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Abstract

In (1, Theorem A), Beidleman and Robinson proved that if a group
satisfies the permutizer condition, it is soluble, its chief factors have
order a prime number or 4 and G induces the full group of automor-
phisms in the chief factors of order 4. In this paper, we show that
the converse of this theorem is false by showing some counterexam-
ples. We also find some sufficient conditions for a group satisfying the
converse of that theorem to satisfy the permutizer condition.
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1 INTRODUCTION

All groups considered in this paper are finite.

Given a subgroup H of a group G, the permutizer Pg(H) of H in G is
defined as the subgroup generated by all cyclic subgroups of G that permute
with H. Thus H < Pg(H) and H # Pg(H) if and only if H(z) = (z)H for
some z € G\ H. A group G such that H # Pg(H) for every proper subgroup
H is said to satisfy the permutizer condition or to be a P-group.

Beidleman and Robinson (1, Theorem A) proved the following result:

Theorem 1. Let G be a finite group satisfying the permutizer condition.
Then G is soluble and each chief factor of G has order 4 or a prime. In
addition, if F is a chief factor of order 4, then G induces the full group of
automorphisms in F| i. e., G/Cq(F) = Xj.

In the same paper, the authors asked whether the converse is true. We
show in this paper that the converse is not true and find sufficient conditions
for a group satisfying the converse of that theorem to be a P-group.

2 A COUPLE OF EXAMPLES

In this section we present a couple of examples to show that the converse of
Theorem 1 is false.

Ezxample 1. Let V be an irreducible and faithful (b)-module over the field of
2 elements, where (b) is a cyclic group of order 3, such that the corresponding
semidirect product is isomorphic to A4, the alternating group of degree 4.
Let A; and A, be two copies of V', and consider A = A x A,. It is clear that
A is a faithful (b)-module. Denote B = [A](b) the corresponding semidirect
product. Then we can choose generators ¢, d of A; and e, f of As such that
& =cd,d =c, e =ef and f* = e. The group B has an automorphism a
of order 2 such that b* = b2, ¢* = ef, d* = f, e* = cd and f* = d, so we can
consider the semidirect product G = [B](a).
The normal series

1< N =/{cef,de) < A<B<G

is a chief series of G. Hence the chief factors of G have order 2, 3 or 4. On the
other hand, C¢(N) = A, Cq(A/N) = A, Cs(B/A) = B and Ce(G/B) = G.
Consequently, G satisfies the converse of Theorem 1.

Let H = [Ay](b). We show that Ps(H) = H. Suppose there exists an
element © € G of order 3 such that H(x) is a subgroup of G. Then there



exists a Sylow 3-subgroup Hjs of H such that H3(x) is a Sylow 3-subgroup of
H{(z). Since Sylow 3-subgroups of G have order 3, it follows that Hs = (z)
and x € H.

Suppose now that there exists a 2-element y € G such that H(y) is a
subgroup of G. It is clear that in this case As(y) is a Sylow 2-subgroup of
H{y). If y € A, then As(y) is an elementary abelian 2-group normalized
by b. Hence, if Ay # Ay(y), there exists an element z € Ay(y) such that
As(y) = Ay x (2) and b € Cg((z)), a contradiction. Therefore Ay(y) = A
and y € H. Assume that y = y,a for some y; € A. Notice that 4> € A and
so AN Ay(y) = As(y?). Thus Ay(y?) < A is a normal subgroup of A;(y). In
particular, A; = AY = A5 < Ay(y?), a contradiction.

Finally, assume that there exists an element g € G such that H({g) is
a subgroup of G. Then (g) = (g1) X (g2), where [(g1)| is a 2-number and
[{(g2)| € {1,3}. We can find a Sylow 3-subgroup Hjs of H such that H3(gs) is
a Sylow 3-subgroup of H(g). Therefore H3 = (g) and g, € H because Sylow
3-subgroups of G have order 3. Hence H(g) = H{(g2) and so go € H by the
above case. Consequently g € H as we want to prove.

Our next example is quite surprising bearing in mind the results of the
next section.

Theorem 2. G = X, X ¥y X ¥y X Xy is not a P-group.

Proof. 1t is enough to find a proper subgroup H of G such that P;(H) = H.
Denote by G;, 1 < i < 4, the factors of G isomorphic to ¥4 and by N; =
(a;, b;) the unique minimal normal subgroup of G;. Let g; be an element of
order 3 in G; such that L; = N;(g;) is isomorphic to Ay.

