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Abstract

The aim of this paper is to classify the finite minimal non-p-su-
persoluble groups, p a prime number, in the p-soluble universe.
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1 Introduction

All groups considered in this paper are finite.

Given a class X of groups, we say that a group G is a minimal non-X-
group or an X-critical group if G ¢ X, but all proper subgroups of G belong
to X. It is rather clear that detailed knowledge of the structure of X-critical
groups could help to give information about what makes a group belong
to X.

Minimal non-X-groups have been studied for various classes of groups X.
For instance, Miller and Moreno [10] analysed minimal non-abelian groups,
while Schmidt [14] studied minimal non-nilpotent groups. These groups
are now known as Schmidt groups. Rédei classified completely the minimal
non-abelian groups in [12] and the Schmidt groups in [13]. More precisely,

Theorem 1 ([12]). The minimal non-abelian groups are of one of the fol-
lowing types:
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1. G = [V, ]C,s, where q and r are different prime numbers, s is a positive
integer, and Vy is an irreducible Cys-module over the field of q elements
with kernel the mazximal subgroup of C,s,

2. the quaternion group of order 8,

3. Gu(g,m,n) = (a,b | a?" =b" =1,a> = """, where q is a prime
number, m > 2, n > 1, of order ¢™", and

4' GIH(Qamvn) = <CL,b | aqm = bqn = [CL?b]q = [a7baa] = [CL, bab] = 1)}
where q is a prime number, m > n > 1, of order ¢"™+"+1.

We must note that there is a misprint in the presentation of the last type
of groups in Huppert’s book |7; Aufgabe I11.22].

Theorem 2 (|13], see also |2]). Schmidt groups fall into the following classes:

1. G = [P]|Q, where Q = (z) is cyclic of order ¢" > 1, with ¢ a prime
not dividing p — 1 and P an irreducible QQ-module over the field of p
elements with kernel (z9) in Q.

2. G = [P]Q, where P is a non-abelian special p-group of rank 2m, the
order of p modulo q being 2m, QQ = (z) is cyclic of order ¢~ > 1, z in-
duces an automorphism in P such that P/®(P) is a faithful irreducible
Q-module, and z centralises ®(P). Furthermore, |P/®(P)| = p*™ and
|P'| < p™.

3. G = [P]Q, where P = (a) is a normal subgroup of order p, Q = (z) is
cyclic of order ¢ > 1, with q dividing p — 1, and a* = a°, where i is
the least primitive q-th root of unity modulo p.

Here [K|H denotes the semidirect product of K with H, where H acts
on K.

[t6 [8] considered the minimal non-p-nilpotent groups for a prime p, which
turn out to be Schmidt groups.

Doerk [5] was the first author in studying the minimal non-supersoluble
groups. Later, Nagrebeckil [11] classified them.

Let p be a prime number. A group G is said to be p-supersoluble whenever
G is p-soluble and all p-chief factors of G are cyclic groups of order p.

Kontorovi¢ and Nagrebeckil [9] studied the minimal non-p-supersoluble
groups for a prime p with trivial Frattini subgroup. Tuccillo [15] tried to clas-
sify all minimal non-p-supersoluble groups in the soluble case, and gave res-
ults about non-soluble minimal non-p-supersoluble groups. Unfortunately,
there is a gap in his paper and some groups are missing from his classifica-
tion.



Example 3. The extraspecial group N = (a,b) of order 413 and exponent
41 has automorphisms y of order 5 and z of order 8, given by a¥ = a'°,
W = b, and a® = b, b* = @*°, satisfying y* = y~!. The semidirect
product G of N by (x,y) is a minimal non-supersoluble group such that
the Frattini subgroup ®(N) of N is not a central subgroup of G. This is a
minimal non-41-supersoluble group not appearing in any type of Tuccillo’s

result.

Example 4. The extraspecial group N = (a,b) of order 17° and exponent
17 has an automorphism z of order 32 given by a* = b, b* = a3. The
semidirect product G = [N](z) is a minimal non-17-supersoluble group. It
is clear that [a, b]* = [a, b]'"* and so [a,b] does not belong to the centre of G.

This is another group missing in Tuccillo’s work.

Example 5. The automorphism group of the extraspecial group of order
7% and exponent 7 has a subgroup isomorphic to the symmetric group 35
of degree 3. The corresponding semidirect product is a minimal non-7-
supersoluble group not corresponding to any case of Tuccillo’s work.

