sides. In other words, we do not account for backscatter near the boundary (both
situations are physically identical for r < a).∫ a

0
gw(r)dr =

∫ a

0
gef(r)dr =⇒ gw(r) = gef(r) if r < a (10)

∫ ∞
a

gw(r)dr =
ρc
ρw

∫ b

a
gef(r)dr +

∫ ∞
b

gef(r)dr (11)

Our correction algorithm is based on the definition of an effective path ref , which scales the
radial distance r with a relative effective-path density ρr (effective parameter) of the calcification
to water. This definition takes into account a greater energy deposition in tissues with higher
mass density and interaction cross section than water.

Our analogy is that a higher energy deposition along a path ∆r (in the calcification) is
equivalent to a usual (that is, in water) energy deposition along an effective path (∆r)ef (see
fig. 4). To put it another way, we transform a medium with higher density into a medium with
normal density but scaled (larger) distances and associate the energy released along a path in
the calcification to the energy released in a longer path in water (which is given by the reference
values).

Consequently, the dose inside the calcification will rise up, and the dose after it will decrease
(because of energy conservation) in comparison to the homogeneous case.

13From now on, we change het with ef (it stands for effective) when referring to the estimation given by the
algorithm and with MC when referring to the MC simulation. We also simplify the notation: gp,x ≡ gx.
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Fig. 4: Sketch of the emission energy E released by a photon in different media in a 1-D approxi-
mation. The atoms or molecules are represented as separate circles and are like obstacles
for the photon, which loses energy as it collides with them. Logically, if the medium has
higher density, the same number of collisions occur in a smaller range of distances. In the
case of a different medium, the interaction cross section is different (atoms represented
as ellipses). The extrapolation to a 3D-space with spherical symmetry is explained in
footnote 16.

We define the effective radial distance as:

ref(r; ρr, a, b) =


r if 0 ≤ r ≤ a
a+ ρr(r − a) if a < r < b
a+ ρr(b− a) + (r − b) if r ≥ b

(12)

It is a continuous function (with discontinuous derivative) that scales the distance in the
calcification with the relative effective-path density ρr, as it can be seen in figure 5. Note that
the mass density ρhet(r) of eq. (9) is not equal to the relative effective-path density ρr (the
interpretation of this parameter will be discussed in subsection 4.2).

The effective dose is obtained from the dose of reference by calculating the energy released
along the effective path in water and associating it to the real path in the heterogeneous case
(see fig. 6).

Eq. (11) does not give us relevant information of the dependence of the curve gef with r.
Therefore, it is necessary to use a differential treatment: we assume that the energy ∆E released
in the heterogeneous case between r and (r + ∆r) has to be the same that the one released in
water (given by the simulation of reference) between ref and (r + ∆r)ef .

Particularly, at the beginning of the calcification, the energy released in a range ∆r between
[a, a+ ∆r] will be the same as the one absorbed in water between [ref(a), ref(a+ ∆r)] = [a, a+
ρr∆r].

12
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Fig. 5: Example of the calculation of the effective radial distance

In other words, part of the energy that was previously (homogeneous case) released outside the
zone of the calcification remains now (heterogeneous case) inside. Mathematically, this means:

ρc
ρw

∫ a+∆r

a
gef(r)dr =

∫ ref(a+∆r)

ref(a)
gw(r)dr (13)

ref(a) = a ; ref(a+ ∆r) = a+ ρr∆r (14)

ρc
ρw

∫ a+∆r

a
gef(r)dr =

∫ a+ρr∆r

a
gw(r)dr (15)

Let us suppose ∆r small, and the area under the curve rectangular (as a Riemann sum based
on tagged finite partitions, with gef(r) constant between r and r + ∆r ). Then, we can write:∫ a+∆r

a
gef(r)dr ' gef(a+ ∆r/2)∆r (16)

gef(a+ ∆r/2) =
ρw
ρc

1

∆r

∫ a+ρr∆r

a
gw(r)dr (17)

Numerically, this can be generalized for the whole calcification. We obtain:

a+N∆r = b =⇒ N =
b− a
∆r

=⇒ ∆r =
b− a
N

; n ∈ [0, N − 1] (18)

gef(a+ ∆r/2 + n∆r) =
ρw
ρc

1

∆r

∫ a+(n+1)ρr∆r

a+nρr∆r
gw(r)dr (19)
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Fig. 6: Schematic illustration of the redistribution of energy inside the calcification. The blue
curve represents the construction of gef with the algorithm. The areas of the transformed
rectangles are not directly the energy; they are affected by a scaling factor: the relative
mass density. If this factor is 1, the areas have to be similar.

