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Abstract

In (1, Theorem A), Beidleman and Robinson proved that if a group
satisfies the permutizer condition, it is soluble, its chief factors have
order a prime number or 4 and G induces the full group of automor-
phisms in the chief factors of order 4. In this paper, we show that
the converse of this theorem is false by showing some counterexam-
ples. We also find some sufficient conditions for a group satisfying the
converse of that theorem to satisfy the permutizer condition.

∗Supported by Proyecto PB97-0674-C02-02 and Proyecto PB97-0604 from DGICYT,
Ministerio de Educación y Ciencia

1



1 INTRODUCTION

All groups considered in this paper are finite.
Given a subgroup H of a group G, the permutizer PG(H) of H in G is

defined as the subgroup generated by all cyclic subgroups of G that permute
with H. Thus H ≤ PG(H) and H 6= PG(H) if and only if H〈x〉 = 〈x〉H for
some x ∈ G\H. A group G such that H 6= PG(H) for every proper subgroup
H is said to satisfy the permutizer condition or to be a P-group.

Beidleman and Robinson (1, Theorem A) proved the following result:

Theorem 1. Let G be a finite group satisfying the permutizer condition.
Then G is soluble and each chief factor of G has order 4 or a prime. In
addition, if F is a chief factor of order 4, then G induces the full group of
automorphisms in F , i. e., G/CG(F ) ∼= Σ3.

In the same paper, the authors asked whether the converse is true. We
show in this paper that the converse is not true and find sufficient conditions
for a group satisfying the converse of that theorem to be a P-group.

2 A COUPLE OF EXAMPLES

In this section we present a couple of examples to show that the converse of
Theorem 1 is false.

Example 1. Let V be an irreducible and faithful 〈b〉-module over the field of
2 elements, where 〈b〉 is a cyclic group of order 3, such that the corresponding
semidirect product is isomorphic to A4, the alternating group of degree 4.
Let A1 and A2 be two copies of V , and consider A = A1×A2. It is clear that
A is a faithful 〈b〉-module. Denote B = [A]〈b〉 the corresponding semidirect
product. Then we can choose generators c, d of A1 and e, f of A2 such that
cb = cd, db = c, eb = ef and f b = e. The group B has an automorphism a
of order 2 such that ba = b2, ca = ef , da = f , ea = cd and fa = d, so we can
consider the semidirect product G = [B]〈a〉.

The normal series

1 < N = 〈cef, de〉 < A < B < G

is a chief series of G. Hence the chief factors of G have order 2, 3 or 4. On the
other hand, CG(N) = A, CG(A/N) = A, CG(B/A) = B and CG(G/B) = G.
Consequently, G satisfies the converse of Theorem 1.

Let H = [A2]〈b〉. We show that PG(H) = H. Suppose there exists an
element x ∈ G of order 3 such that H〈x〉 is a subgroup of G. Then there
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exists a Sylow 3-subgroup H3 of H such that H3〈x〉 is a Sylow 3-subgroup of
H〈x〉. Since Sylow 3-subgroups of G have order 3, it follows that H3 = 〈x〉
and x ∈ H.

Suppose now that there exists a 2-element y ∈ G such that H〈y〉 is a
subgroup of G. It is clear that in this case A2〈y〉 is a Sylow 2-subgroup of
H〈y〉. If y ∈ A, then A2〈y〉 is an elementary abelian 2-group normalized
by b. Hence, if A2 6= A2〈y〉, there exists an element z ∈ A2〈y〉 such that
A2〈y〉 = A2 × 〈z〉 and b ∈ CG(〈z〉), a contradiction. Therefore A2〈y〉 = A2

and y ∈ H. Assume that y = y1a for some y1 ∈ A. Notice that y2 ∈ A and
so A ∩ A2〈y〉 = A2〈y2〉. Thus A2〈y2〉 ≤ A is a normal subgroup of A2〈y〉. In
particular, A1 = Ay

2 = Aa
2 ≤ A2〈y2〉, a contradiction.

Finally, assume that there exists an element g ∈ G such that H〈g〉 is
a subgroup of G. Then 〈g〉 = 〈g1〉 × 〈g2〉, where |〈g1〉| is a 2-number and
|〈g2〉| ∈ {1, 3}. We can find a Sylow 3-subgroup H3 of H such that H3〈g2〉 is
a Sylow 3-subgroup of H〈g〉. Therefore H3 = 〈g2〉 and g2 ∈ H because Sylow
3-subgroups of G have order 3. Hence H〈g〉 = H〈g2〉 and so g2 ∈ H by the
above case. Consequently g ∈ H as we want to prove.

Our next example is quite surprising bearing in mind the results of the
next section.

Theorem 2. G = Σ4 × Σ4 × Σ4 × Σ4 is not a P-group.

Proof. It is enough to find a proper subgroup H of G such that PG(H) = H.
Denote by Gi, 1 ≤ i ≤ 4, the factors of G isomorphic to Σ4 and by Ni =
〈ai, bi〉 the unique minimal normal subgroup of Gi. Let gi be an element of
order 3 in Gi such that Li = Ni〈gi〉 is isomorphic to A4.