Example 6. Let F = (1, x2) be an extraspecial group of order 125 and
exponent 5. This group has two automorphisms « and 3 given by z§ = z3,
Ty = T, :L"f = 22, and a:'g = 73 generating a quaternion group H of order
8 such that the corresponding semidirect product [E]H is a minimal non-5-
supersoluble group. This group is also missing in [15].

Example 7. With the same notation as in Example 6, the automorphisms
§ and v defined by z] = xo, x5 = 7 generate a dihedral group D of order 8.
The corresponding semidirect product [E]D is a minimal non-5-supersoluble
group not appearing in [15].

By looking at these examples, we see that the classification of minimal
non-p-supersoluble groups given in [15] is far from being complete. In our
examples, the Frattini subgroup of the Sylow p-subgroup is not a central
subgroup, contrary to the claim in [15; 1.7].

The aim of this paper is to give the complete classification of minimal
non-p-supersoluble groups in the p-soluble universe. This restriction is mo-
tivated by the following result.

Proposition 8. Let G be a minimal non-p-supersoluble group. Then either
G/®(G) is a simple group of order divisible by p, or G is p-soluble.

Our main theorem is the following:

Theorem 9. The minimal p-soluble non-p-supersoluble groups for a prime
p are exactly the groups of the following types:



Type 1: Let q be a prime number such that q divides p — 1. Let C be
a cyclic group of order p*, with s > 1, and let M be an irreducible
C-module over the field of q elements with kernel the maximal sub-
group of C. Consider a group E with a normal q-subgroup F' contained
in the Frattini subgroup of E and E/F isomorphic to the semidirect
product [M]C. Let N be an irreducible E-module over the field of p
elements with kernel the Frattini subgroup of E. Let G = [N]E be
the corresponding semidirect product. In this case, ®(G),, the Sylow
p-subgroup of ®(G), which coincides with the Frattini subgroup of a
Sylow p-subgroup of E, is a central subgroup of G and ®(G),, the
Sylow q-subgroup of ®(G), is equal to (E), which coincides with the
Frattini subgroup of a Sylow q-subgroup of E and centralises N.

Type 2: G = [P]Q, where Q = (z) is cyclic of order ¢" > 1, with q a prime
not dividing p — 1, and P is an irreducible QQ-module over the field of
p elements with kernel (z9) in Q.

Type 3: G = [P|Q, where P is a non-abelian special p-group of rank 2m,
the order of p modulo q being 2m, q is a prime, Q = (z) is cyclic of
order ¢" > 1, z induces an automorphism in P such that P/®(P) is
a faithful and irreducible QQ-module, and z centralises ®(P). Further-
more, |P/®(P)| = p*™ and |P'| < p™.

Type 4: G = [P]Q, where P = (ag, a1, ...,a4-1) is an elementary abelian
p-group of order p?, Q = (z) is cyclic of order q", with q a prime such
that ¢’ is the highest power of q dividing p—1 and r > f > 1. Define
a; =aj for0<j<qg—1landa; ;= aly, where i is a primitive ¢/ -th
root of unity modulo p.

Type 5: G = [P|Q, where P = {ag,a,) is an extraspecial group of order p?
and exponent p, Q = (z) is cyclic of order 2", with 27 the largest power
of 2 dividingp—1 and r > f > 1. Define a; = af and ai = ajyx, where
x € ([ag,a1]) and i is a primitive 2/ -th root of unity modulo p.

Type 6: G = [P|E, where E is a 2-group with a normal subgroup F such
that F < ®(F) and E/F is isomorphic to a quaternion group of order

8 and P is an irreducible module for E with kernel F' over the field of
p elements of dimension 2, where 4 | p — 1.

Type 7: G = [P|E, where E is a 2-group with a normal subgroup F such
that F < ®(FE) and E/F is isomorphic to a quaternion group of order
8, P is an extraspecial group of order p* and exponent p, where 4 | p—1,
and P/®(P) is an irreducible module for E with kernel F' over the field

of p elements.



Type 8: G = [P|E, where E is a q-group for a prime q with a normal
subgroup F such that F < ®(E) and E/F is isomorphic to a group
G(q,m,1) of Theorem 1, P is an irreducible E-module of dimension
q over the field of p elements with kernel F', and q"™ divides p — 1.

Type 9: G = [P|E, where E is a 2-group with a normal subgroup F such
that F < ®(E) and E/F is isomorphic to a group Gp(2,m,1) of
Theorem 1, P is an extraspecial group of order p* and exponent p such
that P/®(P) is an irreducible E-module of dimension 2 over the field
of p elements with kernel F', and 2™ divides p — 1.