In eq. (19), ∆r << 1 but there is no guarantee that ρr∆r is, therefore the integral has to be
maintained. If we calculate the effective radial dose function at a distance r (variable change
r → r′, a+ ∆r/2 + n∆r → r), we have that:

gef(r) =
ρw
ρc

1

∆r

∫ a+(r+∆r/2−a)ρr

a+(r−∆r/2−a)ρr

gw(r′)dr′ ; a+ ∆r/2 ≤ r ≤ b−∆r/2 (20)

Outside the calcification: ∫ b+∆r

b
gef(r)dr =

∫ ref(b+∆r)

ref(b)
gw(r)dr (21)

ref(b) = a+ ρr(b− a) ; ref(b+ ∆r) = a+ ρr(b− a) + ∆r (22)

∫ b+∆r

b
gef(r)dr =

∫ a+ρr(b−a)+∆r

a+ρr(b−a)
gw(r)dr (23)

Therefore, the integration interval is ∆r in both cases, and as the area is considered to be
rectangular, it follows that:

gef(b+ ∆r/2)∆r = gw(a+ ρr(b− a) + ∆r/2)∆r (24)
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gef(b+ ∆r/2) = gw(a+ ρr(b− a) + ∆r/2) (25)

In general, we have (with n > 0):

gef(b+ ∆r/2 + n∆r) = gw(a+ ρr(b− a) + ∆r/2 + n∆r) (26)

If we change to the continuum (variable change b+ ∆r/2 + n∆r → r):

gef(r) = gw(ref(r)) = gw(a+ (b− a)ρr + r − b) = gw(r + (b− a)(ρr − 1)) ; r > b (27)

Summarizing:

gef(r) =


gw(r) if r < a
ρw
ρc

1
∆r

∫ a+(r+∆r/2−a)ρr
a+(r−∆r/2−a)ρr

gw(r′)dr′ if a+ ∆r/2 ≤ r ≤ b−∆r/2

gw(r + (b− a)(ρr − 1)) if r > b

(28)

Note that this function is discontinuous in order to avoid the singularities in r = a and b, but
its integral is well defined in the limit ∆r → 0.

For checking the validity of the result, we verify that it fulfills the identity (7), (derived directly
from the conservation of energy, our starting point) making the change the other way around,
that is, substituting the expressions given by eq. (28).∫ ∞

0
ρhet(r)gef(r)dr = ρw

∫ a

0
gw(r)dr + ρc

∫ b

a
gef(r)dr + ρw

∫ ∞
b

gw(ref)dr (29)

where we suppose that ∆r << a, b, t so that singularities do not affect the integral. The second
term is, returning to the discrete sum:

ρc
∫ b
a gef(r)dr = ρc

∑N−1
n=0 gef(a+ (n+ 1/2)∆r)∆r = ρc

∑N−1
n=0 ∆r ρwρc

1
∆r

∫ a+(n+1)ρr∆r
a+nρr∆r gw(r)dr

= ρw
∑N−1

n=0

∫ a+(n+1)ρr∆r
a+nρr∆r gw(r)dr = ρw

∫ a+Nρr∆r
a gw(r)dr

= ρw
∫ a+ρr(b−a)
a gw(r)dr

(30)
Taking into account that dr = dref for r > b (see eq. (12)), the third term is:

ρw
∫∞
b gw(ref)dr = ρw

∫∞
ref(b)

gw(ref)dref = ρw
∫∞
a+ρr(b−a) gw(ref)dref

= ρw
∫∞
a+ρr(b−a) gw(r)dr

(31)

Then, substituting eq. (30) and (31) in (29), you proof eq. (7):∫∞
0 ρhet(r)gef(r)dr = ρw

∫ a
0 gw(r)dr + ρw

∫ a+ρr(b−a)
a gw(r)dr + ρw

∫∞
a+ρr(b−a) gw(r)dr

= ρw
∫∞

0 gw(r)dr
(32)

For different geometries (for example, many shells) in a 3D space without symmetries14, the
equations of the algorithm can be generalized into more compact expressions:

ref(r; ρr) =

∫ r

0
λ(r′)dr′ (33)