We consider the set H = H1〈g〉, where

H1 = 〈a1a3a4, ag11 ag33 ag44 , a2a3a
g4
4 , ag22 ag33 a

g24
4 〉

and g = g1g2g3g4. Since a
g2i
i = aia

gi
i for all i, it follows that g ∈ NG(H1).

Hence H is a subgroup of G. We prove that PG(H) = H.
First of all, H is not permutable with any subgroup of order 3 which is not

contained in H. Assume not and let q ∈ G\H be an element of order 3 such
that H〈q〉 ≤ G. Then H1 is a Sylow 2-subgroup of H〈q〉 which is normalized
by q. Consequently, aq, bq ∈ H1, where a = a1a3a4 and b = a2a3a

g4
4 . Notice

that H1 = 〈a, ag〉 × 〈b, bg〉. Since the component of aq in G2 is trivial and
the component of bq in G1 is also trivial, it follows that aq ∈ 〈a, ag〉 and
bq ∈ 〈b, bg〉. Hence either aq = a, aq = ag or aq = aag, and either bq = b,
bq = bg or bq = bbg. If q = q1q2q3q4, with qi ∈ Gi, 1 ≤ i ≤ 4, then one of the
following cases holds:
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Case (a) aq11 = a1, a
q2
2 = a2, a

q3
3 = a3, a

q4
4 = a4, a

g4q4
4 = ag44 .

Case (b) aq11 = ag11 , aq22 = ag22 , aq33 = ag33 , aq44 = ag44 , ag4q44 = a4a
g4
4 .

Case (c) aq11 = a1a
g1
1 , aq22 = a2a

g2
2 , aq33 = a3a

g3
3 , aq44 = a4a

g4
4 , ag4q44 = a4.

The case (a) is impossible because the Sylow 3-subgroups of Gi act fixed-
point freely on Ni for all i. Suppose that (b) holds. Then qig

−1
i ∈ CLi

(ai) =
Ni for all i. Therefore qg−1 ∈ H〈q〉 ∩ Soc(G) = H1 and q ∈ H1〈q〉 = H, a
contradiction. The case (c) is analogous.

Assume that H is permutable with a subgroup 〈s〉 contained in Soc(G).
Then, if s /∈ H1, we have that H1× 〈s〉 is a Sylow 2-subgroup of H〈s〉 which
is normalized by g. This means that there exists a subgroup 〈z〉 ≤ H1 × 〈s〉
such that g ∈ CG(〈z〉), a contradiction. Hence s ∈ H.

If H is permutable with a subgroup 〈x〉 of order 2, with x ∈ G\V , where
V = O{2,3}(G), then |H〈x〉 : H| = 2 and so H must be normalized by x. In
particular, x ∈ NG(H1). Arguing as above, we have that ax ∈ {a, ag, aag}
and bx ∈ {b, bg, bbg}. Consequently one of the following cases holds if x =
x1x2x3x4 with xi ∈ Gi:

Case 1 ax1
1 = a1, a

x2
2 = a2, a

x3
3 = a3, a

x4
4 = a4, a

g4x4

4 = ag44 .

Case 2 ax1
1 = ag11 , ax2

2 = ag22 , ax3
3 = ag33 , ax4

4 = ag44 , ag4x4

4 = a4a
g4
4 .

Case 3 ax1
1 = a1a

g1
1 , ax2

2 = a2a
g2
2 , ax3

3 = a3a
g3
3 , ax4

4 = a4a
g4
4 , ag4x4

4 = a4.

Suppose that either Case 2 or Case 3 holds. Then the automorphism
induced by x4 on N4 has order 3, a contradiction. Consequently, Case 1
must hold. In this case, x4 centralizes N4. Hence x4 = 1. Since (a1a3a4)

gx =
ag1x1

1 ag3x3

3 ag44 is an element of H1, we have that ag1x1

1 ag3x3

3 ag44 = ag11 ag33 ag44 .
Hence x1 centralizes N1 and x3 centralizes N3. This implies that x1 = x3 = 1.
The same argument applied to (a2a3a

g4
4 )gx shows that x2 = 1. Therefore

x = 1, a contradiction.
Assume now that H is permutable with a cyclic subgroup 〈x〉 of order 4

which is not contained in H. It is clear that x2 ∈ Soc(G). If x2 /∈ H, then
H ∩ 〈x〉 = 1 and |H〈x〉 : H| = 4. Notice that (x2)g and (x2)g

2
are not in H.

Therefore H〈x〉 is equal to the disjoint union H〈x〉 = H ∪ Hx2 ∪ H(x2)g ∪
H(x2)g

2
. This is a contradiction, because x does not belong to this union.

Consequently, x2 ∈ H ∩ Soc(G) and |H〈x〉 : H| = 2. This implies that x
normalizes H and so x also normalizes H1.

Arguing as in the above paragraph, if x = x1x2x3x4, we have that either
ax4
4 = a4 and ag4x4

4 = ag44 , or ax4
4 = ag44 and ax4g4

4 = a4a
g4
4 , or ax4

4 = a4a
g4
4

and ag4x4

4 = a4. In the first case, x4 centralizes N4, and in the second and
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third cases, the automorphism induced by x4 on N4 is of order 3. The latter
possibility gives a contradiction. Hence the first case holds and then ax1

1 = a1,
ax2
2 = a2 and ax3

3 = a3. Moreover, x4 ∈ Soc(G). Arguing as above with the
elements (a1a3a4)

gx and (a2a3a
g4
4 )gx, it follows that x ∈ Soc(G). This is a

contradiction because Soc(G) has no elements of order 4.
We would like to mention at this point that what is proved in the above

cases is that if x is either an element of order 2 in G \ V or x is an element
of order 4, then 〈x〉 does not permute with H1.