Type 10: G = [P]E, where E is a q-group for a prime q with a normal sub-
group F such that F < ®(FE) and E/F is isomorphic to an extraspecial
group of order ¢ and exponent q, with q odd, P is an irreducible E-
module over the field of p elements with kernel F' and dimension q,
and q divides p — 1.

Type 11: G = [P]MC, where C is a cyclic subgroup of order r***, with
r a prime number and s and t integers such that s > 1 and t > 0,
normalising a Sylow q-subgroup M of G, M /®(M) is an irreducible C-
module over the field of q elements, q a prime, with kernel the subgroup
D of order r* of C, and P is an irreducible M C-module over the field
of p elements, where q and r° divide p — 1. In this case, ®(GQ),, the
Hall p'-subgroup of ®(G), coincides with ®(M) x D and centralises P.

Type 12: G = [P]MC, where C is a cyclic subgroup of order 2°T", with
s and t integers such that s > 1 and t > 0, normalising a Sylow q-
subgroup M of G, q a prime, M/®(M) is an irreducible C-module
over the field of q elements with kernel the subgroup D of order 2!
of C, and P is an extraspecial group of order p* and exponent p such
that P/®(P) is an irreducible M C-module over the field of p elements,
where q and 2° divide p— 1. In this case, ®(G),, the Hall p'-subgroup
of ®(G), is equal to (M) x D and centralises P.

From Proposition 8 and Theorem 9 we deduce immediately that a min-
imal non-p-supersoluble group is either a Frattini extension of a non-abelian
simple group of order divisible by p, or a soluble group.

As a consequence of Theorem 9, bearing in mind that minimal non-
supersoluble groups are soluble by [5] and minimal non-p-supersoluble groups
for a prime p, we obtain the classification of minimal non-supersoluble
groups:



Theorem 10. The minimal non-supersoluble groups are exactly the groups
of Types 2 to 12 of Theorem 9, with r dividing g — 1 in the case of groups
of Type 11.

The classification of minimal non-p-supersoluble groups can be applied to
get some new criteria for supersolubility. A well-known theorem of Buckley
[4] states that if a group G has odd order and all its subgroups of prime order
are normal, then G is supersoluble. The following generalisation follows
easily from our classification:

Theorem 11. Let G be a group whose subgroups of prime order permute
with all Sylow subgroups of G and no section of G is isomorphic to the
quaternion group of order 8. Then G is supersoluble.

As a final remark, we mention that Tuccillo [15] also gave some partial
results for Frattini extensions of non-abelian simple groups of order divis-
ible by p. Looking at the results of Section 4 of that paper, it seems that
the classification of minimal non-p-supersoluble groups in the general finite
universe is a hard task.

2  Preliminary results

First we gather the main properties of a minimal non-supersoluble group.
They appear in Doerk’s paper [5].

Theorem 12. Let G be a minimal non-supersoluble group. We have:

~

. G is soluble.
2. G has a unique normal Sylow subgroup P.
3. P/®(P) is a minimal normal subgroup of G/®(P).

4. The Frattini subgroup ®(P) of P is supersolubly embedded in G, i. e.,
there exists a series 1 = Ng < Ny < --- < N,, = ®(P) such that N; is
a normal subgroup of G and |N;/N;_1| is prime for 1 <i < m.

5. ®(P) < Z(P); in particular, P has class at most 2.

6. The derived subgroup P’ of P has at most exponent p, where p is the
prime dividing |P)|.

7. For p > 2, P has exponent p; for p =2, P has exponent at most 4.



8. Let Q be a complement to P in G. Then Q N Cq(P/®(P)) = ®(G)N
?(Q) = 2(G)NQ.

9. If Q = Q/(Q N QD(G)), then @ is a minimal non-abelian group or a
cyclic group of prime power order.

In [6; VII, 6.18], some properties of critical groups for a saturated form-
ation in the soluble universe are given. This result has been extended to
the general finite universe by the first author and Pedraza-Aguilera. Recall
that if § is a formation, the §-residual of a group G, denoted by G¥, is the
smallest normal subgroup of G such that G/G? belongs to §.

Lemma 13 (|3; Theorem 1 and Proposition 1|). Let § be a saturated form-
ation.

1. Assume that G is a group such that G does not belong to §, but all
its proper subgroups belong to §. Then F'(G)/®(G) is the unique min-
imal normal subgroup of G/®(G), where F'(G) = Soc(G mod ®(G)),
and F'(G) = GS®(G). In addition, if the derived subgroup of G¥
is a proper subgroup of GS, then G¥ is a soluble group. Further-
more, if G¥ is soluble, then ¥'(G) = F(G), the Fitting subgroup of
G. Moreover (G8) =T NGS for every mazimal subgroup T of G such
that G/ Coreq(T) ¢ § and F'(G)T = G.