14We trace straight rays between source and calculation point and apply the model developed for spherical
symmetry. In this extrapolation, the backscatter (not included in the model) might be more important.
Furthermore, the straight ray-tracing is less justified in an asymmetric situation (no compensation of the
scattering on average, angular orientation is not arbitrary anymore).
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which is a path integral that follows the rectilinear trajectory of a photon ray (emitted by the
radioactive seed) with arbitrary orientation in a 3D space. λ(r′) = 1 if ρhet(r

′) = ρw whereas
λ(r′) = ρr if ρhet(r

′) = ρc.

gef(r) =

{
gw(ref) if ρhet(r) = ρw
ρw
ρc

1
∆r

∫ (r+∆r/2)ef
(r−∆r/2)ef

gw(r′)dr′ if ρhet(r) = ρc
(34)

or directly:

gef(r) =
ρw

ρhet(r)

1

∆r

∫ (r+∆r/2)ef

(r−∆r/2)ef

gw(r′)dr′ (35)

It is easy to proof that this equation contains the particular case of eq. (28).
Note we assume that the mass density ρhet(r

′) = ρhet(r) ∀ r′ ∈ [r−∆r/2, r+∆r/2] is either the
one of water ρw or the one of the calcification ρc (a perfect piecewise constant function) along the
whole step ∆r. This is legitimate except in the boundaries between water and calcification, which
are singular points that are not interesting for the study and that do not have any noticeable
influence in the results if ∆r is small in comparison to the extension of the calcification.

Eq. (35) also allows to generalize the studied system to one with smoothly changing mass
densities in the space, although the correspondence of the mass density with the effective param-
eter ρr (see subsection 4.2) has to be determined precisely with a table of reference. Therefore,
it could be applied for other shielding problems, boundaries, body tissues and geometries, not
only for spherical calcifications in the prostate.

4.2 Physical interpretation of ρr

In principle, the relative effective-path density parameter ρr has to be adjusted manually by
comparing the curve given by the algorithm with the simulation. Physically, this parameter
might be closely related with the mass density and the interaction cross section.

We can interpret this parameter as a quotient between the real path and the weighted (effec-
tive) path, and thus the quotient of the mean free path of the photon of the source in water ’vs’
calcification until it releases its energy E (the average emission energy) completely15.

If we suppose (remaining in a space with spherical symmetry) an exponential attenuation 16

of the uncollided photons: I = I0 ∗ e−µx, the mean free path is given by 1/µ (where µ is the
linear attenuation coefficent). Consequently, we can interpret ρr as:

ρr =
1/µw,Ē
1/µc,Ē

=
µc,Ē
µw,Ē

(36)

The value of µ/ρ (X-Ray Mass Attenuation Coefficients) for elemental media can be looked
up in [7, NIST Tables] at the mean energy value Ē, where ρ is the mass density and ρm = ρc/ρw

15We particularize for I-125 seeds, where the predominant type of radiation is a photon with E = 28keV
16Beer-Lambert law. It refers to the intensity I transmitted through a layer of material with thickness x. Although

a prerequisite of this law is that the incident rays are parallel, it can be generalized for spherical symmetry
by only changing x with r. The reason is that the trajectory of the photons can be considered straight on
average over the isotropic emission (we consider a space with spherical symmetry), and that the straight rays
of photons suffer the same number of collisions in a sphere of radium r as in a cubic layer of thickness r.
The number of particles within a sphere is proportional to r3, whereas the number of collisions of the straight
photons with these particles is directly proportional to r, because the rays are not parallel and separate from
each other. Therefore, ref is proportional to r and to ρ.
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the relative mass density from the calcification to water. It follows:

ρr =
(µρ )c,Ē

(µρ )w,Ē

ρc
ρw

=
(µρ )c,Ē

(µρ )w,Ē
ρm ≡

(µ
ρ

)c
w
ρm (37)

We find reasonable that the weighted path is proportional to the relative mass density ρm.
We can check the linearity of this equation by doing several simulations for changing values of
ρm and obtaining manually the associated effective parameter ρr. Then, we can plot ρr as a
function of ρm, fit it to a straight line and check if the fitted slope is similar to

(µ
ρ

)c
w

calculated
with NIST Tables.

5 Results and discussion

In order to apply the algorithm developed in section 4 to a case of interest and check its
validity, we will do several MC simulations and compare them with the result predicted by the
algorithm.

The first example (fig. 7) shows a rather good agreement between the effective dose calcu-
lated with the algorithm and the dose given by the complete Monte Carlo simulation with a
calcification.