Finally, suppose that 〈x〉 = 〈x〉2×〈x〉3 is a subgroup of G such that H〈x〉
is a subgroup of G. Then H1〈x〉2 is a Sylow 2-subgroup of H〈x〉. Suppose
that 〈x〉2 is not contained in H. By the above remark, 〈x〉2 is a subgroup of
order 2 contained in Soc(G). Therefore H〈x〉 ≤ L1×L2×L3×L4, and then
g ∈ NG(H1〈x〉2). This means that there exists an element y ∈ H1〈x〉2 such
that H1〈x〉2 = H1 × 〈y〉 and g ∈ CG(〈y〉), a contradiction. Thus 〈x〉2 ≤ H
and H〈x〉 = H〈x〉3. Bearing in mind the first case, it follows that 〈x〉3 ≤ H
and 〈x〉 ≤ H.

Consequently, PG(H) = H and the theorem is proved.

3 QP-GROUPS

We say that a group G is a QP-group (or G satisfies the property QP) if
G is soluble, each chief factor of G has order 4 or a prime, and if A/B is a
chief factor of G of order 4, then G induces the full group of automorphisms
in A/B, i. e., G/CG(A/B) ∼= Σ3.

Recall that in any group G, there is a unique maximum normal super-
solubly embedded subgroup, denoted here by ZU(G). It is known that there
is a G-invariant series in ZU(G) with cyclic factors, while G/ZU(G) has no
nontrivial normal cyclic subgroups. ZU(G) is the U-hypercentre of G, where
U is the formation of all supersoluble groups (see (2, Section IV.6)).

Beidleman and Robinson proved in (1, 3.1) the following result:

Lemma 1. A group G is a P-group if and only if G/ZU(G) is a P-group.

In order to prove that a QP-group is a P-group, one often can assume
that the U-hypercentre is trivial. Hence the following result applies.

Lemma 2. Let G be a QP-group such that ZU(G) = 1. Then:

1. O2′(G) = 1 and G is a {2, 3}-group.

2. G/F (G) is isomorphic to a subgroup of a direct product of Σ3 and C2.
Consequently, G/F (G) is an extension of a 3-group V/F (G) by a 2-
group G/V , where V = O{2,3}(G).
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3. The supersoluble normalizers of G are exactly the normalizers of the
Sylow 3-subgroups of G.

Proof. 1. Since every chief factor of G of odd order is cyclic, it follows that
O2′(G) is supersolubly embedded in G. Hence O2′(G) ≤ ZU(G) = 1.
Applying (1, (3.5)), G is a {2, 3}-group.

2. follows from the fact that F (G) is the intersection of the centralizers
of the chief factors of G.

3. Let D be a supersoluble normalizer of G (for properties of normalizers
see, for example, (2, Chapter V)). Then there exists a Hall system
Σ = {1, G2, G3, G} of G, where G2 is a Sylow 2-subgroup of G and G3

is a Sylow 3-subgroup of G, such that D is the supersoluble normalizer
associated to Σ. For each prime p, we denote f(p) the formation of
all abelian groups whose exponent divides p− 1 and v(p) = Gf(p), the
f(p)-residual of G. It is known ((2, IV.3.4)) that f is an integrated
local definition of U.

Then, according to (2, V.1.1),

D =
⋂

p∈{2,3}

NG

(
Gp′ ∩ v(p)

)
= NG

(
G2′ ∩ v(2)

)
∩NG

(
G3′ ∩ v(3)

)
.

Since f(2) = 1, it follows that v(2) = G. Moreover, v(3) is contained
in V because G/V is an elementary abelian 2-group. On the other
hand, G2 ∩ V = F (G). Hence G3′ ∩ v(3) = G2 ∩ v(3) ≤ F (G) ∩ v(3) ≤
G2 ∩ v(3) and NG

(
G3′ ∩ v(3)

)
= NG

(
F (G) ∩ v(3)

)
= G. This implies

that there exists a Sylow 3-subgroup G3 of G such that D = NG(G3).
The result now follows from the fact that the supersoluble normalizers
are conjugate (see (2, V.2.3)).

The following results turn out to be crucial in the proof of our main
theorems.

Lemma 3. Let G be a QP-group contained in a direct product S1×· · ·×Sr of
r copies of Σ4 and containing the corresponding direct product A1×· · ·×Ar of
r copies of A4. Assume that H is a subgroup of G such that PG(H) = H and
let H2 and H3 be, respectively, a Sylow 2-subgroup and a Sylow 3-subgroup of
H. If Ni is the minimal normal subgroup of G contained in Ai, then:

1. If Ni ∩H 6= 1, then Ai ≤ H.

2. If Ni ∩H = 1, then H2 ≤ CG(Ni) and H3 6≤ CG(Ni).
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Proof. 1. Suppose that Ni ∩ H 6= 1 and let 1 6= ai ∈ Ni ∩ H. Since Ni

is an elementary abelian 2-group of order 4, we can find an element
1 6= bi ∈ Ni such that Ni = 〈ai, bi〉. Then H〈bi〉 = HNi and so
bi ∈ PG(H) = H. Hence Ni is contained in H. Let now 〈gi〉 be a Sylow
3-subgroup of Ai. Then Ai = Ni〈gi〉 and so HAi = H〈gi〉. This means
that gi ∈ PG(H) = H. Consequently Ai is contained in H.