2. Assume that G is a group such that G does not belong to § and there
exists a mazximal subgroup M of G such that M € § and G = M F(G).
Then G3 /(GS) is a chief factor of G, GS is a p-group for some prime
p, G has exponent p if p > 2 and exponent at most 4 if p = 2.
Moreover, either GS is elementary abelian or (G) = Z(G%) = ®(GS)
15 an elementary abelian group.

It is clear that the class § of all p-supersoluble groups for a given prime
p is a saturated formation [7; VI, 8.3]. Thus Lemma 13 applies to this class.
The following series of lemmas is also needed in the proof of Theorem 9.

Lemma 14. Let N be a non-abelian special normal p-subgroup of a group
G, p a prime, such that N/®(N) is a minimal normal subgroup of G/P(N).
Assume that there exists a series 1 = Ny I Ny < --- I Ny = &(N) with N;
normal in G for all i and cyclic factors N;/N;_1 of order p for 1 < i < t.
Then N/®(N) has order p*™ for an integer m.

Proof. The result holds if N is extraspecial by [6; A, 20.4]. Assume that
N is not extraspecial. Let T' = N; be a minimal normal subgroup of G
contained in ®(P), then 7" has order p. It is clear that (N/T) = N'/T and
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O(N/T) = ®(N)/T. Consequently (N/T') = &(N/T). On the other hand,
O(N/T) = ®(N)/T = Z(N)/T < Z(N/T). 1If ®(N/T) # Z(N/T), then
Z(N/T) = N/T because N/®(N) is a chief factor of G, but this implies that
N/T is abelian, in particular, T'= N’ and N is extraspecial, a contradiction.
Therefore G /T satisfies the hypothesis of the lemma and N/T is non-abelian.
By induction, (N/T)/®(N/T) = N/®(N) has order p*™. O

Lemma 15. Let G be a group, and let N be a normal subgroup of G con-
tained in ®(G). If p is a prime and G is a minimal non-p-supersoluble group,
then G/N is a minimal non-p-supersoluble group.

Conversely, if G/N is a minimal non-p-supersoluble group, N < ®(G),
and there exists a series 1 = Nog I Ny < --- < N, = N with N; normal in G
for all i and whose factors N;/N;_1 are either cyclic of order p or p'-groups
for 1 <i <t, then G is a minimal non-p-supersoluble group.

Proof. Assume that G is a minimal non-p-supersoluble group and N <
®(G). If M/N is a proper subgroup of G/N, then M is a proper subgroup of
G. Hence M is p-supersoluble, and so is M/N. If G/N were p-supersoluble,
since N < ®(G), G would be p-supersoluble, a contradiction. Therefore
G/N is minimal non-p-supersoluble.

Conversely, assume that G/N is a minimal non-p-supersoluble group,
N < ®(G), and that there exists a series 1 = Ny I Ny < --- < N, = N with
N; normal in G for all ¢ and factors N;/N;_; cyclic of order p or p’-groups for
1 <1 <t. It is clear that G cannot be p-supersoluble. Let M be a maximal
subgroup of G. Since N < ®(G), N < M. Thus M/N is p-supersoluble. On
the other hand, it is clear that every chief factor of M below N is either a
p’-group or a cyclic group of order p. Consequently, M is p-supersoluble. [

Lemma 16 ([1]). Let A be a group, and let B be a normal subgroup of
A of prime index r dividing p — 1, p a prime. If M is an irreducible and
faithful A-module over GF(p) of dimension greater than 1 and the restriction
of M to B is a sum of irreducible B-modules of dimension 1, then M has
dimension r. In this case, M is isomorphic to the induced module of one of
the direct summands of Mg from B up to A.

In the rest of the paper, § will denote the formation of all p-supersoluble
groups, p a prime.

Lemma 17. Let G be a minimal non-p-supersoluble group whose p-supersol-
uble residual N = G is normal Sylow p-subgroup. Then a Hall p'-subgroup
R/®(G) of G/®(G) is either cyclic of prime power order or a minimal non-
abelian group.