In this simulation, we have chosen a shell-shaped calcification whose atomic composition is
similar to a breast calcification detailed in [2, Chibani] with a relative mass density ρc/ρw = 3.
For the algorithm, the effective parameter ρr has been adjusted checking manually which value
gave a better agreement of the effective (red) with the simulated (green) curve in a larger range
of distances (see fig. 7).

This proves that a simple analytical model that works in real-time (computing time about
one second) gives results reasonably similar to a simulation that takes up to two days using a
state-of-the-art personal computer.

Therefore, we conclude that the proposed algorithm is very appropriate and even exceeds
the expectations we had when the project was started, specially considering the approximate
description of the problem through effective distances and other simplifications in order to obtain
a rough but reasonable estimate of the dose.

In order to make a further validation of the analytical model, we check the identity given by
eq. (9) with a numerical integral of the obtained curves. In the case of fig. 7, the result is:

Curve In Relative deviation

gw 5.150 Reference
gef 5.070 −1.6%
gMC 5.229 1.5%

Table 1: Numerical check of the energy conservation in fig. 7 through the integral In indicated
in eq. (9).
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Fig. 7: Comparison of the radial dose function predicted by the correction algorithm (gef) with
the Monte Carlo simulation (gMC) with calcifications. Comparison with the simulation of
reference in water (gw), which is used by the algorithm. The calcification’s composition
is detailed in [2].

Fig. 7 shows the important role played by heterogeneities in a tissue. The absorbed dose is
multiplied by 5 inside the calcification, whereas it almost sinks to zero outside it (the particular
calcification chosen in this simulation acts effectively as a shielding).

When treating a tumor, this fact might be serious because the cancer cells that are outside
the calcification would survive (the radiation does not reach them, they are in the “shadow”)
and therefore the cancer would not be completely eradicated.

While commercial TPS use the reference curve (blue) for the dosimetry and assume that the
radiation goes through the calcification and releases sufficient energy after it, the real dose,
given by the simulation (green), differs drastically from it by the presence of a heterogeneity
with higher mass density and interaction cross section with the radiation, despite of the small
thickness (5 mm) of the shell.

However, as the calculation of the dose is done real-time during the operation17, the MC
simulation is not an effective tool for dosimetry, because it takes a couple of days (for a single
point-like seed and spherical symmetry geometry). In contrast, our algorithm gives real-time
effective results very similar to the simulation that can be applied to more realistic cases in-
cluding several seeds lasting about one second to calculate the corrected dose in any commercial

17The planing is done days before in the hospital, but the introduction of the seeds with needles changes the
geometry of the organ and the dosimetry has to be recalculated during the operation.
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computer.
Hence the importance of this algorithm in correcting the drastic effects that cause hetero-

geneities in tissues and the real possibility of being incorporated into commercial TPS without
the drawback of excessive computing time.

We have checked the algorithm both visually and numerically (see table 1). The low relative
deviation of the numerical integral is a symptom of the high degree of agreement between simu-
lation and algorithm. Therefore, we have obtained an algorithm based on theoretical arguments
whose unique free parameter is ρr.

For incorporating this model in commercial TPS, it would only be necessary to introduce
a table of reference for different values of ρr according to the cases of clinical interest of the
calcification’s composition or relative mass density, but independently of a and b (as seen below).
However, the model acquires a greater importance if we are able to physically interpret the
effective parameter ρr and estimate its value.

5.1 Linearity of ρr with the mass density and estimation of (µ/ρ)cw

In order to verify the interpretation given in subsection 4.2, we simulate a pure calcium layer
for several cases of ρm (in fig. 7, we used a more complex composition detailed in [2]). We
adjust the effective parameter manually in the algorithm and obtain several plots.

Subsequently, we represent the adjusted values of ρr as a function of ρm and check both the
linearity predicted by eq. (37) and the value of

(µ
ρ

)c
w

given by the linear fit in comparison with
the value given by the NIST Tables.

The agreement shown in fig. 8 is quite good. The reason of the discrepancy near the peak
could be the discontinuity of the mass density in r = a, or the backscatter that is not taken into
account in the model. However, this deviation is local and unimportant, since the agreement is
very good in a large range of values of r.