2. Suppose that Ni ∩ H = 1. We prove that H2 centralizes Ni. Assume
that this is not true. We distinguish two cases:

(a) There exists an element h ∈ H \CG(Ni) such that the component
hi of H in Si has order 2. If h has a component hj, j 6= i, of order
3, then h3 is an element of H \ CG(Ni) whose component in Si

has order 2. Hence without loss of generality we may assume that
o(h) = 2 or 4.

Let ai ∈ Ni\{1} such that ahi 6= ai. Then hai is an element of G of
order 4 (notice that (hai)

2 = h2ahi ai 6= 1). In this case, H〈hai〉 =
HNi by order considerations. Consequently hai ∈ PG(H) = H
and so ai ∈ Ni ∩H = 1, a contradiction.

(b) No element of H \CG(Ni) has its component in Si of order 2. We
may assume that there exists h ∈ H2 \ CG(Ni). Suppose that H3

does not centralize Ni and let g ∈ H3 \ CG(Ni). We know that
o(hi) = 4 and so either hg or hg2 has its component in Si of order
2. Moreover hg ∈ H \ CG(Ni) and hg2 ∈ H \ CG(Ni) because
hi /∈ Ai, a contradiction.

Therefore H3 ≤ CG(Ni) = S1 × · · · × Ni × · · · × Sr and so the
projection of H3 in Si is 1. Assume that the projection of H2 in
Si is a Sylow 2-subgroup of Si. Then there exists an element x ∈
H \CG(Ni) such that o(xi) = 2. This is impossible by (2a). Hence
the projection of H2 in Si is just 〈hi〉. In particular 〈h2

i 〉 permutes
with H. Thus h2

i ∈ H ∩ Ni = 1, a contradiction. Consequently
H2 centralizes Ni.

If H3 ≤ CG(Ni), then Ni ≤ H, a contradiction. Hence H3 cannot
centralize Ni.

Lemma 4. Let G be a QP-group such that ZU(G) = 1. Assume that G
has r chief factors of order 4 in a given chief series of G. Suppose that
Soc(G) = N1 × · · · × Nr, where Ni is a minimal normal subgroup of G of
order 4 for all i. Then the order of a Sylow 3-subgroup of G is at most 3r.
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Moreover, if the order of a Sylow 3-subgroups of G is exactly 3r, then G is, up
to isomorphism, a subgroup of a direct product of r copies of Σ4 containing
the direct product of the corresponding r copies of the alternating group A4.

Proof. Denote T = Soc(G) = N1×· · ·×Nr. The hypothesis on G implies that
G/T is supersoluble. Hence, if D is a supersoluble normalizer of G, we have
that G = DT . But T is abelian, therefore D ∩ T is a normal subgroup of G
contained in D. Hence D∩T ≤ CoreG(D) = ZU(G) = 1 and T complements
D in G.

Set F = F (G). It is clear that T is contained in F . Hence F = T (F ∩D).
Since F ∩ D E D and T ≤ CG(F ∩ D), it follows that F ∩ D E G and
so F ∩ D ≤ CoreG(D) = 1. This implies that T = F . Since F is the
intersection of the centralizers of all chief factors of G, it is clear that F ≤
CG(N1)∩· · ·∩CG(Nr) ≤ CG(F ). The solubility of G implies that CG(F ) ≤ F .
Consequently, F = CG(N1) ∩ · · · ∩ CG(Nr) and G/F can be embedded in a
direct product of r copies of Σ3. In particular, if G3 is a Sylow 3-subgroup
of G, we have that |G3| ≤ 3r.

In what follows we assume that |G3| = 3r and D = NG(G3) (Lemma 2).
Set Mi =

∏
j 6=iNj. Then G = Ni(MiD) and Ni ∩ (MiD) = 1. Hence MiD

is a maximal subgroup of G and MiD ∩ T = Mi(D ∩ T ) = Mi. Denote
Ti = CoreG(MiT ), 1 ≤ i ≤ r. Assume that

⋂r
i=1 Ti 6= 1. Then there

exists a minimal normal subgroup N of G such that N ≤
⋂r

i=1 Ti. But
N ≤ T , therefore N ≤ T ∩ Ti = Mi for all i, whence N ≤

⋂r
i=1Mi = 1, a

contradiction. Thus
⋂r

i=1 Ti = 1 and G/Ti is isomorphic to Σ4 for all i. As a
consequence, G can be embedded in a direct product of r copies of Σ4.