Proof. By Lemma 15, we can assume without loss of generality that ®(G) =
1. Then, by Lemma 13, G is a primitive group and Cg(N) = N. In
particular, for each subgroup X of G, we have that O, ,(XN) = N. Let M
be a maximal subgroup of R. Then M N is a p-supersoluble group and so
MN/Oy ,(MN)= MN/N is abelian of exponent dividing p — 1. Therefore
if R is non-abelian, then it is a minimal non-abelian group. Suppose that
R is abelian. If R has a unique maximal subgroup, then R is cyclic of
prime power order. Assume now that R has at least two different maximal
subgroups. Then R is a product of two subgroups of exponent dividing p—1.
Consequently R has exponent p— 1 and so N is a cyclic group of order p by
[6; B, 9.8], a contradiction. Therefore if R is not cyclic of prime power order,
R must be a minimal non-abelian group and the lemma is proved. O

Lemma 18. Let G be a minimal non-p-supersoluble group with a normal
Sylow p-subgroup N such that G/®(N) is a Schmidt group. Then G is a
Schmidt group.

Proof. Let G be a minimal non-p-supersoluble group with a normal Sylow
p-subgroup N such that G/®(N) is a Schmidt group. Then G = NQ, for
a Hall p’-subgroup @) of G. Moreover, since GG is not p-supersoluble and
G/®(N) is a Schmidt group, we have that ) is a cyclic g-group for a prime
q and ¢ does not divide p — 1 by Theorem 2. Let M be a maximal subgroup
of G. If N is not contained in M, then a conjugate of () is contained in M
and so we can assume without loss of generality that M = ®(N)Q. Since ¢
does not divide p — 1 and M is p-supersoluble, we have that () centralises
all chief factors of a chief series of M passing through ®(N). But by [6; A,
12.4], it follows that @) centralises (V) by and so M is nilpotent. If N is
contained in M, then M is a normal subgroup of G such that M/®(N) is
nilpotent. By [7; III, 3.5], it follows that M is nilpotent. This completes the
proof. n

3 Proof of the main theorems

Proof of Proposition 8. By Lemma 13, G/®(G) has a unique minimal nor-
mal subgroup 7/®(G) and T = G¥®(G). Tt follows that T/®(G) must have
order divisible by p. Assume that 7//®(G) is a direct product of non-abelian
simple groups. We note that, since G/®(G) is a minimal non-p-supersoluble
group by Lemma 15, T/®(G) = G/®(G) and so G/P(G) is a simple non-
abelian group.

Assume now that 7/®(G) is a p-group. By Lemma 13, we have that G
is a p-group. In this case, T/®(G) is complemented by a maximal subgroup



M/®(G) of G/®(G). Since M is p-supersoluble, so is M/®(G). Therefore
G/®(G) is p-soluble. It follows that G is p-soluble. O

Proof of Theorem 9. Assume that GG is a p-soluble minimal non-p-supersol-
uble group. By Lemma 13 and Proposition 8, N = G% is a p-group.

Assume first that N is not a Sylow subgroup of G. By Lemma 13,
N/®(N) is non-cyclic.

Assume that ®(G) = 1. Then N is the unique minimal normal subgroup
of GG, which is an elementary abelian p-group, and it is complemented by a
subgroup, R say. Moreover, N is self-centralising in G. This implies that
O, »(G) = N = O,(G). Since N is not a Sylow p-subgroup of G, we have
that p divides the order of R. Consider a maximal normal subgroup M of R.
Observe that N M is a p-supersoluble group and O,y ,(NM) = O,(NM) = N
because O,(M) is contained in O,(R) = 1. Therefore M = M N/ O,y ,(MN)
is abelian of exponent dividing p — 1. It follows that M is a normal Hall
p/-subgroup of R and |R : M| = p because p divides |R|. In particular,
M is the only maximal normal subgroup of R. Moreover, if C' is a Sylow
p-subgroup of R, then C is a cyclic group of order p.

Let My be a normal subgroup of R such that M /M, is a chief factor of
R. Let X = NM,C'. Since X is a proper subgroup of G, we have that X is
p-supersoluble. Hence X/ O, ,(X) is an abelian group of exponent dividing
p — 1. It follows that C' < O, ,(X). In particular, C' = MyC N O, ,(X) is
a normal subgroup of MyC' which intersects trivially M,. We conclude that
C' centralises My. If M; is another normal subgroup of R such that M /M,
is a chief factor of R, then M = MyM,;. The same argument shows that
C centralises M; and so C' centralises M as well, a contradiction because
in this case C' < Z(R) and then C' < O,(R) = 1. Consequently M, is the
unique such normal subgroup. Since M is abelian, we have that My < Z(R).

