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Some classes of finite groups and mutually
permutable products

M. Asaad∗ A. Ballester-Bolinches† J.C. Beidleman‡

R. Esteban-Romero§

Abstract

This paper is devoted to the study of mutually permutable products
of finite groups. A factorised group G = AB is said to be a mu-
tually permutable product of its factors A and B when each factor
permutes with every subgroup of the other factor. We prove that mu-
tually permutable products of Y-groups (groups satisfying a converse
of Lagrange’s theorem) and SC-groups (groups whose chief factors are
simple) are SC-groups, by means of a local version. Next we show
that the product of pairwise mutually permutable Y-groups is super-
soluble. Finally, we give a local version of the result stating that when
a mutually permutable product of two groups is a PST-group (that is,
a group in which every subnormal subgroup permutes with all Sylow
subgroups), then both factors are PST-groups.
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1 Introduction and statement of results
In this paper we will deal only with finite groups.
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Many group theorists have been worried about what can be said of a
group G = G1G2 · · ·Gm which is a product of some pairwise permutable
subgroups if some properties of the factors are known. For instance, a well-
known theorem of Kegel and Wielandt [25, 32] says that a product of two
nilpotent groups is soluble. The fact that a product of two supersoluble
groups is not necessarily supersoluble, even if both factors are normal in the
group, motivates the restriction of this question to factorised groups in which
both factors are connected by certain stronger permutability properties. The
first author and Shaalan introduced in [5] the notion of mutually permut-
able product G = AB of two subgroups A and B: in a mutually permutable
product, each factor permutes with every subgroup of the other factor. In
particular, this situation holds when both factors are normal in the group.
Some results about normal products of supersoluble groups were extended
to mutually permutable products in [5], for instance, a mutually permut-
able product G = AB of two supersoluble groups A and B is supersoluble
whenever G′ is nilpotent or one of the factors is nilpotent. They also showed
that totally permutable products (that is, every subgroup of each factor per-
mutes with every subgroup of the other factor) of supersoluble groups are
supersoluble. Of course, central products and direct products are instances
of totally permutable products. Mutually and totally permutable products
have been considered as well in [2, 11, 15, 16, 19, 20].

On the other hand, Kegel [26] proved that all subgroups of a group G
which permute with all the Sylow subgroups of G are subnormal. We call
these subgroups S-permutable. This motivates the definition of the class of
PST-groups or groups in which every subnormal subgroup is S-permutable.
Agrawal [1] obtained a characterisation of soluble PST-groups as the groups
G in which the nilpotent residual L is an abelian normal Hall subgroup of
G and all elements of G induce power automorphisms in L. Some interest-
ing subclasses of the class of all PST-groups are the class of all PT-groups
(groups in which permutability is a transitive relation, or in which every
subnormal subgroup is permutable) and the class of all T-groups (groups in
which normality is a transitive relation). These classes of groups have been
studied by several authors (for instance, [3, 4, 7, 8, 10, 12, 13, 14, 17, 18, 19,
20, 21, 23, 29, 33]).

As a consequence of the theorem of Agrawal [1], soluble PST-groups are
supersoluble. Robinson [29] showed that, in the general finite universe, PST-
groups have all their chief factors simple, or, as he says, they are SC-groups.
The classification of finite simple groups and the truth of the Schreier con-
jecture yields the following description of SC-groups:

Theorem 1 ([29, Proposition 2.4]). A group G is an SC-group if and only if
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there is a perfect normal subgroup D such that G/D is supersoluble, D/Z(D)
is a direct product of G-invariant simple groups, and Z(D) is supersolubly em-
bedded in G (i.e., there is a G-admissible series of Z(D) with cyclic factors).

The relation between totally and mutually permutable products and SC-
groups has been investigated in [9, 11, 15, 19, 20]. For instance:

Theorem 2 ([11, Theorems 2 and 3]). Assume that G is the mutually per-
mutable product of its subgroups A and B. Then:

1. If G is an SC-group, then A and B are SC-groups.

2. If A and B are SC-groups, then G/CoreG(A ∩B) is an SC-group.

Now let us pay attention to the class Y of all groups G in which for
every subgroup H and all primes q dividing the index |G : H| there exists
a subgroup K of G such that H is contained in K and |K : H| = q. The
class Y has been studied in Chapter 1 and Section 6.1 of [31] and becomes
a generalisation of the class of groups satisfying Lagrange’s theorem. These
groups can be characterised as follows:

Theorem 3. A group G is a Y-group if, and only if, the nilpotent residual
L of G is a Hall subgroup of G and for all subgroups H of L, G = LNG(H).