We consider the set H = H;(g), where

2
— 91,93 94 g4 92 93 91
Hy = (a1a3a4, a]' a? a3’ asazad’, a3’ ad’ ay*)

and g = ¢19293g4. Since af’g = q;a’" for all 4, it follows that g € Ng(H;).
Hence H is a subgroup of G. We prove that Pg(H) = H.

First of all, H is not permutable with any subgroup of order 3 which is not
contained in H. Assume not and let ¢ € G\ H be an element of order 3 such
that H(q) < G. Then H; is a Sylow 2-subgroup of H(g) which is normalized
by q. Consequently, a?, b? € Hy, where a = ajazas and b = azazaj’. Notice
that Hy = (a,a?) x (b,b9). Since the component of a? in Gy is trivial and
the component of b7 in G; is also trivial, it follows that a? € (a,a?) and
b? € (b,b%). Hence either a? = a, a? = a? or a? = aa?, and either b7 = b,
b? = b9 or b? = bb?. If ¢ = q1q2q3q4, With ¢; € G;, 1 < i < 4, then one of the
following cases holds:



a1 __ 92 __ q3 __ q4 __ 9494 __ 94
Case (a) af' = a1, af® = a9, a¥® = a3, a}' = a4, a'"* = a}".

qq __ 91 q2 __ 92 q3 __ 93 qa __ 94 g4q4 __ g4
Case (b) af' =af', a?® = a7, a3’ = a3, a' = a7, a7 = a4a’.

Case (c) af' = aia', af = axa3’, af® = aza}’, ai' = asad’, a'" = ay.

The case (a) is impossible because the Sylow 3-subgroups of G; act fixed-
point freely on N; for all i. Suppose that (b) holds. Then ¢;g; ' € Cp,(a;) =
N; for all i. Therefore q¢~' € H{q) N Soc(G) = H, and ¢ € Hi{q) = H, a
contradiction. The case (c) is analogous.

Assume that H is permutable with a subgroup (s) contained in Soc(G).
Then, if s ¢ Hy, we have that H; x (s) is a Sylow 2-subgroup of H(s) which
is normalized by g. This means that there exists a subgroup (z) < H; x (s)
such that g € Cs((2)), a contradiction. Hence s € H.

If H is permutable with a subgroup (x) of order 2, with x € G\ V, where
V = Op2,5(G), then |H(zx) : H| = 2 and so H must be normalized by z. In
particular, x € Ng(H;p). Arguing as above, we have that a® € {a,a%, aa}
and b* € {b,b9,bb%}. Consequently one of the following cases holds if x =
T122x324 With z; € Gy:

Case 1 aj' = ay, a5? = ag, a3® = az, aj* = ay, "™ = af".
Case 2 aj' = af', a5®> = a¥’, a3’ = af®, aj* = af*, a*™ = ayal’.
Case 3 aj' = 14", a3? = axad’, a3® = aza?’, ay* = asaf’, a*™ = ay.

Suppose that either Case 2 or Case 3 holds. Then the automorphism
induced by x4 on N, has order 3, a contradiction. Consequently, Case 1
must hold. In this case, x4 centralizes Ny. Hence x4 = 1. Since (ajazaq)9* =
afay"al* is an element of Hy, we have that ai'"'a3**al* = af'afa*.
Hence x; centralizes N7 and x3 centralizes N3. This implies that 1 = 23 = 1.
The same argument applied to (asaszaf")?” shows that xo = 1. Therefore
x = 1, a contradiction.

Assume now that H is permutable with a cyclic subgroup (z) of order 4
which is not contained in H. It is clear that 2? € Soc(G). If 2? ¢ H, then
HnN{(z)=1and |H(z): H = 4. Notice that (z2)¢ and (22)¢" are not in H.
Therefore H(x) is equal to the disjoint union H{z) = H U Hx? U H(z*)9 U
H(x%)?". This is a contradiction, because = does not belong to this union.

Consequently, =2 € H N Soc(G) and |H{x) : H| = 2. This implies that z
normalizes H and so x also normalizes Hj.

Arguing as in the above paragraph, if x = x1x92314, we have that either

T4 __ 944 __ 94 T4 __ 94 494 __ 94 T4 __ 94

ay* = a4 and aj"™" = ay’, or a;* = ajy' and a;*"" = aq4ai’, or ay* = asaj
x . .

and af*"* = a4. In the first case, x4 centralizes N;, and in the second and



third cases, the automorphism induced by x4 on Ny is of order 3. The latter
possibility gives a contradiction. Hence the first case holds and then ai* = ay,
ay* = ag and a3® = as. Moreover, x4 € Soc(G). Arguing as above with the
elements (ajazay)?* and (azazaf*)?, it follows that z € Soc(G). This is a
contradiction because Soc((G) has no elements of order 4.