Now R has an irreducible and faithful module N over GF(p). By |[6;
B, 9.4], Z(R) is cyclic. In particular, M, is cyclic. We will prove next
that My = 1. In order to do so, assume, by way of contradiction, that
M is not a minimal normal subgroup of R. First of all, if M is not a ¢-
group for a prime ¢, then M is a direct product of its Sylow subgroups,
but all of them should be contained in My, a contradiction. Therefore,
M is a g-group for a prime ¢. Since M has exponent dividing p — 1, we
have that ¢ divides p — 1. If Soc(M) is a proper normal subgroup of M,
then Soc(M) < My. Since M, is cyclic, we have that M is an abelian
group with a cyclic socle. Therefore M is cyclic. But since ¢ divides p — 1,
we have that C' centralises M and so C' < O,(R) = 1, a contradiction.
Consequently M = Soc(M), and M is a C-module over GF(q). If M is
not irreducible as C-module, then M can be expressed as a direct sum
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of proper C-modules over GF(q). Hence M has at least two maximal C-
submodules, which yield two different chief factors M/M; and M /M, of R,
a contradiction. Therefore M is a minimal normal subgroup of R, R = MC,
and Cr(M) = M. On the other hand, N is a faithful and irreducible R-
module over GF(p). By Clifford’s theorem [6; B, 7.3], the restriction of N to
M is a direct sum of |R : T'| homogeneous components, where 7" is the inertia
subgroup of one of the irreducible components of N when regarded as an M-
module. Moreover, by [6; B, 8.3], we have that each of these homogeneous
components N; is irreducible. Therefore they have dimension 1 because N; M
is supersoluble for every i. Since N is not cyclic, we have that |R : T| > 1.
Since M <T < R, we have that M =T and so N has order p”.

Assume now that ®(G) # 1. In this case, G = G/®(G) is a minimal
non-p-supersoluble group by Lemma 15 and ®(G) = 1. We observe that
N®(G)/P(G) cannot be a Sylow p-subgroup of G/®(G), because otherwise
NH, where H is a Hall p’-subgroup of GG, would be a proper supplement to
®(G) in G, which is impossible. In particular, if 7" is a normal subgroup of
G contained in ®(G), then the p-supersoluble residual NT'/T of G/T is not
a Sylow p-subgroup of G/T. Therefore G has the above structure. Since
N®(G) = F(G), F(G/®(G)) = F(G)/®(G), and ®(F(G)/®(G)) = 1, we
have that N = (G)¥ = N®(G)/®(G) satisfies

N/®(N) = (N®(G)/®(G))/2(NO(G)/P(G))
= (F(@)/2(@))/2(F(@)/2(q)),

which is isomorphic to F(G)/®(G) = N®(G)/P(G), and the latter is G-
isomorphic to N/(N N ®(G)) = N/®(N) by Lemma 13. Assume that
®(N) # 1. By Lemma 14, we have that N/®(N) has square order. But
this order is equal to |[N/®(N)| = pP, which implies that p = 2. This
contradicts the fact that ¢ divides p — 1. Therefore ®(N) = 1. Now we
will prove that ®(G),, the Sylow p-subgroup of ®(G), is a central cyclic
subgroup of G. Assume first that ®(G),,, the Hall p’-subgroup of ®(G),
is trivial. We have that G/®(G) = N M C, where C is a cyclic group of
order p, M is an irreducible and faithful module for C' over GF(q), q a prime
dividing p — 1, and N is an irreducible and faithful module for M C over
GF(p) of dimension p. Let N, M, and C be, respectively, preimages of N,
M, and C by the canonical epimorphism from G to G/T. We can assume
that N = G% and M is a Sylow ¢g-subgroup of G. Since C' is cyclic of order p,
we can find a cyclic subgroup C' of G such that C' = C®(G)/®(G). Consider
now a chief factor H/K of G contained in ®(G),. Then G/ Ce(H/K) is an
abelian group of exponent dividing p — 1 and H/K is centralised by a Sylow
p-subgroup of G/K; in particular, G/ Cg(H/K) is isomorphic to a factor
group of a group with a unique normal subgroup of index p. It follows that

11



Cq(H/K) = G, that is, H/K is a central factor of G. Now N centralises
®(G) because ®(N) =1 = NNP(G) and M is a g-group stabilising a series
of ®(G). By [6; A, 12.4], M centralises ®(G). Moreover C' normalises M
because MP(G) = M x ®(G) is normalised by C. In particular, MC is a
subgroup of G. Since G = N(MC') and N is a minimal normal subgroup of
G, it follows that M C is a maximal subgroup of G. Hence ®(G) is contained
in MC and so in C. This implies that ®(C) < Z(G). In the general case,
we have that ®(G)/®(G)y < Z(G/®(G)y). Then [G,®(G),] < (G)y.
Therefore ®(G), < Z(G). On the other hand, it is clear that ®(G), is
a proper subgroup of C. Thus ®(G), < ®(C) and so ®(G), < ®(MC).
Now ®(G), = ®(G),, the Sylow g-subgroup of ®(G), is contained in M
and M/®(G), is elementary abelian. Hence ®(M) < ®(G),. Moreover,
by Maschke’s theorem [6; A, 11.4], the elementary abelian group M /®(M)
admits a decomposition M/®(M) = ®(G),/P(M) x A/P(M), where A is
normalised by C. In this case, R = MC = A(C®(G),/). Since C normalises
A, we have that AC' is a subgroup of G. Therefore N(AC) is a subgroup
of G and so G = (NAC)®(G),. We conclude that G = NAC. By order
considerations, we have that M/ = A and so ®(M) = ®(G),.