Figure Curve In Relative deviation

/ gw 5.150 Reference

8a
gef 5.183 0.7%
gMC 5.316 3.2%

8b
gef 5.089 −1.2%
gMC 5.383 4.5%

8c
gef 5.011 −2.7%
gMC 5.223 1.4%

8d
gef 4.932 −4.2%
gMC 5.037 −2.2%

Table 2: Numerical check of the energy conservation in fig. 8 through the integral In indicated
in eq. (9).

The reason of negative relative deviations (Aef and AMC < Aw) could be that the cutoff (the
integral is theoretically until r = ∞) of the integral of the simulation and algorithm is lower
than the one of the simulation of reference.
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(a) Relative mass density ρm = 1
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(b) Relative mass density ρm = 2

Fig. 8: Comparison of the correction algorithm (gef) (with a value of ρr adjusted manually) with
the Monte Carlo simulation (gMC) with calcifications. Comparison with the simulation in
water (gw). The effective parameter ρr has been adjusted manually. The calcification’s
composition is pure calcium.
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(c) Relative mass density ρm = 3
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(d) Relative mass density ρm = 4

Fig. 8: Comparison of the correction algorithm (gef) (with a value of ρr adjusted manually) with
the Monte Carlo simulation (gMC) with calcifications. Comparison with the simulation in
water (gw). The effective parameter ρr has been adjusted manually. The calcification’s
composition is pure calcium.
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We check the linearity predicted by eq. (37) with a linear fit for the values of ρr adjusted
manually as a function of ρm, which is a fixed value chosen in each simulation.
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Fig. 9: Linearity of the effective parameter ρr with the relative mass density ρm. The calcifica-
tion’s composition is pure calcium.

The linearity becomes evident in fig. 9. Furthermore, the value of (µ/ρ)cw = 15.9± 0.4 result
of the linear fit is consistent with the value given in [7] for the mean energy value of the photons
of the I-125 seed: (µ/ρ)cw = 17.7± 0.2.

The reason of the slight disagreement could be either the approximation of taking constant
µ/ρ at the mean energy value (although the radiation could lose only part of its energy in
successive collisions and scattering), or the neglecting of the contribution of the electrons to the
radiation.

In conclusion, the value given by eq. (37) is a good estimate, it gives the correct order of
magnitude, but the most acute fit has to be found manually by comparing it with the Monte
Carlo simulation or by adding more considerations to the theoretical model underlying the
algorithm.

In our opinion, the most functional procedure for incorporating this algorithm in the TPS of
hospitals is to adjust this effective parameter (manually, comparing with a MC simulation with
spherical symmetry) for various compositions of clinical interest and to build a table of reference
for the algorithm, values that could be compared with those obtained by NIST Tables.
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5.2 Independence of ρr on the geometry of the calcification

Until now, we have checked the algorithm only for a single geometry of the calcification (a
and b are always the same) and changing compositions and mass densities. In order to rule out
that the agreement is accidental with the particular geometry and to verify the robustness of
the algorithm, we have to make further simulations changing the size but not the composition
of the calcification.

We expect that the algorithm is also applicable in these cases with the previously adjusted
values of ρr. In order to verify this independence of ρr on a and b, we repeat the cases 8c and
8d changing those two parameters.

As it can be seen in fig. 10, the new manually adjusted ρr values are the same as the previous
ones. Therefore, we can say that the algorithm is robust and can be applied for many cases,
and not only for a calcification but for other type of tissue heterogeneities or boundaries.

Of course, the number of cases studied is low and limited by the time spent in this research,
because every MC simulation (essential in each case for comparing it with the analytical model)
lasts about two days. This algorithm has to be checked with more geometries and compositions,
but the first results obtained are hopeful and invite to be optimistic.

Figure Curve In Relative deviation

/ gw 5.150 Reference

10a
gef 4.990 −3.1%
gMC 5.038 −2.2%

10b
gef 4.911 −4.6%
gMC 4.919 −4.5%

Table 3: Numerical check of the energy conservation in fig. 10 through the integral In indicated
in eq. (9).

5.3 3D case without symmetries

In this section, we apply the algorithm to a case more similar to real prostate calcifications,
as it can be seen in fig. 2b. We have placed two calcifications and one radioactive seed in a
3D space of a size similar to a prostate gland. Both calcifications have the same composition
but different size. The composition chosen this time is neither the one from [2, Chibani] nor
pure calcium, but a specific composition for prostate calcifications detailed in [6, Smeets]. The
relative mass density ρm = 1.1 is measured in La Fe Hospital from a real CT of a patient with
prostate calcifications (see fig. 2b).