We would like to mention at this point that what is proved in the above
cases is that if z is either an element of order 2 in G\ V or z is an element
of order 4, then (x) does not permute with H;.

Finally, suppose that (z) = (z)s X (x)3 is a subgroup of G such that H(x)
is a subgroup of G. Then H;(z), is a Sylow 2-subgroup of H(x). Suppose
that (x)s is not contained in H. By the above remark, (x), is a subgroup of
order 2 contained in Soc(G). Therefore H(x) < L; X Ly X L3 X Ly, and then
g € Ng(H;(z)3). This means that there exists an element y € Hj(x)s such
that Hi(z)s = H; x (y) and g € Cs((y)), a contradiction. Thus (z)y < H
and H(z) = H(x)3;. Bearing in mind the first case, it follows that (z)3 < H
and (z) < H.

Consequently, P;(H) = H and the theorem is proved. ]

3 QP-GROUPS

We say that a group G is a QP-group (or G satisfies the property QP) if
G is soluble, each chief factor of G has order 4 or a prime, and if A/B is a
chief factor of G of order 4, then G induces the full group of automorphisms
in A/B,i. e, G/Cq(A/B) = ¥.

Recall that in any group G, there is a unique maximum normal super-
solubly embedded subgroup, denoted here by Zy(G). It is known that there
is a G-invariant series in Zy(G) with cyclic factors, while G/Z(G) has no
nontrivial normal cyclic subgroups. Zy(G) is the -hypercentre of G, where
$l is the formation of all supersoluble groups (see (2, Section IV.6)).

Beidleman and Robinson proved in (1, 3.1) the following result:

Lemma 1. A group G is a P-group if and only if G/Zy(G) is a P-group.

In order to prove that a QP-group is a P-group, one often can assume
that the U-hypercentre is trivial. Hence the following result applies.

Lemma 2. Let G be a QP-group such that Zy(G) = 1. Then:
1. Oy (G) =1 and G is a {2,3}-group.

2. G/F(QG) is isomorphic to a subgroup of a direct product of X3 and Cs.
Consequently, G/F(G) is an extension of a 3-group V/F(G) by a 2-
group G/V, where V- = O3 (G).

b}



3. The supersoluble normalizers of G are exactly the normalizers of the
Sylow 3-subgroups of G.

Proof. 1. Since every chief factor of G' of odd order is cyclic, it follows that
Oy (@G) is supersolubly embedded in G. Hence Oy (G) < Zy(G) = 1.
Applying (1, (3.5)), G is a {2, 3}-group.

2. follows from the fact that F'(G) is the intersection of the centralizers
of the chief factors of G.

3. Let D be a supersoluble normalizer of G (for properties of normalizers
see, for example, (2, Chapter V)). Then there exists a Hall system
Y ={1,Gy,G3,G} of G, where G5 is a Sylow 2-subgroup of G and G3
is a Sylow 3-subgroup of G, such that D is the supersoluble normalizer
associated to 3. For each prime p, we denote f(p) the formation of
all abelian groups whose exponent divides p — 1 and v(p) = G/ () the
f(p)-residual of G. It is known ((2, IV.3.4)) that f is an integrated
local definition of 4.

Then, according to (2, V.1.1),

D = ﬂ NG (Gp/ N U(p)) = N(;(GQ/ N U(2>) N N(;(Ggl N U(?)))

p€{273}

Since f(2) = 1, it follows that v(2) = G. Moreover, v(3) is contained
in V because G/V is an elementary abelian 2-group. On the other
hand, Go NV = F(G). Hence Gy Nv(3) = GaNo(3) < F(G)Nw(3) <
G>Nv(3) and Ng(Gy Nv(3)) = Ng(F(G) Nv(3)) = G. This implies
that there exists a Sylow 3-subgroup Gj of G such that D = Ng(G3).
The result now follows from the fact that the supersoluble normalizers
are conjugate (see (2, V.2.3)).

O

The following results turn out to be crucial in the proof of our main
theorems.

