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Abstract

We consider active-sterile neutrino conversions in the early universe hot plasma in the presence
of a random magnetic field generated at the electroweak phase transition. Within a random field
domain the magnetization asymmetry of the lepton antilepton plasma produced by a uniform
constant magnetic field is huge in contrast to their small density asymmetry, leading to a drastic
change in the active-sterile conversion rates. Assuming that the random field provides the seed for
the galactic field one can estimate the restrictions from primordial nucleosynthesis. Requiring that
the extra sterile neutrino does not enter in equilibrium with the active ones before nucleosynthesis
we find limits of the oscillation parameters which are stronger than in the isotropic case.

1. Introduction

Recent observations of cosmic background temperature anisotropies on large scales
by the COBE satellite indicate the need for the existence of a hot dark matter (HDM)
component, contributing about 30% of the total mass density, i.e. f2ypm ~ 0.3 [1].
Simple extensions of the standard electroweak model that can reconcile all known hints
for neutrino masses, including solar and atmospheric neutrino observations postulate the
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existence of a light sterile neutrino v, [2,3]. In some of these models such light sterile
neutrino is the HDM candidate [2].

The most stringent constraints for the neutrino mass matrix including such a fourth
kind of neutrino, a singlet v;, are obtained from the nucleosynthesis bound on the
maximum number of neutrino species (AN < 0.3) that can reach thermal equilibrium
before nucleosynthesis and thus change the primordially produced helium abundance
[4].

In an isotropic early Universe hot plasma such constraint on the additional neutrino
species leads to an excluded region in the oscillation parameters |4m?|, sin? 26y charac-
terizing the active-sterile neutrino oscillations which can be estimated (in non-resonant
case) as [5] 3

sin® 20p|Am?| > 5 x 1075eV?, v, =v,

sin* 200|Am2| >3x10%V?, p,= Vur (1.1)

In this paper we reconsider the active-sterile neutrino oscillation parameters assuming
a new physical state of the hot ultrarelativistic plasma before nucleosynthesis (7 > m,)
with the inclusion of the random magnetic field hypothesis proposed in Ref. [8]. This
random magnetic field could be generated at the electroweak phase transition near the
temperature T ~ Tgw and could provide the seed for the galactic field in the dynamo
enhancement mechanism [9]. In Refs. [10,11] this hypothesis was used in order to
place stringent constraints on the Dirac neutrino magnetic moments.

In this paper we neglect neutrino magnetic moments, both diagonal as well as tran-
sition moments, and consider the magnetization asymmetry of the primordial early uni-
verse hot plasma produced by huge random magnetic fields. This influences the neutrino
spectrum in the medium and modifies the neutrino conversions v, < v;.

We confine ourselves to a small random magnetic field domain size Lo, obeying
the inequality Ly <« Iy. Within such a domain the magnetic field may be taken as
uniform and constant, so that the magnetization of the plasma can be easily calculated.
Here Iy ~ Mp /T2 is the horizon length, Mp, is the Planck mass and T is the plasma
temperature.

Although the magnetic field in different domains is randomly aligned relative to
the neutrino propagation direction, we show how the observable neutrino conversion
probabilities depend on the mean-squared random field via a squared magnetization
value, therefore leading to nonvanishing averages over the magnetic field distribution.
We apply this to the active-sterile neutrino conversions in order to obtain more stringent
limits than those that apply in the absence of magnetic field.