The option of delimiting with the computer the contour of the calcification in the medical
ultrasonography analogous to the delimitation of rectum and urethra should be added to the
TPS software, and also the specification of its composition and mass density. These parameters
should be associated with a certain value of ρr in a table of reference.
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(a) Relative mass density ρm = 3
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Fig. 10: Comparison of the correction algorithm between fig. 8c, 8d and 10a, 10b. The manually
adjusted ρr parameters are the same independently from a and b in each case. The
calcification’s composition is pure calcium.
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Fig. 11: Distribution of the calcifications without symmetries inside the cubic prostate and
with a radioactive seed at the origin of the cartesian coordinate system. The two
calcifications (1 and 2) are compact spheres of radia R1 = 0.3 cm, R2 = 0.5 cm and
centered at x1 = 0 cm, y1 = 1 cm, z1 = −1 cm and x2 = 0 cm, y2 = −0.7 cm, z2 = −0.8
cm. The calcification’s composition is given in [6]. We fix the parameters ρm = 1.1 and
ρr = 5.3.

In order to obtain the value of ρr for this new composition, we repeat the usual proceeding:
we make a simulation with spherical symmetry and adjust the parameter manually. The results
can be seen in figure 12.

Curve In Relative deviation

gw 5.150 Reference
gef 5.157 0.1%
gMC 5.065 −1.6%

Table 4: Numerical check of the energy conservation in fig. 12 through the integral In indicated
in eq. (9).

The agreement is notable and the value obtained for the effective parameter is

ρr = 5.3± 0.5

The predicted value of ρr according to eq. (37) and using the attenuation coefficients calcu-
lated by Penelope in the MC simulation (NIST Tables are not useful for complex compositions),
has the same order of magnitude: ρr = 4.4± 0.2.
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Fig. 12: Comparison of radial dose function predicted by the correction algorithm (gef) with the
Monte Carlo simulation (gMC) with calcifications. Comparison with the simulation of
reference in water (gw), which is used by the algorithm. The calcification’s composition
is detailed in [6].

In the 3D case, we expect that the calcifications shield the radiation and creat “cold spots”
in the absorbed dose heat map, according to the behaviour of the curve in fig. 12 for distances
greater than b.

For analyzing the effect of calcifications, we calculate the dose in eV/g per history18 (not the
radial dose function) in different cutting planes. Below we represent only the planes that are
illustrative and show better the effect of heterogeneities in the dose heat map. The homogeneous
case is compared with the case with calcifications.

In fig. 13b, the presence of the calcifications origins an increase in the dose inside them (hot
spot) in comparison with fig. 13a, analogous to the peak between a and b of fig. 12. “Behind”
the calcifications, one can see a decrease of the dose: the calcifications origins a “cold spot”.

In the case of fig. 14b, we are in the “shadow“ of the calcification, that origins a decrease
of the dose and cold spots (blue) that are not present in fig. 14a, for example at the top and
bottom of the figure. These spots are the effect of both calcifications. These results (fig. 14) are
consistent with the effects observed in the spherical geometry. In the analogy of fig. 12, we are
at distances greater than b, where the effective (red) curve is under the reference (blue) curve.

18The dose units are the one of the MC simulation (eV/g per history). The values g(r)/r2 of the algorithm and
reference in water are multiplicated with a conversion factor obtained by comparing with the simulation. The
constants Sk and Λ are not specified.
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(a) Dose without taking into account the effect of calci-
fications

(b) Effective dose taking into account the effect of cal-
cifications with the algorithm

(c) Dose taking into account the effect of calcifications
in the MC simulation

Fig. 13: Dose heat map (eV/g per history) in cutting plane z = −1.05cm. The dashed lines
represent isodose curves. The gray lines represent the cross section of calcifications 1
and 2 (see fig. 11). The plane z = −1.05cm cuts them under their center.
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(a) Dose without taking into account the effect of cal-
cifications

(b) Effective dose taking into account the effect of cal-
cifications with the algorithm

(c) Dose taking into account the effect of calcifications
in the MC simulation

Fig. 14: Dose heat map (eV/g per history) in cutting plane z = −1.35 cm. The dashed lines
represent isodose curves. The plane z = −1.35 cm does not cut any calcification (see
fig. 11).
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The result of the simulation (around 3 weeks of computing time) of this case without sym-
metries (more time consuming) is seen in fig. 13c and 14c. We check visually (following the
countour lines) that the algorithm (fig. 13b and 14b) agrees reasonably with the MC simulation.
As the results show a good agreement, it is reasonable to think that it can be applied for the 40
seeds that are placed inside the prostate in each treatment (the real case).