Lemma 3. Let G be a QP-group contained in a direct product S; X - - -x .S, of
r copies of X4 and containing the corresponding direct product Ay X - --x A, of
r copies of Ay. Assume that H is a subgroup of G such that Po(H) = H and
let Hy and Hjz be, respectively, a Sylow 2-subgroup and a Sylow 3-subgroup of
H. If N; is the minimal normal subgroup of G contained in A;, then:

2. If Ny H =1, then Hy < Cg(N;) and Hz £ Cq(N;).
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Proof.

1. Suppose that N;NH # 1 and let 1 # a; € N; N H. Since N;

is an elementary abelian 2-group of order 4, we can find an element
1 # b; € N; such that N; = {(a;,b;). Then H(b;) = HN,; and so

b; €

Ps(H) = H. Hence N; is contained in H. Let now (g;) be a Sylow

3-subgroup of A;. Then A; = N;(g;) and so HA; = H(g;). This means
that g; € Po(H) = H. Consequently A; is contained in H.

2. Suppose that N; N H = 1. We prove that Hy centralizes N;. Assume
that this is not true. We distinguish two cases:

(a)

There exists an element h € H \ Ci(N;) such that the component
h; of H in S; has order 2. If h has a component h;, j # i, of order
3, then h? is an element of H \ Cg(N;) whose component in S;
has order 2. Hence without loss of generality we may assume that
o(h) =2 or 4.

Let a; € N;\ {1} such that a # a;. Then ha; is an element of G of
order 4 (notice that (ha;)? = hala; # 1). In this case, H(ha;) =
HN; by order considerations. Consequently ha;, € Pg(H) = H
and so a; € N; N H =1, a contradiction.

No element of H \ C¢(N;) has its component in S; of order 2. We
may assume that there exists h € Hy \ C(1V;). Suppose that Hj
does not centralize N; and let g € Hs \ Cg(N;). We know that
o(h;) = 4 and so either hg or hg? has its component in S; of order
2. Moreover hg € H \ Cq(N;) and hg®> € H \ Cg(N;) because
h; ¢ A;, a contradiction.

Therefore Hy < Cg(N;) = S; X «+- X N; X -+ x S, and so the
projection of Hz in S; is 1. Assume that the projection of Hj in
S; is a Sylow 2-subgroup of S;. Then there exists an element x €
H\ C¢(N;) such that o(x;) = 2. This is impossible by (2a). Hence
the projection of Hy in S; is just (h;). In particular (h?) permutes
with H. Thus h? € H N N; = 1, a contradiction. Consequently
Hs centralizes N;.

If H3 < Cg(N;), then N; < H, a contradiction. Hence Hj cannot
centralize N;. O

Lemma 4. Let G be a QP-group such that Zy(G) = 1. Assume that G
has r chief factors of order 4 in a given chief series of G. Suppose that

Soc(G) =

Ny X -+ X N,., where N; is a minimal normal subgroup of G of

order 4 for all i. Then the order of a Sylow 3-subgroup of G is at most 3.



Moreover, if the order of a Sylow 3-subgroups of G is exactly 3", then G is, up
to isomorphism, a subgroup of a direct product of r copies of X4 containing
the direct product of the corresponding r copies of the alternating group Ay.

Proof. Denote T'= Soc(G) = Ny x---x N,. The hypothesis on G implies that
G/T is supersoluble. Hence, if D is a supersoluble normalizer of GG, we have
that G = DT. But T is abelian, therefore D NT is a normal subgroup of GG
contained in D. Hence DNT < Coreq(D) = Zy(G) = 1 and T complements
D in G.

Set F'= F(G). It is clear that 7" is contained in F'. Hence F' = T(FND).
Since FND <94 D and T < Cg(F N D), it follows that F N D < G and
so FN D < Coreg(D) = 1. This implies that 7' = F. Since F' is the
intersection of the centralizers of all chief factors of G, it is clear that F' <
Ce(N1)N---NCq(N,) < Cg(F). The solubility of G implies that C(F) < F.
Consequently, F' = Cg(N;) N --- N Cq(N,) and G/F can be embedded in a
direct product of r copies of ¥3. In particular, if G5 is a Sylow 3-subgroup
of G, we have that |G5| < 3".

In what follows we assume that |G3| = 3" and D = Ng(G3) (Lemma 2).
Set M; = H#i Nj. Then G = N;(M;D) and N; N (M;D) = 1. Hence M;D
is a maximal subgroup of G and M;D N'T = M;(D NT) = M;. Denote
T, = Coreq(M;T), 1 < i < r. Assume that (),_,7; # 1. Then there
exists a minimal normal subgroup N of G such that N < (\,_, 7;. But
N < T, therefore N < TNT; = M; for all i, whence N < (\_, M; =1, a
contradiction. Thus ()_, 7; = 1 and G/T; is isomorphic to X, for all i. As a
consequence, G can be embedded in a direct product of r copies of ¥4.