In [6], it is proved that the class of soluble PST-groups coincides with the
class of Y-groups with abelian nilpotent residual.

The theory of finite groups has benefited from the local techniques. Given
a group theoretical property A, we are interested in finding another weaker
propertyAp, depending on a prime p, such that a group satisfiesA if and only
if it satisfiesAp for all primes p. For instance, p-solubility (p a prime) becomes
a good “localisation” of solubility. Local techniques turn out very useful in
the study of PST-groups and other related classes. For example, in [21] and
[28] the authors have presented some interesting local characterisations of
soluble T-groups. A local characterisation of soluble PT-groups appears in
[17]. In [3, 12, 13], local characterisations of soluble PST-groups are studied.
Let us recall some of these properties:

Definition 4. Let p be a prime number.

1. A p-soluble group G satisfies PSTp when every p′-perfect subnormal
subgroup of G permutes with every Hall p′-subgroup of G (see [3]).

2. A group G satisfies U∗p when G is p-supersoluble and all p-chief factors
of G are G-isomorphic when regarded as G-modules (see [3]).
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3. A group G satisfies Yp when for every pair of p-subgroups H and K
such that H ≤ K, H is S-permutable in NG(K) ([13]).

It is shown in [3] and [13] that for p-soluble groups, all three properties
are equivalent and so soluble PST-groups are exactly the groups satisfying
PSTp for all primes p. Other local properties for PST-groups in the general
finite universe appear in [8]:

Definition 5. Let p denote a prime number. A group G is said to sat-
isfy Np when every non-abelian chief factor of G of order divisible by p is
simple and for each normal subgroup N of G, p′-elements of G induce power
automorphisms in Op(G/N).

The paper [8] characterises PST-groups as the groups satisfying Np for
all primes p. If we fix a prime p, it is rather clear that a p-soluble group G
satisfying property Np has all p-chief factors G-isomorphic when regarded as
G-modules by conjugation. Hence G is a PSTp-group. Conversely, Assume
that G is a p-soluble PSTp-group. Consider a normal subgroup N of G and
take a subgroup L/N of Op(G/N). By [3, Lemma 2], G/N is a PSTp-group
as well. Then L/N is a subnormal p′-perfect subgroup of G/N , and so L/N
permutes with all Hall p′-subgroups of G/N . Let H be a Hall p′-subgroup
of G. Then HN/N is a Hall p′-subgroup of G/N and L/N is a subnormal
Sylow p-subgroup of (L/N)(HN/N). In particular, L/N is normalised by
HN/N . This implies that all elements of H normalise L. It follows that G
is an Np-group.

Therefore we have:

Lemma 6. Let p be a prime number. If a group G is p-soluble, then G
satisfies Np if and only if G satisfies PSTp.

The local method has also been successfully applied to the study of Y-
groups in [6] with the definition of the property Zp (p a prime):

Definition 7. We say that G satisfies Zp when for every p-subgroup X of
G and for every power qm of a prime q dividing |G : X Op′(G)|, there exists
a subgroup K of G containing X Op′(G) such that |K : X Op′(G)| = qm.

In [6, Theorem 13], it is proved that property Zp is equivalent to the
following one:

Theorem 8. Let G be a group and let p be a prime. Then G satisfies Zp if
and only if G satisfies either of the following conditions:

1. G is p-nilpotent, or
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2. G(p)/Op′
(
G(p)

)
is a Sylow p-subgroup of G/Op′

(
G(p)

)
and for every

p-subgroup H of G(p), we have that G = NG(H)G(p).

Here X(p) denotes the p-nilpotent residual of a group X, that is, the
smallest normal subgroup N of X such that X/N is p-nilpotent.

Theorem 9 ([6, Theorem 15]). A soluble group satisfies Y if and only if it
satisfies Zp for all primes p.

In this paper we prove some results on mutually permutable products
whose factors belong to some of the above classes. We start with a localisation
of SC-groups.

Definition 10. Let p be a prime number. A group G is said to be an
SCp-group whenever every chief factor of G whose order is divisible by p is
simple.

It is clear that G is an SC-group (i.e., all its chief factors are simple) if
and only if G is and SCp-group for all primes p. In what follows, p will denote
a fixed prime number. The proofs of Theorem 2 can be adapted to prove:

Lemma 11. Assume that G is a mutually permutable product of its subgroups
A and B.