On the other hand, G/CG(Mi) = G/
⋂

j 6=i CG(Nj) is isomorphic to a
subgroup of the direct product of G/CG(Nj), j 6= i. Since G is a QP-group,
we have that G/CG(Nj) ∼= Σ3 for all j. Consequently |G/CG(Mi)|3 ≤ 3r−1

(n3 denotes the 3-part of the number n). Since |G3| = 3r, it follows that
|CG(Mi)|3 ≥ 3. In particular, if Bi = G3∩CG(Mi), we have that Bi is a non-
trivial Sylow 3-subgroup of CG(Mi) and |Bi| ≥ 3. Moreover, B1B2 · · ·Br is a

Sylow 3-subgroup of M1 · · ·Mr and Bi∩
(∏

j 6=iBj

)
≤ G3∩CG(Mi)∩CG(Ni) ≤

G3 ∩ F = 1. Therefore |Bi| = 3 for all i. It is clear that Bi is not contained
in CG(Ni). Therefore NiBi is isomorphic to A4.

Let Si =
⋂

j 6=i Tj. We show that if V = O{2,3}(G), then V ∩ Si = NiBi.
Since Nj ∩ Tj = 1 for all j, we have that Si =

⋂
j 6=i Tj ≤

⋂
j 6=i CG(Nj) =

CG(Mi), so that there exists a Sylow 3-subgroup (Si)3 of Si such that (Si)3 ≤
Bi. If (Si)3 = 1, then Si is a 2-group. Hence a Sylow 3-subgroup of G/Si has
order 3r. This is not possible because G/Si is isomorphic to a direct product
of r − 1 copies of Σ4. Therefore (Si)3 = Bi, and hence NiBi ≤ Si ∩ V . Let
us prove now that Si ≤ NiD. We may assume, without loss of generality,
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that i = 1. We have that T2 ∩ · · · ∩ Tr ≤ M2D ∩ M3D ∩ · · · ∩ MrD =
N1D(N3 · · ·Nr ∩M3D ∩ · · · ∩MrD). Since N3 · · ·Nr ≤ T , it follows that
(N3 · · ·Nr) ∩ M3D ∩ · · · ∩ MrD = (N3 · · ·Nr) ∩ M3D ∩ · · · ∩ MrD ∩ T =
(N3 · · ·Nr)∩M3∩· · ·∩Mr = 1. Hence S1 ≤ N1D and, analogously, Si ≤ NiD
for all i. This implies that Si ∩ V ≤ NiD ∩ V = Ni(D ∩ V ) = NiG3 (notice
that D ∩ V = G3). Consequently Si ∩ V ≤ NiG3 ∩ CG(Mi) = Ni

(
G3 ∩

CG(Mi)
)

= NiBi and Si∩V = NiBi. Notice that G3 = B1×· · ·×Br. Hence
V = N1B1 · · ·NrBr by order considerations. Moreover, NiBi ≤

⋂
j 6=i Tj

and 〈N1B1, . . . , Ni−1Bi−1, Ni+1Bi+1, . . . , NrBr〉 is contained in Ti. Therefore
NiBi ∩ 〈N1B1, . . . , Ni−1Bi−1, Ni+1Bi+1, . . . , NrBr〉 ≤ T1 ∩ · · · ∩ Tr = 1 and
V = N1B1× · · · ×NrBr. Consequently G is isomorphic to a subgroup of the
direct product of r copies of Σ4 containing the corresponding direct product
of copies of A4.

4 SUFFICIENT CONDITIONS FOR A QP-

GROUP TO BE A P-GROUP

We begin with the following elementary lemma.

Lemma 5. Let H be a subgroup of G and let N be a normal subgroup of G
contained in H. Then:

1. If xN ∈ PG/N(H/N), then x ∈ PG(H).

2. If PG(H) = H, then PG/N(H/N) = H/N .

Proof. It is clear that 2 is a consequence of 1. Hence only 1 must be proved.
Let xN ∈ PG/N(H/N). Then (H/N)〈xN〉 = 〈xN〉(H/N). Let hxa be an
element of H〈x〉. Then (hN)(xN)a ∈ 〈xN〉(H/N), whence (hN)(xN)a =
(xN)b(h′N) for some h′ ∈ H and there exists an element n ∈ N such that
hxa = xbh′n. Since N ≤ H, it follows that hxa ∈ 〈x〉H. Consequently
H〈x〉 ⊆ 〈x〉H. The other inclusion is analogous.

Our aim in this section is to find sufficient conditions for a QP-group to
be a P-group in terms of the number of the chief factors of order 4.

Theorem 3. Let G be a QP-group with just one chief factor of order 4 in
a given chief series of G. Then G is a P-group.

Proof. Let D 6= G be a supersoluble normalizer of G. Then, by (2, V.3.8),
D can be joined with a chain of subgroups:

D = D0 <· D1 <· · · · <· Dr = G
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such that Di−1 is a maximal subgroup of Di, Di/CoreDi
(Di−1) is not su-

persoluble and Di = Di−1F (Di) for all i. Moreover, D covers all the chief
factors of G of prime order and avoids the chief factors of G of order 4.
Since G has only one chief factor of order 4, we conclude that D is a max-
imal subgroup of G. Since G/CoreG(D) is not supersoluble, it follows that
G/CoreG(D) ∼= Σ4. By (2, V.2.4), ZU(G) = CoreG(D). Hence G/ZU(G) is a
P-group. By Lemma 1, G is a P-group. If D = G, then G is supersoluble
and so G is a P-group.

To find sufficient conditions for a QP-group G with more than one chief
factor in a given chief series to be P-group seems to be quite difficult. How-
ever we have obtained some interesting results when Soc(G) is a direct prod-
uct of minimal normal subgroups of G of order 4.