On the other hand, G/Cg(M;) = G/();,; Ca(N;) is isomorphic to a
subgroup of the direct product of G/C¢(N;), j # 4. Since G is a QP-group,
we have that G/Cg(N;) = X3 for all j. Consequently |G/Cq(M;)], < 371
(n3 denotes the 3-part of the number n). Since |G| = 3", it follows that
|Ca(M;)|5 > 3. In particular, if B; = G3NCq(M;), we have that B, is a non-
trivial Sylow 3-subgroup of C(M;) and |B;| > 3. Moreover, B1Bs -+ - B, is a
Sylow 3-subgroup of M, - - - M, and B,N (H i Bj> < G3NCe(M)NCe(N;) <
G3 N F = 1. Therefore |B;| = 3 for all 4. It is clear that B; is not contained
in Cg(N;). Therefore N;B; is isomorphic to Ay.

Let S; = ﬂ#iTj. We show that if V' = O93(G), then V N S; = N;B;.
Since N; NT; = 1 for all j, we have that S; = (1, ,T; < (1,4 Ca(N;) =
Cq(M;), so that there exists a Sylow 3-subgroup (.S;)3 of \S; such that (.S;); <
B;. If (S;)3 = 1, then S; is a 2-group. Hence a Sylow 3-subgroup of G/S; has
order 3". This is not possible because GG/S; is isomorphic to a direct product
of 7 — 1 copies of ¥y. Therefore (S;); = B;, and hence N;B; < S;NV. Let
us prove now that S; < N;D. We may assume, without loss of generality,
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that ©+ = 1. We have that Tbo N ---NT, < MyD N MsD N ---NM.D =
NiD(N3---N, N MsDnN---NM.D). Since N3---N, < T, it follows that
(Ns---N.)NnMsDn---NM.D = (Ns---N,)NM;DN---NM,DNT =
(N3--- N, )NMzN---NM, = 1. Hence S; < N1 D and, analogously, S; < N;D
for all 4. This implies that S; NV < N;DNV = N, (D NV) = N;Gs (notice
that D NV = G3). Consequently S; NV < N;G3 N Cq(M,;) = Ni(G;g N
C’G(Mi)) = N;B; and S;NV = N,;B,. Notice that G3 = B; x --- x B,. Hence
V = NiBy---N,.B, by order considerations. Moreover, N;B; < ﬂ#iTj
and (N1By,...,N;_1B;_1, N;y1Biy1, ..., N.B,) is contained in T;. Therefore
N;B; N (N1By,...,N;_1B;_1,Niy1Bis1,...,N.B,) < Tyn---NT, =1 and
V = N1By x--- x N,.B,. Consequently G is isomorphic to a subgroup of the
direct product of r copies of ¥, containing the corresponding direct product
of copies of Ajy. n

4 SUFFICIENT CONDITIONS FOR A QP-
GROUP TO BE A P-GROUP

We begin with the following elementary lemma.

Lemma 5. Let H be a subgroup of G and let N be a normal subgroup of G
contained in H. Then:

1. If N € Pgn(H/N), then x € Pg(H).
2. If Po(H) = H, then Pex(H/N) = H/N.

Proof. 1t is clear that 2 is a consequence of 1. Hence only 1 must be proved.
Let «N € Pg/n(H/N). Then (H/N){(xzN) = (xN)(H/N). Let hz® be an
element of H(z). Then (hN)(zN)* € (xN)(H/N), whence (hN)(zN)* =
(zN)’(W'N) for some h/ € H and there exists an element n € N such that
hx® = a°h'n. Since N < H, it follows that ha® € (z)H. Consequently
H(z) C (z)H. The other inclusion is analogous. O

Our aim in this section is to find sufficient conditions for a QP-group to
be a P-group in terms of the number of the chief factors of order 4.

Theorem 3. Let G be a QP-group with just one chief factor of order 4 in
a giwen chief series of G. Then G is a P-group.

Proof. Let D # G be a supersoluble normalizer of G. Then, by (2, V.3.8),
D can be joined with a chain of subgroups:

D=Dy<-Dy<----<-D, =G

9



such that D; ; is a maximal subgroup of D;, D,/ Corep,(D;_1) is not su-
persoluble and D; = D; 1F(D;) for all i. Moreover, D covers all the chief
factors of G of prime order and avoids the chief factors of G of order 4.
Since G has only one chief factor of order 4, we conclude that D is a max-
imal subgroup of G. Since G/ Core(D) is not supersoluble, it follows that
G/ Coreq(D) = 3,. By (2, V.2.4), Zy(G) = Coreg(D). Hence G/Zy(G) is a
P-group. By Lemma 1, G is a P-group. If D = G, then G is supersoluble
and so GG is a P-group. O]

To find sufficient conditions for a QP-group GG with more than one chief
factor in a given chief series to be P-group seems to be quite difficult. How-
ever we have obtained some interesting results when Soc(G) is a direct prod-
uct of minimal normal subgroups of G of order 4.