1. If G is an SCp-group, then A and B are SCp-groups.

2. If A and B are SCp-groups, then G/CoreG(A ∩B) is an SCp-group.

Mutually permutable products of SCp-groups and p-soluble Zp-groups are
the object of the next result:

Theorem 12. Let G = AB be a mutually permutable product of its subgroups
A and B. Assume that A is an SCp-group and that B is a p-soluble Zp-group.
Then G is an SCp-group.

The following corollaries follow immediately from Theorem 12:

Corollary 13. If G is a mutually permutable product of an SC-group A
and a Y-group B, then G is an SC-group. In particular, if G is a mutually
permutable product of a supersoluble group A and a Y-group B, then G is
supersoluble.

Let X be a class of groups. A class of groups F is called the Fitting core
of X provided that whenever if A ∈ X and B ∈ F, and A and B are normal
subgroups of a group G, then AB ∈ X (see [18]). From Corollary 2 of [18]
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it follows that the class of soluble PST-groups belongs to the Fitting core of
the formation of supersoluble groups. In fact from Corollary 13 we obtain
a more general statement, mainly: the class Y is contained in the Fitting
core of both the formation of supersoluble groups and hence the formation
of SC-groups.

Corollary 14. If G is a mutually permutable product of two p-soluble Zp-
groups, then G is p-supersoluble.

Corollary 15. If G is a mutually permutable product of two Y-groups, then
G is supersoluble.

Corollary 15 admits the following generalisation:

Theorem 16. Let G = G1G2 · · ·Gr be a group such that G1, G2, . . . , Gr are
pairwise mutually permutable subgroups of G. If all Gi are Y-groups, then G
is supersoluble.

We do not know whether a local version of Theorem 16 is true, namely,
if all Gi are Zp-groups, then G is p-supersoluble.

In [20, Theorem 5], the following result is proved:

Theorem 17. Let G = AB be a mutually permutable product of the sub-
groups A and B. If G is a PST-group, then A is a PST-group.

We present in this paper a local version of Theorem 17, from which it
follows immediately:

Theorem 18. Let G be a mutually permutable product of its subgroups A
and B. If G is a SC-group and satisfies Np, then A satisfies Np.

2 Proofs
Proof of Theorem 12. Assume that G is a counterexample of least order to
the result. Since the class of SCp-groups is a formation, then G has a unique
minimal normal subgroup N . By Lemma 11, N is a non-cyclic p-subgroup
contained in A ∩ B. The minimal choice of G implies that, G/N is an SCp-
group.

Set C = CG(N). Then G/C is a mutually permutable product of its sub-
groups AC/C and BC/C. Since A is an SCp-group, N has an A-composition
series with cyclic factors. By [22, IV, 6.9], it follows that AC/C is p-
supersoluble. The same argument shows that BC/C is p-supersoluble. Since
G/C is p-soluble by [19, Corollary 2] and an SCp-group by minimality of G,
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we conclude that G/C is p-supersoluble. Hence its derived subgroup G′C/C
is p-nilpotent by a result of Shemetkov [30]; in particular, G′/N is p-nilpotent.

Assume that N is contained in the Frattini subgroup Φ(G) of G. By
[24, 6.6.3], G′ is p-nilpotent. Since N is the unique minimal normal of G
and is a p-group, it follows that G′ is a p-group. Therefore G has a normal
Sylow p-subgroup G. This implies that G is p-soluble. But since A and B
are p-soluble SCp-groups, A and B are p-supersoluble. Consequently, G is
p-supersoluble by [19, Corollary 5]. This contradicts the choice of G.

Hence N is not contained in Φ(G). Then G is a primitive group and
N is a self-centralising minimal normal subgroup of G. Moreover G/N is
p-supersoluble. This implies that A and B are p-soluble. Since A and B are
SCp-groups, we have that A and B are p-supersoluble. By [19, Theorem 4],
K = Op′,p(G) = Op(G) = N satisfies that G/K is a p′-group. Hence N is a
normal Sylow p-subgroup of G. In particular, G is p-soluble and so A and B
are p-supersoluble.

By hypothesis, B is a Zp-group. Then Theorem 8 shows that either B is
p-nilpotent, or B(p)/Op′

(
B(p)

)
is a Sylow p-subgroup of B/Op′

(
B(p)

)
and

for every p-subgroup H of B(p), we have that B = B(p) NB(H), where B(p)
denotes the p-nilpotent residual of B. In the first case, G is p-supersoluble
by [19, Corollary 5]. In the second case, Op′

(
B(p)

)
= 1 because CG(N) = N .