3 The discrepancy between these estimates and those Refs. [6,7] stems mainly from different estimates for
the collision rate which the authors of Ref. [5] have evaluated in detail.
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2, Dirac neutrino spectrum in a hot plasma with magnetic field

In order to derive the Dirac equation for neutrino propagation in a uniform locally
anisotropic medium characterized by a constant (within a domain) magnetic field B =
(0,0, B) we start from the effective four-fermion interaction Lagrangian of the standard
electroweak theory

Line = Gpﬁwuby“(l— 275) Ui D (al v — EvuysWado. ..,
a

where the indices a, b = e, u, 7 correspond to the lepton generations, and the dots denote
the extra terms including hadrons. Here c& = 2sin® @y + 0.5 is the vector coupling
constant (upper sign for a = b), sin’6y is the electroweak mixing parameter and
cba = 0.5 is the corresponding axial coupling constant (upper sign for b = a). Finally,
the symbol {...)o denotes the statistical averaging of vector and axial vector currents,
using equilibrium Fermi distributions f;(ji = (b +p DY = fl(\fi (p;,n). Explicitly, these
are given as

S8,
(51) = AA , 2.1
<« expl(em(p:) — L) /T +1 D

where the lepton spectrum is of the form

ens(p:) = \/p? +mi + [e[B(2n+ 1~ 1), (2.2)

For the case of antileptons, one has f'((f.'i = (d@+dD)y = f(_aj,,_A(pz,n), or explic-
itly,

- é ’
(@ _ —A,—A , (2.3)
Uz expl(&na(p:) +¢a) /T1 + 1
where the antilepton spectrum is of the form
enn(p,) = \/P§+m§+|e|B(2n+1+/\). (2.4)

Here ¢, is the chemical potential and the full set of the quantum numbers « includes
{p.,n, A}, where p, is the conserved momentum component for the chosen magnetic

field geometry; n =0, 1,2, ... is the Landau number and A = %1 is twice the eigenvalue
of the conserved lepton spin projection on the magnetic field, (a,)ya = Adya. The
change of sign A in Eq. (2.3) arises from the conjugation property Co;C~! = —a7.

The resulting equation describing the neutrino motion takes the form

- a. (1=
P m,‘:ic . ‘/b(veC)70 ( vs) _ Vb(axml),yZ (—@ ® =0, (2.5)
2 2 1\,

where the vector interactio_n potential [12] of an active (left) neutrino v, (b=e,u,7),
Ve = Gpv2 S0, i (Frayowa)* is given by the known formula [5]:

4 Note that spatial components of the mean vector current are zero, (Fyig) =0,i=1,2,3.
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1 4 T2

Vb(vec) - Gp\/iny |:L(() 5) AbM_2:| . (2.6)
w

The first term in the vector potential Eq. (2.6) that is proportional to the small particle-

antiparticle asymmetries L, = (n, — ns)/n,, normalized on the photon density n, =
0.24473, is given by [5]

L =t x Lo+ (1—4sin’ 6w) Ly /2 — Ly/2+ 2Ly, + > L,

a a#b

This term is changed a little due to the effect of the strong magnetic field on the charged
lepton (antilepton) densities. However this change remains negligible compared with
the non-local second term in Eq. (2.6) which, for the case of electron neutrinos, is
given by

(vee)| ~ -20 T 5
V)| & 3.4 x 10 (ﬁe_v) MeV. 2.7)
We have neglected the influence of the magnetic field on the nucleon densities, due to
the very small magnetic moments of the nucleons and the small temperatures below the
QCD phase transition (T < 200 MeV).

Now we turn to the new axial term in the Dirac equation. This term is obtained from
the basic underlying SU(2) ® U(1) electroweak gauge theory Lagrangean describing
neutrino interactions in the medium, by just taking the averaged matrix element of the
relevant axial current in the medium, namely

. G ;
Vb(axml) = 7;; Z (—20?4“)0//:17275’//11)0 . (2.8)

a=e,p,T7

Although this definition is sufficient for our purposes, it is useful to give an alternative
interpretation of the effect of the magnetic field in terms of the relevant macroscopic
concept, namely the magnetization asymmetry of each component (a = e, u,7) of the
hot plasma in the external magnetic field, we call it M{® — M(®,