Theorem 4. Assume that G is a QP-group contained in a direct product
S1 X Sy of two copies of ¥4 and containing the direct product A, X As of the
copies of Ay. Then G is a P-group.

Proof. Denote by N;, i = 1, 2, the minimal normal subgroups of G' contained
in A; X As.

Assume that G is not a P-group and let H be a proper subgroup of GG
such that H = Po(H). If H N N; # 1 for some 4, then A; < H by Lemma 3.
It is clear that G/A; is isomorphic to either ¥, or ¥4 x Cy, which are both
P-groups. By Lemma 5, it follows that H = G, a contradiction. Hence
HN Ny =1= HN N,. Bearing in mind the notation of Lemma 3, we have
that Hy < Cg(V;) and Hs # Cq(N;) for i =1, 2.

Suppose first that Hsy = (g1g2), where g1 € Ay, go € Ay are elements
of order 3. Assume that H N Soc(G) = 1, then Hy = 1 because Hy <
Ci(Soc(G)) = Soc(G). Hence H = Hj. Let h; € S; be an element of order
2 such that gf” = g[l, i =1, 2. Then hihy € G because G is a QP-group. It
is clear that hihy € Ng(H) = H and so Hy # 1, a contradiction. Therefore
H N Soc(G) # 1.

Since Hy < Soc(G), it follows that H N Soc(G) = Hy. Hence Hy < H
and Hs is an Hz-module over the field of 2 elements. Let ajas, € Hy, with
1#a; € N;,i=1,2. Then ai'ad> € Hy and ajas # af'a3’. Consequently
the subgroup T' = (ajas, a'a3’) has order 4. Suppose that T < H,. Since
H, is a completely reducible Hs-module, there exists a normal subgroup 7Ty
of H such that Hy =T x Ty. Let cico be an element belonging to Tq, where
1# ¢ € Ny, i = 1,2 Then ¢]'c¢d® € T,. This implies that Hy has order
16 and so Soc(G) < H, a contradiction. Therefore Hy = (ajaq, af'ad?). Let
hihy be an element of S; X Sy such that o(h;) = 2, gf” = g;! and a?" = a’

i
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for i = 1, 2. Since G is a QP-group, it follows that hihe € G. It is clear that
hihy € Ng(H) = H. This is a contradiction.

Assume that Hs = (g1, g2), with g; € A;, i = 1, 2, of order 3. Let a;as be
an element of Hy = Soc(G)NH. Then af'ay € H and so a1a' € HNN; = 1.
Therefore af' = a; and then a; = 1. Analogously a; = 1. Hence Hy, = 1.
Let hihy € G be an element of order 2 such that ¢/ = ¢!, i = 1, 2. Then
hihy € Ng(H) = H. This contradicts the fact Hy = 1.

Consequently G is a P-group. O]

Theorem 5. Let G be a subgroup of the direct product ¥y X ¥y X ¥y of
three copies of the symmetric group of degree 4. Assume that G contains
Ay X Ay X Ay, the corresponding direct product of the alternating groups. If
G is a QP-group and G contains an element of order 2 inverting all the
elements of a Sylow 3-subgroup of G, then G is a P-group.

Proof. Denote by G;, 1 <14 < 3, the factors of the direct product >4 x>, x 3y.
Let N;, 1 < ¢ < 3, be the Klein four-group in G;. Then N; is a minimal
normal subgroup of G for all 7.

Suppose there exists a proper subgroup H of G such that Po(H) = H. If
HNN; # 1, then A;, the alternating group in G, is contained in H. Moreover,
G /A; is isomorphic to one of the groups of Theorem 4 or to a direct product
of one of these groups with Cy. Then G/A; is a P-group, a contradiction.
Therefore H N Ny = HN Ny = HN N3 =1 and, by Lemma 3, every Sylow
2-subgroup Hj of H centralizes N; for all ¢ and none Sylow 3-subgroup Hj of
H centralizes N; for all i. Consequently every Sylow 2-subgroup Hj of H is
contained in Cg (N1 X Nox N3) = N1 x Nyx N3 = Soc(G) and Hy = HNSoc(G)
is the unique Sylow 2-subgroup of H.