A simulation of 40 seeds is not feasible with the computers that are available to us in the
University and the result given by the algorithm (which computes without problems the case
with all these seeds) can not be checked. Therefore, the verification of the model has to be done
only with one seed and extrapolate the validity range for more seeds, which is reasonable if we
dismiss interseed attenuation (the problem is additive).

5.4 Comments on the model underlying the algorithm

Strengths

• It conserves the energy.

• The effective parameter ρr is only dependent on the composition and proportional to the
mass density, but is independent on the geometric parameters of the calcifications a and
b.

• The agreement between model and simulation exceeds the expectations of this work.

• The model relies on a consistent physical background, where every parameter is physically
interpreted.

• It provides a fast, effective and easy to implement algorithm that can be incorporated in
commercial TPS.

• The algorithm is robust and has been checked for several heterogeneity geometries and
compositions.

Weaknesses

• It does not take into account backscatter inside the calcification.

• The boundaries of the calcification are singular points where the dose can not be calculated.

• The algorithm assumes a point-source approximation and does not consider interseed at-
tenuation.

• The agreement between the simulation and algorithm (green and red curves) inside the
calcification is good (the step ∆r has to be small), except near the dose peak in r = a.
This deviation is not relevant for our purpose, as it is explained in section 2.

• The agreement of simulation and algorithm is strongly dependent on the effective param-
eter ρr. The model does not predict an optimum value of ρr, that has to be adjusted
manually with the results of the simulation. An interpretation and estimate of this pa-
rameter is given in subsection 5.1.

• The theoretical background is based on arguments for a 1D space (fig. 4) and formalism,
which is extrapolated directly to a 3D space with spherical symmetry (and validated with
a MC simulation). The same happens with the interpretation of ρr in subsection 4.2 and
the Beer-Lambert law.

• We extrapolate the algorithm verified for a 3D space with spherical symmetry to an asym-
metric situation described in fig. 11, dismissing the effect of scattering of rays and a more
important influence of backscatter.
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6 Conclusions

An analytical dose calculation algorithm has been developed successfully for BT treatment in
order to account for tissue heterogeneities like calcifications in the prostate. The model, which
has a consistent physical background, has been verified using spherical symmetry geometries
and also an asymmetric situation, and has shown a good agreement with MC simulations.
Furthermore, the model is able to give a good estimate of the effective parameter ρr.

In other words, an analytical model that works real-time gives results reasonably similar to
a MC simulation that takes up to two days. Apart from the high calculation efficiency of the
algorithm, it is simple, light and might be implemented in commercial TPS (e.g Plato), in
contrast to a complete MC simulation, that can not operate real-time.

This algorithm is not useful for patients that do not present tissue heterogeneities, but for
those that do, it accounts for an important correction that nowadays is mostly dismissed. The
effect of calcifications is not negligible but drastic, as seen in fig. 7. Therefore, we hope that
(after further studies) it can be incorporated gradually in medical practice.

Although the research has focused on prostate calcifications, the theoretical model is general
and can be applied for other tissue heterogeneities and shielding in RT treatments. There is no
restriction of the type of heterogeneity, the only parameters that need to be determined are the
relative mass density ρm and the effective parameter ρr. The first one has to be measured from
imaging techniques and the second one can be obtained with the MC simulation with spherical
symmetry.

The number of studied cases is yet low and limited by the time spent in this research. The
algorithm has to be verified for more 3D asymmetric geometries (with a DVH) in the near future
and for real seeds (not point-like).

In addition, a study in depth of the relationship between the composition of the heterogeneity
and the effective parameter ρr should be done in order to establish a table of reference and con-
sensus. The results of the simulation should be also checked experimentally using real phantoms
and seeds.

It is also necessary to study how to obtain the typical parameters of the calcification (com-
position, mass density, electronic density, effective Z, etc.) from the imaging techniques usually
used in clinical practice, or how to modify them for measuring these values.