Theorem 4. Assume that G is a QP-group contained in a direct product
S1 × S2 of two copies of Σ4 and containing the direct product A1 ×A2 of the
copies of A4. Then G is a P-group.

Proof. Denote by Ni, i = 1, 2, the minimal normal subgroups of G contained
in A1 × A2.

Assume that G is not a P-group and let H be a proper subgroup of G
such that H = PG(H). If H ∩Ni 6= 1 for some i, then Ai ≤ H by Lemma 3.
It is clear that G/Ai is isomorphic to either Σ4 or Σ4 × C2, which are both
P-groups. By Lemma 5, it follows that H = G, a contradiction. Hence
H ∩N1 = 1 = H ∩N2. Bearing in mind the notation of Lemma 3, we have
that H2 ≤ CG(Ni) and H3 6= CG(Ni) for i = 1, 2.

Suppose first that H3 = 〈g1g2〉, where g1 ∈ A1, g2 ∈ A2 are elements
of order 3. Assume that H ∩ Soc(G) = 1, then H2 = 1 because H2 ≤
CG

(
Soc(G)

)
= Soc(G). Hence H = H3. Let hi ∈ Si be an element of order

2 such that ghi
i = g−1i , i = 1, 2. Then h1h2 ∈ G because G is a QP-group. It

is clear that h1h2 ∈ NG(H) = H and so H2 6= 1, a contradiction. Therefore
H ∩ Soc(G) 6= 1.

Since H2 ≤ Soc(G), it follows that H ∩ Soc(G) = H2. Hence H2 E H
and H2 is an H3-module over the field of 2 elements. Let a1a2 ∈ H2, with
1 6= ai ∈ Ni, i = 1, 2. Then ag11 ag22 ∈ H2 and a1a2 6= ag11 ag22 . Consequently
the subgroup T = 〈a1a2, ag11 ag22 〉 has order 4. Suppose that T < H2. Since
H2 is a completely reducible H3-module, there exists a normal subgroup T0

of H such that H2 = T × T0. Let c1c2 be an element belonging to T0, where
1 6= ci ∈ Ni, i = 1, 2. Then cg11 cg22 ∈ T0. This implies that H2 has order
16 and so Soc(G) ≤ H, a contradiction. Therefore H2 = 〈a1a2, ag11 ag22 〉. Let
h1h2 be an element of S1 × S2 such that o(hi) = 2, ghi

i = g−1i and ahi
i = agii
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for i = 1, 2. Since G is a QP-group, it follows that h1h2 ∈ G. It is clear that
h1h2 ∈ NG(H) = H. This is a contradiction.

Assume that H3 = 〈g1, g2〉, with gi ∈ Ai, i = 1, 2, of order 3. Let aia2 be
an element of H2 = Soc(G)∩H. Then ag11 a2 ∈ H and so a1a

g1
1 ∈ H ∩N1 = 1.

Therefore ag11 = a1 and then a1 = 1. Analogously a2 = 1. Hence H2 = 1.
Let h1h2 ∈ G be an element of order 2 such that ghi

i = g−1i , i = 1, 2. Then
h1h2 ∈ NG(H) = H. This contradicts the fact H2 = 1.

Consequently G is a P-group.

Theorem 5. Let G be a subgroup of the direct product Σ4 × Σ4 × Σ4 of
three copies of the symmetric group of degree 4. Assume that G contains
A4 × A4 × A4, the corresponding direct product of the alternating groups. If
G is a QP-group and G contains an element of order 2 inverting all the
elements of a Sylow 3-subgroup of G, then G is a P-group.

Proof. Denote by Gi, 1 ≤ i ≤ 3, the factors of the direct product Σ4×Σ4×Σ4.
Let Ni, 1 ≤ i ≤ 3, be the Klein four-group in Gi. Then Ni is a minimal
normal subgroup of G for all i.

Suppose there exists a proper subgroup H of G such that PG(H) = H. If
H∩Ni 6= 1, then Ai, the alternating group in Gi, is contained in H. Moreover,
G/Ai is isomorphic to one of the groups of Theorem 4 or to a direct product
of one of these groups with C2. Then G/Ai is a P-group, a contradiction.
Therefore H ∩ N1 = H ∩ N2 = H ∩ N3 = 1 and, by Lemma 3, every Sylow
2-subgroup H2 of H centralizes Ni for all i and none Sylow 3-subgroup H3 of
H centralizes Ni for all i. Consequently every Sylow 2-subgroup H2 of H is
contained in CG(N1×N2×N3) = N1×N2×N3 = Soc(G) and H2 = H∩Soc(G)
is the unique Sylow 2-subgroup of H.

Suppose that H3 is of order 3. Then, since H3 6≤ CG(Ni) for all i, it
follows that H3 = 〈g1g2g3〉, where gi ∈ Gi is an element of order 3 for all i. If
H3 = H, then we consider an element hi ∈ Gi of order 2 such that ghi

i = g−1i

for all i and h1h2h3 ∈ G. Such an element exists because G has an element of
order 2 inverting all the elements of a Sylow 3-subgroup of G and G contains
the direct product of the alternating groups. Then h1h2h3 ∈ NG(H) = H, a
contradiction. Consequently H ∩ Soc(G) 6= 1. Let 1 6= a1a2a3 ∈ H ∩ Soc(G),
with ai ∈ Ni, i ∈ {1, 2, 3}. Notice that ag11 ag22 ag33 ∈ H ∩ Soc(G). This implies
that the rank of H ∩ Soc(G) is a multiple of 2.