M — M = (W Eia)o = psWayivsiado, (2.9)

where up = |e|/2m, is the Bohr magneton. Note that for our chosen magnetic field
geometry only the z-component of the axial current is nonvanishing.
While the first definition is closer to particle physics notions and, to this extent more
basic, we will find it useful to use both definitions interchangeably in what follows.
The new macroscopic axial term Vb(a"ial) changes the active neutrino spectrum in the
plasma. In the ultrarelativistic limit m,, — O such spectrum can be obtained, from

Eq. (2.5), as

E=V{ +1/q% + (g + V™2, (2.10)

This differs from the isotropic one, E = Vb(vec) + g, due to the shift of the z-component
of the total neutrino momentum g = (g% + g2)!/2. In the hot plasma the neutrino
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momentum (g) ~ 3T is larger than both V**” and V,**" 5o that we can use for
neutrino oscillation problem the ultrarelativistic approximation,

( Vb(axial) )zqi

xial) 9z
E =~ q+ V(vec) + v(a ial) 9z +
b g T

(2.11)

3. Magnetization asymmetry of hot plasma in an external magnetic field

In order to show the importance of the axial term contribution Eq. (2.8) in the
neutrino spectrum, let us consider the main features of the hot lepton-antilepton plasma
in a uniform constant magnetic field B = (0,0, B).

One can easily check that the lepton-antilepton density asymmetry (¥, Yota)o = na—na
equals to

B ]
e~ Ma= Z(I;I)z /szTr[f‘“’(pz,n)—f‘“’(pz,n)], (3.1)

where trace is calculated over spin variables A and the (—) sign inside Eq. (3.1) arises
from the N-ordering of operators in the current N (tﬁayﬂgba).

In order to check the normalization of the Fermi distribution Eq. (2.1), let us consider
the WKB approximation n >> 1 in the weak magnetic field limit |e|B < T? changing
2le|Bn into p} . Using |e|Bdn = p,dp, one obtains the standard isotropic result

d3p 1

-(—-=-0],
Q) Y exp((y/p2 +p2 +m2— &)/T+ 1)

for the lepton-antilepton asymmetry Eq. (3.1). The factor “2” is produced by the spin
sum. Note that the contribution of our general asymmetry Eq. (3.1) to the neutrino vector
potential Eq. (2.6) is negligible comparing with the main non-local term Eq. (2.7).

Now we calculate with help of Eq. (2.1) the magnetization asymmetry in the hot
plasma. In analogy with Eq. (3.1) we can write the lepton contribution to the magneti-
zation asymmetry as

na—n;,=2

foe) o0
e|B
Mﬁ“)=”BZ<|zylr>z / dp: Trla; £ (pz.m) 1. (32)
n=0 0o

Using the trace Tr[o;f(¥] = ZM,(O'j)M/fif’,)\(pz,n) = 8, S AL D (p,n) with
(0;),» = Ad,,» and &, =1 for A = £1, one can easily show that, due to the
degeneracy of the Landau levels n=1,2,.. ., &,41,1 =&,—1) all terms in the sum

o0

! _ 1
;) exp((&n1 —&)/T)+1  exp((&n_1—{)/T)+1
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cancel 3 except for contribution of the main (non-degenerate) Landau level (n = 0)

1 ) 1
exp((g01 — ) /T)+ 1~ exp((/PZ+m2—{)/T)+1

Finally, the lepton part becomes

2le|B 7 1
(@) = 1= [ dp, _ . 3
ALY [exp((\/m_;)/r)ﬂ (33

Now we turn to the antilepton part. Using the C-conjugation of the relevant operators
we must add to the trace in the integrand of Eq. (3.2) the trace over negative spin
projections

_Z(—UJT) —A/;_Af(_a/\);_A,(pz,n), (3.4)

AN

where the (—) sign before the sum arises from the N-ordering of the operators in
the axial current N («p_ay,,,ysgba), and the second one comes from the C-conjugation
property Co;C~! = —O'JT. Now one can easily show, by using the change A — —A, that
the antilepton part may be rewritten as

=Y (oD a3 (pesm)