In conclusion, the incorporation of this model in the dosimetry of patients with heterogeneities
is feasible medium-term and it would improve significantly the dosimetry planing, reduce adverse
side effects and increase the quality of the BT treatment.
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Conclusiones

En este trabajo se ha desarrollado satisfactoriamente un algoritmo para el cálculo anaĺıtico
de dosis en el tratamiento de braquiterapia con el fin de tener en cuenta las heterogeneidades en
tejidos, como por ejemplo las calcificaciones en la próstata. El modelo, que tiene un fundamento
teórico consistente, se ha verificado para un geometŕıa con simetŕıa esférica y también para una
situación asimétrica, y ha mostrado un alto acuerdo con las simulaciones de MC. Además, el
modelo es capaz de dar una buena estimación del parámetro efectivo ρr.

En otras palabras, un modelo anaĺıtico que opera a tiempo real da resultados razonablemente
similares a una simulación de MC que dura hasta dos d́ıas. Aparte de la gran eficiencia de
cálculo del algoritmo, éste es simple, ligero y podŕıa ser introducido en TPS comerciales (por
ejemplo en Plato), a diferencia de una simulación de MC completa, que no puede dar resultados
a tiempo real.

Este algoritmo no es útil para pacientes que no presentan heterogeneidades en su tejido, pero
para aquellos que śı, éste da cuenta de una corrección importante que generalmente se obvia.
El efecto de las calcificaciones no es despreciable sino drástico, como se observa en la figura 7.
Por tanto, confiamos en que (tras posteriores estudios) se pueda incorporar gradualmente a la
rutina cĺınica.

Aunque la investigación se ha centrado en calcificaciones en la próstata, el modelo teórico
es general y puede ser aplicado en otro tipo de heterogeneidades y blindajes en tratamientos
de RT. No existe restricción sobre el tipo de heterogeneidad, los únicos parámetros que hay
que determinar son la densidad másica relativa ρm y el parámetro efectivo ρr. El primero debe
medirse a partir de las técnicas de imagen y el segundo puede obtenerse mediante una simulación
de MC con simetŕıa esférica.

El número de casos estudiados es todav́ıa bajo y limitado por el tiempo que ha durado esta
investigación. El algoritmo debe verificarse para más situaciones 3D asimétricas (con DVH) en
un futuro cercano y para semillas reales (no puntuales).

Además, se debe realizar un estudio en profundidad de la relación entre la composición de la
heterogeneidad y el parámetro efectivo ρr para establecer una tabla de referencia de consenso.
Los resultados de la simulación debeŕıan compararse también con medidas experimentales usando
maniqúıes y semillas reales.

También es necesario estudiar cómo obtener los parámetros t́ıpicos de la calcificación (com-
posición, densidad másica, densidad electrónica, Z efectivo, etc.) a partir de las técnicas de
imagen empleadas usualmente en la rutina cĺınica, o cómo modificar éstas para medir dichos
valores.

En conclusión, la incorporación de este modelo en la dosimetŕıa de pacientes con hetero-
geneidades es factible a medio plazo, y ésta mejoraŕıa significativamente la planificación de la
dosimetŕıa, reduciŕıa efectos secundarios y aumentaŕıa la calidad del tratamiento de BT.
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Pallarés and José Pérez Calatayud for giving me the opportunity of doing this research
together with them, and also my family for their unconditional support.

References

[1] Dimos Baltas, Loukas Sakelliou - The Physics of Modern Brachytherapy for Oncology, 2006

[2] Omar Chibani and Jeffrey F. Williamson - MCPI: A sub-minute Monte Carlo dose calcu-
lation engine for prostate implants, Med. Phys. 32, 12: 3688-3698 (Dec 2005)

[3] Guillaume Landry, Brigitte Reniers, Jean-Philippe Pignol, Luc Beaulieu, Frank Verhaegen
- The difference of scoring dose to water or tissues in Monte Carlo dose calculations for
low energy brachytherapy photon sources, Med. Phys. 38, 3: 1526 (March 2011)

[4] Emily Poon, Frank Verhaegen - A CT-based analytical dose calculation method for HDR
192Ir brachytherapy , Med. Phys., Vol. 36, No. 9, September 2009

[5] G Anagnostopoulos, D Baltas, P Karaiskos, E Pantelis, P Papagiannis and L Sakelliou - An
analytical dosimetry model as a step towards accounting for inhomogeneities and bounded
geometries in 192Ir brachytherapy treatment planning , 2003 Phys. Med. Biol. 48 1625

[6] Julien Smeets - Effects of inhomogeneities in brachytherapy - Experimental study and Monte
Carlo simulation, Department of Nuclear Metrology, Faculty of Applied Sciences - Univer-
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