Now let G be a minimal non-p-supersoluble group such that N is a Sylow
p-subgroup of GG. Let @ be a Hall p’-subgroup of G. Then G = N(@Q. Denote
with bars the images in G = G/®(G). By Lemma 13, N = N®(G)/®(G)
is a minimal normal subgroup of G = G/®(G) and either N is elementary
abelian, or N’ = Z(N) = ®(N). Note that ®(N) = ®(G),, the Sylow p-
subgroup of ®(G), because ®(N) is contained in ®(G), and N is a chief
factor of G. Assume that ®(G),s, the Hall p/-subgroup of ®(G), is not
contained in ®(Q). Then there exists a maximal subgroup A of @ such
that Q = AP(G),. In this case, G = NQ = NAD(G), and so G = NA.
It follows that A = ) by order considerations, a contradiction. Therefore
d(G)y < ®(Q). We also note that since Q = QP(G)/P(G) = Q/P(G),,
where ®(G), is the Sylow g-subgroup of ®(G), has an irreducible and faithful
module N = N/®(N) over GF(p), we have that Z(Q) is cyclic by [6; B, 9.4].

By Lemma 17 we have that the Hall p/-subgroup Q of G is either a cyclic
group of prime power order or a minimal non-abelian group.

Suppose that @ = (Z) is a cyclic group of order a power of a prime
number, ¢ say. Since this group is isomorphic to Q/®(G), and ®(G), <
®(Q), we have that @ is a cyclic group of g-power order, Q) = (z) say.

Suppose that the order of z is ¢f. Then ¢/~' divides p—1. If 27 = 1, then
G is a Schmidt group. By Lemma 18, G is a Schmidt group. By Theorem 2,
G is a group of Type 2 if (V) =1, or 3 if P(IV) # 1.

Assume now that f > 2. In this case, ¢ divides p —1 and, by Lemma 16,
we have that N has order p?. Let ap € N\ 1. Let a; = aF for 1 <i<q—1,
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then a2’ = ai, where i is a ¢/ ~'-root of unity modulo p. It follows that
(agqf_l) = a'éqf_Q. If 7 is not a primitive ¢/ ~1-th root of unity modulo p, we
have that i¥ * =1 (mod p). In particular, ag"f_l = ap, which contradicts
the fact that the order of z is ¢/. If ®(IN) = 1, then we obtain a group of
Type 4. If ®(N) # 1, then N has square order by Lemma 14 and so ¢ = 2.
Hence N is an extraspecial group of order p® and exponent 3, and G is a
group of Type 5.

Assume now that @Q is not cyclic. In this case, @ is a minimal non-
abelian group by Lemma 17. Let  be an element of Q. Since N(z) is a
p-supersoluble group, we have that the order of x divides p—1. It follows that
the exponent of @ divides p — 1. Since N = N/®(N) is an irreducible and
faithful Q-module over GF(p) of dimension greater than 1 and the restriction
of N to every maximal subgroup of Q) is a sum of irreducible modules of
dimension 1, we have that N has order p? by Lemma 16.

Suppose that @ is a g-group for a prime q. By Theorem 1, either Q 2 Qg,
or Q = Gu(g, m,n), or Q@ = Gm(g,m,n).

Suppose that () is isomorphic to a quaternion group (Jg of order 8. In
this case, ¢ = 2, |N| = p? and exp(Q) = 4 divides p — 1. If ®(N) = 1, then
we have a group of Type 6. Assume that ®(N) # 1. In this case, N is an
extraspecial group of order p? and exponent p and so G is a group of Type 7.

Suppose that @ is isomorphic to Gi(q,m,n) = (a,b | a?" =b?" = 1,a> =
a' 7" where m > 2, n > 1, of order ¢™*". Since Q has an irreducible
and faithful module N, we have that Z(Q) is cyclic by [6; B, 9.4]. Since
(a?, Py < Z(Q) and m > 2, we have that o” = 1 and so n = 1. Hence ¢™
divides p — 1. If ®(NN) = 1, then we obtain a group of Type 8. If ®(N) # 1,
then N is non-abelian and so |N| is a square by Lemma 14. It follows that
g = 2 and G is a group of Type 9.