Assume that H∩Soc(G) = 〈a1a2a3, ag11 ag22 ag33 〉. Let hi ∈ Gi be an element
of order 2 such that ghi

i = g−1i and ahi
i = agii for i ∈ {1, 2, 3}. Then h1h2h3 ∈ G

and h1h2h3 ∈ NG(H2) ∩ NG(H3) ≤ NG(H) = H. In particular, h1h2h3 ∈
H2 ≤ CG(Ni) for all i, a contradiction.

Suppose now that H ∩ Soc(G) has rank 4. Then

H ∩ Soc(G) = 〈a1a2a3, ag11 ag22 ag33 , c1c2c3, c
g1
1 cg22 cg33 〉.

11



Operating with the generators of H ∩ Soc(G), we can conclude that H ∩
Soc(G) = 〈b1b3, bg11 bg33 , d2d3, d

g2
2 dg33 〉 and, by taking a suitable conjugate of

d2d3, we can also assume that either d3 = b3 or b3 = 1. Suppose that d3 = b3
(the case b3 = 1 is similar). Then we can take h1 ∈ Gi of order 2 such that
gh1
1 = g−11 and bh1

1 = bg11 , an element h2 ∈ G2 of order 2 such that gh2
2 = g−12

and dh2
2 = dg22 , and an element h3 ∈ G3 of order 2 such that gh3

3 = g−13 and
bh3
3 = bg33 . Then the element h1h2h3 ∈ G and it normalizes H, a contradiction.

If H ∩ Soc(G) has rank 6, then Soc(G) ≤ H, a contradiction.
Assume that H3 is of order 9. We can suppose, by reordering the suffices,

that either H3 = 〈g1, g2g3〉 or H3 = 〈g1g3, g2g3〉.
Suppose that H3 = 〈g1, g2g3〉. If 1 6= a1a2a3 ∈ H ∩ Soc(G), with ai ∈ Ni,

i ∈ {1, 2, 3}, we have that (a1a2a3)
g1 = ag11 a2a3 ∈ H, so their product a1a

g1
1 ∈

H ∩N1 = 1. This implies that a1 = 1. If H ∩ Soc(G) has rank 4, it follows
that Ni ≤ H for i ∈ {2, 3}, a contradiction. Hence H ∩ Soc(G) has rank 2.
Then H ∩ Soc(G) = 〈a2a3, ag22 ag33 〉. We consider an element h1 ∈ G1 of order
2 such that gh1

1 = g−11 , an element h2 ∈ G2 of order 2 such that gh2
2 = g−12

and ah2
2 = ag22 , an an element h3 ∈ G3 of order 2 such that gh3

3 = g−13 and
ah3
3 = ag33 . Then h1h2h3 ∈ G and h1h2h3 ∈ NG(H) = H, a contradiction.

Suppose that H3 = 〈g1g3, g2g3〉. If 1 6= a1a2a3 ∈ H ∩ Soc(G), with
ai ∈ Ni, i ∈ {1, 2, 3}, we have that (a1a2a3)

g1g3 = ag11 a2a
g3
3 ∈ H. Thus

(a1a2a3)(a
g1
1 a2a

g3
3 ) = a1a

g1
1 a3a

g3
3 ∈ H. Then a1a3 ∈ H. Therefore (a1a3)

g2g3 =
a1a

g3
3 ∈ H. This implies that a3a

g3
3 ∈ H ∩ N3 = 1, whence a3 = 1 and

a1 ∈ H ∩N1 = 1, a contradiction.
If H3 = 〈g1, g2, g3〉 and 1 6= a1a2a3 ∈ H∩Soc(G), with ai ∈ Ni, 1 ≤ i ≤ 3,

then (a1a2a3)
g1 = ag11 a2a3 ∈ H. Hence a1a

g1
1 ∈ H ∩ N1 = 1. This implies

a1 = 1. Analogously a2 = 1 = a3. This is a contradiction.
Therefore G is a P-group.

If G is a QP-group such that A4×A4×A4 ≤ G ≤ Σ4×Σ4×Σ4, then G
is not a P-group in general, as the next example shows.

Example 2. The direct product Σ4 × Σ4 × Σ4 can be considered as a sub-
group of Σ12 and, so viewed, we consider the group G of all even permu-
tations of Σ4 × Σ4 × Σ4. Let a = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12) and
g = (1, 2, 3)(5, 6, 7)(9, 10, 11). Then H = 〈a, g〉 is a subgroup of G isomor-
phic to A4. With similar arguments to those used in the proof of Theorem 2
we have that PG(H) = H. Therefore G is not a P-group.

Combining Lemma 4 and Theorems 4 and 5 we have:

Theorem 6. Let G be a QP-group such that ZU(G) = 1. Suppose that
G has a chief series with exactly r chief factors of order 4 and Soc(G) =
N1 × · · · × Nr, where Ni is a minimal normal subgroup of G of order 4. If

12



either r = 2 and Sylow 3-subgroups of G have order 9 or r = 3, Sylow 3-
subgroups of G have order 33 and there exists an element of G of order 2
inverting the elements of a Sylow 3-subgroup of G, then G is a P-group.