Suppose that Hj is of order 3. Then, since Hy £ Cg(N;) for all 4, it
follows that Hs = (g19293), where g; € G; is an element of order 3 for all 7. If
H; = H, then we consider an element h; € G; of order 2 such that glh =g; !
for all 7 and hihehs € G. Such an element exists because G has an element of
order 2 inverting all the elements of a Sylow 3-subgroup of G and G contains
the direct product of the alternating groups. Then hihohs € No(H) = H, a
contradiction. Consequently H NSoc(G) # 1. Let 1 # ajazas € H N Soc(G),
with a; € N;, i € {1,2,3}. Notice that af'a§?af® € H N Soc(G). This implies
that the rank of H N Soc(G) is a multiple of 2.

Assume that HNSoc(G) = (ajasas, af*ad’a?’). Let h; € G; be an element
of order 2 such that ¢/ = g;' and a! = a¥ fori € {1,2,3}. Then hihyhs € G
and hihohs € Ng(Hs2) N Ng(Hs) < Ng(H) = H. In particular, hihshg €
Hy < Cg(N;) for all i, a contradiction.

Suppose now that H N Soc(G) has rank 4. Then

_ 91 92 93 g1 92 g3
H N Soc(G) = (a1azas, af* a5’ a3’ c1cacs, ' ¢ c3?).
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Operating with the generators of H N Soc(G), we can conclude that H N
Soc(G) = (bybs, b]'b%, dads,d5*ds’) and, by taking a suitable conjugate of
dods, we can also assume that either d3 = b3 or b3 = 1. Suppose that ds = b3
(the case b3 = 1 is similar). Then we can take h; € G; of order 2 such that
g = g7t and b = b7, an element hy € G5 of order 2 such that gh* = g5
and dy? = dP?, and an element hs € G of order 2 such that g2 = ¢g;* and
b4 = b3, Then the element hihohs € G and it normalizes H, a contradiction.

If H N Soc(G) has rank 6, then Soc(G) < H, a contradiction.

Assume that Hj is of order 9. We can suppose, by reordering the suffices,
that either Hy = (g1, g2g3) or Hs = (¢193, g293)-

Suppose that Hs = (g1, gog3). If 1 # ajasas € H N Soc(G), with a; € N;,
i € {1,2,3}, we have that (aja2a3)9* = aj'asas € H, so their product a;af* €
H N Ny = 1. This implies that a; = 1. If H N Soc(G) has rank 4, it follows
that N; < H for i € {2,3}, a contradiction. Hence H N Soc(G) has rank 2.
Then H N Soc(G) = (asas, ad’a?’). We consider an element hy € Gy of order
2 such that ¢" = g7, an element hy € Gy of order 2 such that gh? = g;*
and a}> = af?, an an element hy € G of order 2 such that g4* = g;* and
ag“” = a}’. Then hihshg € G and hihshs € Ng(H) = H, a contradiction.

Suppose that Hs = (g193,9293). If 1 # ajasas € H N Soc(G), with
a; € N;, @ € {1,2,3}, we have that (ajasa3)?% = ai'axad® € H. Thus
(araga3)(ad*azaf’) = arai*aza?’ € H. Then ajaz € H. Therefore (aya3)92% =
ajaf € H. This implies that azaf® € H N N3 = 1, whence a3 = 1 and
a1 € HN Ny =1, a contradiction.

If H3 = (g1, g2, 93) and 1 # ajasaz € HNSoc(G), with a; € Ny, 1 <i < 3,
then (ajasasz)? = ai'asas € H. Hence a;af' € H N Ny = 1. This implies
a1 = 1. Analogously a; = 1 = a3. This is a contradiction.

Therefore G is a P-group. O

If G is a QP-group such that Ay x Ay x Ay < G < Xy X ¥y X Yy, then G
is not a P-group in general, as the next example shows.

Example 2. The direct product ¥4 x ¥4 X ¥4 can be considered as a sub-
group of »15 and, so viewed, we consider the group G of all even permu-
tations of ¥4 x ¥4 x ¥4, Let a = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12) and
g =(1,2,3)(5,6,7)(9,10,11). Then H = (a,g) is a subgroup of G isomor-
phic to A4. With similar arguments to those used in the proof of Theorem 2
we have that Pg(H) = H. Therefore G is not a P-group.

Combining Lemma 4 and Theorems 4 and 5 we have:

Theorem 6. Let G be a QP-group such that Zy(G) = 1. Suppose that
G has a chief series with exactly v chief factors of order 4 and Soc(G) =
N1 X --- X N,, where N; is a minimal normal subgroup of G of order 4. If

12



either r = 2 and Sylow 3-subgroups of G have order 9 or r = 3, Sylow 3-
subgroups of G have order 3% and there exists an element of G of order 2
inverting the elements of a Sylow 3-subgroup of G, then G is a P-group.