Suppose now that @ is isomorphic to G(q,m,n) = {a,b| a?" = 7" =
[a,b]? = [a,b,a] = [a,b,b] = 1), where m > n > 1, of order ¢™*"*!. Since
Gm(2,1,1) =2 Gu(2,2,1), we can assume that (¢, m,n) # (2,1, 1).

As before, Z(Q) is cyclic. Consider (a?, b [a,b]), which is contained in
Z(Q). If m > 2, then (a?, [a,b]) is cyclic. Since [a,b] has order p, we have
that [a,b] = a® for a natural number t. But hence a’ = a'*% and so (a)
is a normal subgroup of G. Therefore |Q| = |{a,b)| = [{a)(b)| < ¢™*", a
contradiction. Consequently m = 1. It follows that () is an extraspecial
group of order ¢® and exponent ¢q. If ®(N) # 1, then N has square order,
but this implies that ¢ = 2, a contradiction. Consequently, ®(N) = 1 and
we have a group of Type 10.

Assume now that @Q is a minimal non-abelian group which is not a g-group
for any prime ¢. Then @ is isomorphic to [V,]C,s, where ¢ and r are different
primes numbers, s is a positive integer, and V; is an irreducible C,s-module
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over the field of ¢ elements with kernel the maximal subgroup of C,s. Since
NVq is a p-supersoluble subgroup, it follows that the restriction of N to Vq
can be expressed as a direct sum of irreducible modules of dimension 1. By
Lemma 16, we have that N has dimension 7. We know that ®(G), < ®(Q)
and ®(G), = ®(N). Since Q is isomorphic to Q/®(G),s, and this group
is r-nilpotent, @) is r-nilpotent. Consequently () has a normal Sylow g¢-
subgroup M. On the other hand, ®(G),, the Sylow g-subgroup of ®(G),
is contained in M and M/®(G), is elementary abelian. This implies that
®(M) is contained in ®(G),. Let C' be a Sylow r-subgroup of G. Then, by
Maschke’s theorem [6; A, 11.4], M/®(M) = &(G),/P(M) x A/P(M) for a
subgroup A of M normalised by C. Then @ = (AC)®(G), = AC and so
A = M. Consequently (M) = &(G),. Now the Sylow r-subgroup ®(G), of
®(G) is contained in C. If ®(G), were not contained in ®(C'), there would
exist a maximal subgroup 7" of C' such that C' = T®(G),.. This would imply
Q = MT and T = C, a contradiction. Hence ®(G), is contained in ®(C')
and C' is cyclic. Moreover ®(G), centralises M.

If ®(N) = 1, then we have a group of Type 11. If ®(N) # 1, then r = 2
and N is an extraspecial group of order p? and exponent p. This is a group

of Type 12.
Conversely, it is clear that the groups of Types 1 to 12 are minimal
non-p-supersoluble. O

Proof of Theorem 10. 1t is clear that all groups of the statement of the the-
orem are minimal non-supersoluble. Conversely, assume that a group is
minimal non-supersoluble. Hence it is soluble, and so its p-supersoluble
residual is a p-group by Proposition 8. Note that groups of Type 1 in The-
orem 9 are not minimal non-supersoluble. On the other hand, groups of
Type 11 are not minimal non-supersoluble when r does not divide ¢ — 1,
because in this case the subgroup M (' is not supersoluble. O

Proof of Theorem 11. Assume that the result is false. Choose for GG a counter-
example of least order. Since the property of the statement is inherited by
subgroups, it is clear that G must be a minimal non-supersoluble group,
and so a minimal non-p-supersoluble group for a prime p. In particular,
the p-supersoluble residual N = G¥ of G is a p-group. Suppose that N has
exponent p. The hypothesis implies that every subgroup of N is normalised
by OP(G). In particular, N/®(N) is cyclic, a contradiction. Consequently
p = 2 and the exponent of N is 4. By Theorem 9, the only group with §-
residual of exponent 4 is a group of Type 3. But in this case either N/® (V)
has order 4 and N must be isomorphic to the quaternion group of order 8,
because the dihedral group of order 8 does not have any automorphism of
odd order, or N/®(N) has order greater than 4. In the last case, N has an
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extraspecial quotient, which has a section isomorphic to a quaternion group
of order 8, final contradiction. n
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