Theorem 7. Suppose that G is a subgroup of Σ4×Σ4 containing the product
N1 × N2 of both minimal normal subgroups of Σ4 × Σ4, and that G is a
P-group with ZU(G) = 1. Then |G|3 = 9.

Proof. Let S1, S2 be the copies of Σ4 in Σ4 × Σ4 and A1, A2 be the corre-
sponding alternating subgroups.

If |G|3 = 1, then G is a 2-group, whence ZU(G) = G, a contradiction.
If |G|3 = 3, the projections of a Sylow 3-subgroup G3 of G in Si are

nontrivial (otherwise ZU(G) 6= 1). Therefore there exist gi ∈ Si, i = 1, 2,
such that g1g2 ∈ G. There exist hi ∈ Si \ Ai, i = 1, 2, such that ghi

i = g−1i

and h1h2 ∈ G. If h1 ∈ G, then (g1g2)
h1 = g−11 g2 ∈ G, whence g1 ∈ G

and g2 ∈ G, a contradiction. Hence h1 /∈ G and, analogously, h2 /∈ G.
There exists ai ∈ Ni \ {1} such that ahi

i = agii , i = 1, 2. We construct

H = 〈a1ag22 , ag11 a
g22
2 , g1g2〉. By arguing like in Example 1, we obtain that H is

a proper subgroup of G such that H = PG(H), a contradiction.

Theorem 8. Suppose that G is a subgroup of Σ4 × Σ4 × Σ4 containing the
direct product of the three minimal normal subgroups of Σ4 × Σ4 × Σ4 and
that G is a P-group with ZU(G) = 1. Then |G|3 = 27.

Proof. Let Si, i ∈ {1, 2, 3}, be the copies of Σ4 in Σ4 × Σ4 × Σ4 and let Ai

be the copies of the corresponding alternating subgroups.
If |G|3 = 1, then G is a 2-group, a contradiction with ZU(G) = 1.
If |G|3 = 3, then the projections of a Sylow 3-subgroup G3 of G in Si

are nontrivial (otherwise, ZU(G) 6= 1). Hence there exist gi ∈ Si of order 3,
i ∈ {1, 2, 3}, such that g1g2g3 ∈ G. There exist hi ∈ Si \ Ai of order 2 such
that ghi

i = g−1i , i ∈ {1, 2, 3}, and h1h2h3 ∈ G. If h1 ∈ G, then (g1g2g3)
h1 =

g−11 g2g3 ∈ G, whence g1 ∈ G, a contradiction. Thus h1 /∈ G and, analogously,
h2 /∈ G, h3 /∈ G. Consequently G = [N1 × N2 × N3]〈g1g2g3, h1h2h3〉. Let
ai ∈ Ni \ {1} such that ahi

i = agii for i ∈ {1, 2, 3}. The subgroup

H = 〈a1a2ag33 , ag11 ag22 a
g23
3 , g1g2g3〉

is a proper subgroup of G such that PG(H) = H, as we can prove like in
Example 1, a contradiction.

If |G|3 = 9, then the projections of a Sylow 3-subgroup G3 of G in Si are
again nontrivial (otherwise, ZU(G) 6= 1). By reordering the suffices, we can
suppose that either G3 = 〈g1g2, g3〉 or G3 = 〈g1g2, g1g3〉.

13



Suppose that G3 = 〈g1g2, g3〉. There exist elements hi ∈ Si \ Ai, i ∈
{1, 2, 3}, of order 2, such that ghi

i = g−1i and h1h2h3 ∈ G. If h1 ∈ G, then
(g1g2)

h1 = g−11 g2, whence g2 ∈ G, a contradiction. Consequently h1 /∈ G and,
analogously, h2 /∈ G. Let ai ∈ Ni \ {1} such that ahi

i = agii , i ∈ {1, 2, 3}. If
h3 ∈ G, then we consider the subgroup

H = 〈a1ag22 , ag11 a
g22
2 , a3, a

g3
3 , g1g2, g3, h3〉,

and if h3 /∈ G, we take the subgroup

H = 〈a1ag22 , ag11 a
g22
2 , a3, a

g3
3 , g1g2, g3〉.

Like in Example 1 we have that H is a proper subgroup of G such that
PG(H) = H.

Suppose that G3 = 〈g1g2, g1g3〉. There exist elements hi ∈ Si \ Ai, i ∈
{1, 2, 3}, of order 2, such that ghi

i = g−1i and h1h2h3 ∈ G. If h1 ∈ G,
then (g1g2)

h1 = g−11 g2 ∈ G, whence g1 ∈ G, a contradiction. Consequently,
h1 /∈ G. Analogously, h2 /∈ G and h3 /∈ G. Consider an element ai ∈ Si \ Ai

such that ahi
i = agii for 1 ≤ i ≤ 3. Notice that (g1g2)

2(g1g3)
2 = g1g

2
2g

2
3. The

subgroup H = 〈a1a2a3, ag11 a
g22
2 a

g23
3 , g1g

2
2g

2
3〉 is a proper subgroup of G such that

PG(H) = H.
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