Hence B(p) is a p-group and so B(p) = N . Let N1 be a minimal normal
subgroup of A contained in N ; N1 is cyclic because A is p-supersoluble.
Since N1 is normalised by N and by a Hall p′-subgroup of B, we have that
N1 is normalised by B. It follows that N1 is normal in G. This contradiction
proves the theorem.

The next result is needed in the proof of Theorem 16.

Lemma 19. Let G be a Y-group with an abelian normal Sylow p-subgroup
P for a prime p. Then every subgroup of P is normal in G.

Proof. Applying Theorem 3, the nilpotent residual N of G is a nilpotent
Hall subgroup of G. Therefore there exists a nilpotent subgroup K of G such
that G = NK and gcd(|N |, |K|) = 1 by [22, A, 11.3]. Assume that P is
a subgroup of N and let H be a subgroup of P . Then G = NNG(H) by
Theorem 3. Since N is nilpotent and H is normal in P , it follows that N
normalises H and so G = NG(H).

Suppose that P is a subgroup of K. Then, if H is a subgroup of P , we
have that H is normalised by K. Since H is subnormal in G, it follows that
H is a subnormal Sylow p-subgroup of HN . This implies that N normalises
H and hence H is normal in G = NK.
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Proof of Theorem 16. Assume that the theorem is false and letG be a counter-
example with |G|+ |G1|+ |G2|+ · · ·+ |Gr| minimal. We shall show that this
supposition leads to a contradiction. Clearly r > 2 by Corollary 15. Besides,
the hypotheses of the theorem are inherited by every epimorphic image of G.
The minimal choice of G implies that every proper quotient of G is super-
soluble. Since the class of all supersoluble groups is a saturated formation,
we have that Soc(G) is a supplemented minimal normal subgroup of G such
that G/ Soc(G) is supersoluble.

Let p denote the largest prime dividing |G|. Then there exists l ∈
{1, 2, . . . , r} such that Gl contains a non-trivial Sylow p-subgroup, Pl say.
Let i ∈ {1, . . . , r}, i 6= l. Then GlGi is supersoluble by Corollary 15. Hence
GlGi has a normal Sylow p-subgroup. In particular, Pl is subnormal in GlGi.
Applying [27, 7.7.1], Pl is subnormal in G and so Op(G) 6= 1. This implies
that Soc(G) = F(G) = Op(G) is an abelian minimal normal subgroup of
G. Since G/Op(G) is supersoluble, it follows that G has a normal Sylow
p-subgroup. Consequently P = F(G) is the unique Sylow p-subgroup of G.

Fix an index i ∈ {1, . . . , r}, i 6= l. Then P ∩ Gi is a normal Sylow
p-subgroup of Gi and so Gi = (P ∩ Gi)Li for each Hall p′-subgroup Li of
Gi. Moreover, the product GlGi is supersoluble and mutually permutable.
Consequently GlLi is a supersoluble subgroup of G. This means that P ∩Gl

is normalised by Li. Since P ∩ Gl is normal in Gl, we have that P ∩ Gl is
normalised by a Hall p′-subgroup K of G. Since P is abelian and G = PK,
we can conclude that P ∩Gl is normal in G and P ∩Gl = P .

Let Kl be the subgroup generated by all Gi’s, i 6= l. Assume that p
divides |Kl|. Then, since Kl is supersoluble, by the minimal choice of G, we
have that Kl contains a normal subgroup L of order p. By Lemma 19, L is
also normalised by Gl. Consequently L is normal in G = KlGl, contrary to
our supposition. Consequently Kl is a p′-group. On the other hand, consider
an index j ∈ {1, . . . , r}, j 6= l and the subgroup Z generated by all Gm’s,
m 6= j. The minimal choice of G implies that Z is supersoluble. Besides, P
is a subgroup of Z. Let N be a minimal normal subgroup of Z contained
in P . Then |N | = p and NGm is a subgroup of G as N ≤ Gl. Since
NGm is supersoluble and Gm is a p′-group, it follows that N is normalised
by Gm. Consequently N is normal in G and G is supersoluble. This final
contradiction proves the theorem.