Theorem 7. Suppose that G is a subgroup of ¥4 X ¥4 containing the product
N1 X Ny of both minimal normal subgroups of ¥4 X ¥4, and that G s a
P-group with Zy(G) = 1. Then |G|; =9.

Proof. Let Sy, S5 be the copies of ¥4 in ¥4 x ¥4 and Ay, Ay be the corre-
sponding alternating subgroups.

If |G|; =1, then G is a 2-group, whence Zy(G) = G, a contradiction.

If |G|; = 3, the projections of a Sylow 3-subgroup Gj of G in S; are
nontrivial (otherwise Zy(G) # 1). Therefore there exist g; € S;, i = 1, 2,
such that g1go € G. There exist h; € S; \ A;, i = 1, 2, such that gg” = g;l
and hihy € G. If hy € G, then (9192)™ = g;'g2 € G, whence g, € G
and g € G, a contradiction. Hence h; ¢ G and, analogously, hy ¢ G.
There exists a; € N; \ {1} such that o/ = a%, i = 1, 2. We construct

2 v
H = (a1a3?,ai'ay’, g1g2). By arguing like in Example 1, we obtain that H is
a proper subgroup of G such that H = P5(H), a contradiction. O

Theorem 8. Suppose that G is a subgroup of ¥4 X ¥4 X ¥4 containing the
direct product of the three minimal normal subgroups of ¥4 X X4 X ¥4 and
that G is a P-group with Zy(G) = 1. Then |G|, = 27.

Proof. Let S;, i € {1,2,3}, be the copies of ¥4 in 3y x ¥4 x 34 and let A;
be the copies of the corresponding alternating subgroups.

If |G|; =1, then G is a 2-group, a contradiction with Zy(G) = 1.

If |G|; = 3, then the projections of a Sylow 3-subgroup Gj of G in S,
are nontrivial (otherwise, Zy(G) # 1). Hence there exist g; € S; of order 3,
i € {1,2,3}, such that g;¢295 € G. There exist h; € 5; \ A; of order 2 such
that gf” =g; ', i€{1,2,3}, and hihohs € G. If hy € G, then (g1g2g3)" =
g1 '9293 € G, whence g, € G, a contradiction. Thus h; ¢ G and, analogously,
hy ¢ G, hy ¢ G. Consequently G = [N; X Ny X N3|(g19293, h1haohs). Let
a; € N; \ {1} such that o/ = a¥ for i € {1,2,3}. The subgroup

H = (aaa3’, af* a§2a§§, 919293)
is a proper subgroup of G such that Pg(H) = H, as we can prove like in
Example 1, a contradiction.

If |G|; = 9, then the projections of a Sylow 3-subgroup G3 of G in S; are
again nontrivial (otherwise, Zy(G) # 1). By reordering the suffices, we can
suppose that either G3 = (9192, g3) or Gz = (9192, g193)-
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Suppose that G5 = (g1g2,93). There exist elements h; € S; \ A;, i €
{1,2,3}, of order 2, such that g/ = g and hyhshs € G. If hy € G, then
(g192)™ = g; g2, whence g, € G, a contradiction. Consequently h; ¢ G and,
analogously, hy ¢ G. Let a; € N; \ {1} such that o = a%, i € {1,2,3}. If
hs € GG, then we consider the subgroup

2
— g2 91,92 g3
H = <a1a2 , 1 Q9™ , Az, dg 7g1927g37h3>7
and if h3 ¢ G, we take the subgroup
92 _g1,9 93
H = <a1a2 , a1 Ao, 3, a3 79192793>-

Like in Example 1 we have that H is a proper subgroup of G such that
Py(H) = H.

Suppose that G5 = (g192,9193). There exist elements h; € S; \ 4;, © €
{1,2,3}, of order 2, such that gﬁ“ = g;' and hihyhs € G. If by € G,
then (g1g2)" = g7'g2 € G, whence g1 € G, a contradiction. Consequently,

hi ¢ G. Analogously, hy ¢ G and hy ¢ G. Consider an element a; € S; \ A;
such that a/ = a? for 1 < < 3. Notice that (g192)%(g193)? = g193¢3. The

2 2
subgroup H = (ayasas, ad a3’ a3’ , g1g2g2) is a proper subgroup of G such that
g 1 Ao 03 293

Pg(H)=H. ]
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