Our proof of Theorem 18 depends on the following:

Lemma 20. Let N be a normal subgroup of G such that G/N satisfies Np.
If either N is non-abelian and simple or N is a p′-group, then G satisfies Np.
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Proof. We proceed by induction on |G|. The hypotheses imply that every
chief factor of G whose order is divisible by p is simple. Clearly we may
assume N 6= 1. Let g be a p′-element of G and let H be a subgroup of
Op(G). ThenHN/N is a subgroup of Op(G/N) and so gN normalisesHN/N .
Hence HN = HgN . Since N is either non-abelian simple or N is a p′-group,
Hg = Op(H

gN) = Op(HN) = H. Therefore g normalises H: This means
that p′-elements of G induce power automorphisms in Op(G).

Let T be a minimal normal subgroup of G. If T = N , then G/T satisfies
Np. Suppose that T 6= N and T is contained in N . Then N/T is a non-trivial
normal subgroup of G/T and N/T is a p′-group. By induction, G/T satisfies
Np. Assume that T is not contained inN . ThenNT/T is a non-trivial normal
subgroup of G/T which is G-isomorphic to N . Besides (G/T )

/
(NT/T ) ∼=

G/NT satisfies Np. The induction hypothesis implies that G/T satisfies Np.
Now if R is a non-trivial normal subgroup ofG, there exists a minimal nor-

mal subgroup T of G such that T ≤ R. Since G/T satisfies Np, we conclude
that G/R satisfies Np. The induction argument is therefore complete.

Proof of Theorem 18. Suppose, for a contradiction, that the result is false
and let G be a counterexample of minimal order. Let N be a minimal normal
subgroup of G. Then G/N is the mutually permutable product of AN/N and
BN/N . In addition, G/N satisfies Np. The minimal choice of G implies that
AN/N ∼= A/(A ∩ N) satisfies Np. In particular, A ∩ N 6= 1. Applying [19,
Lemma 1], we conclude that N is contained in A. Since A does not satisfy
property Np, it follows that N is of order p. In particular, Op′(G) = 1 and
Soc(G) is contained in A. Since G is an SC-group, we can apply Theorem 1 to
conclude that the soluble residual D of G satisfies that D/Z(D) is a direct
product of minimal normal subgroups of G/Z(D). Moreover, if S is the
soluble radical of G, we have that CG(D) = S by [29, Lemma 2.6]. This
implies that Z(D) is contained in Z(S).

On the other hand, S is an Np-group. Hence, by Lemma 6, S is a PSTp-
group. Moreover Op′(S) ≤ Op′(G) = 1. Applying [12, Theorem A], we
conclude that either S is a p-group or the p-nilpotent residual S(p) of S
is an abelian Sylow p-subgroup of S on which S induces a group of power
automorphisms. In any case, Op(G) is the Sylow p-subgroup of S. Applying
[11, Corollary 1], the soluble residual AS of A is a normal subgroup of G.

Assume that S is a p-group. Since A is not an Np-group, there exists a
normal subgroup K of A and a subgroup H/K of Op(A/K) such that H/K
is not S-permutable in A/K. Let us choose H of the smallest possible order.
It is rather clear that H is subnormal in A. Hence the soluble residual HS of
H is subnormal in A as well, and so is in G because HS is contained in AS.
Since D/Z(D) is a direct product of non-abelian minimal normal subgroups

9



of G/Z(D), which are simple, and HS Z(D)/Z(D) is subnormal in D/Z(D),
it follows that HS Z(D) is normal in G. Since

(
HS Z(D)

)′
= (HS)′ = HS,

we conclude that HS is normal in G. If HS 6= 1, then A/HS satisfies Np by
minimality of G. It implies that A/K satisfies Np as HS is a subgroup of K.
This contradicts our choice of the pair (H,K). Consequently HS = 1 and
H is soluble. In this case, H is contained in the soluble radical of A, which
is a subgroup of S by [20, Theorem 4]. Since G has Np and H ≤ Op(G),
it follows that H is S-permutable in G and so is in A. This contradiction
implies that S is not a p-group. Then Op(G) = S(p) is the abelian Sylow
p-subgroup of S and it does not contain central chief factors by [22, IV, 5.18]
and [22, V, 3.2, 4.2]. In particular, Z(D) = Z(S) = 1. Since all minimal
normal subgroups of G have order p, it follows that D = 1. Hence G is
soluble and G = S. Applying [3, Corollary 2] and Lemma 6, A satisfies Np.
This final contradiction completes the proof of the theorem.
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