AN

_ (—A)Spadpn
_ ’Z , (3.5)
7 exp((\/p2+m2+e[B(2n+1—A) +{)/T) +1

where we used the conserved spin z-component eigenvalue (o) a = +A8),. Similarly
as obtained above for the lepton part, all of the Landau-level contributions n =1,2. ..
cancel due to the degeneracy property €,.1,1 = &,,—1. Thus the magnetization asymmetry
is obtained by summing lepton and antilepton contributions, in contrast to the density
asymmetry,

20elB T 1
dp,
2y ) P [exp((\/pf-%nig—{)/T)le

1
+ . 3.6
exp(( /P tm + ) /T) + 1} (36)

Mga) M@ =B

z

3 One can easily check that in the weak magnetic field limit |¢|B < T2, due to the subtraction of the
Fermi distribution functions with different spin projections, from the relativistic magnetization Eq. (3.2) one
recovers the known result corresponding to the spin paramagnetism of the non-relativistic free electron gas
in a metal [13): M, = —Zp%B f D(E );iEdE. Note that here we used the isotropic phase volume with the
energy E = p2/2m., D(E) = (2m¢)¥?v/E/(27)? and that the Fermi distribution in non-relativistic case is
given by f(E) = [exp((E — {')/T) + 11~ where the chemical potential is ¢/ = { — m,.
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Substituting this result into the axial potential in Eq. (2.8) and Eq. (2.9) one can finally
rewrite the ultrarelativistic (m, = { = 0) neutrino spectrum Eq. (2.11) as

E=q+ V" + f(q.B), (3.7)

where the magnetic field contribution f (g, B) = V™™g, /g+ (V™™ )2 /24 is given
by

B 1 B)?
f(q,B) =H«effq—+'e—ff(B2— (qz) ) (3.8)
q9 24 q
and the quantity us is defined by ®
_ eGp(=2¢4)T1In?2 N —13 T
Heff = a2 ~6x10 MB(MeV)- (3.9

For a hot plasma (7 > 1 MeV) this is huge, in contrast to the small lepton-antilepton
density asymmetry Eq. (3.1). This arises from the fact that the magnetization asymmetry
is produced by the mean axial current so that the lepton and antilepton contributions
add instead of subtract. In a strong uniform magnetic field the first term in Eq. (3.8)
may exceed the non-local term Eq. (2.7) considered by Notzold and Raffelt. As we
will show below, for large random magnetic fields, such term can drastically change the
active-sterile neutrino conversion rates.

4. Active-sterile neutrino conversions in a hot plasma with random magnetic field

Let us now consider the wave equation describing the propagation of a system of
active (doublet) and light sterile (singlet) neutrinos, with masses m; and m;, mixing
angle 4, and no transition magnetic moments, in the presence of a random magnetic
field. We postulate the following evolution equation 7 :

L
dt v,
(*m} + *m3) /2q+ Vs + f(q, B) csA V4

, (4.1)
sca (s’m? +*m3) /2q Vs

where we use the standard definitions 4 = 4Am?/2q; 4m?> = m3 — m?; ¢ = cos#, and

s = sinf. In addition we have denoted by V; the vector part of the active neutrino
potential of Eq. (2.6).

6 Note that this effective magnetic moment has no relation with the real anomalous neutrino magnetic moment
which we neglect.

7 Strictly speaking, in order to describe the active to sterile neutrino conversions one has to start from a
system of two majorana neutrinos and not from the Dirac equation as we did in Section 2 Eq. (2.5). This
can be done and one finds [ 14] that our ansatz is obtained in the ultrarelativistic small mixing angle limit.
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In the phase of the early universe hot plasma of interest to us we have only active
neutrinos in thermal equilibrium. From Eq. (4.1) one can easily obtain a nonlinear
integro-differential equation for the conversion probability P,,,, (t) from active to
sterile neutrinos, ¥4 — v, . It obeys the unitarity condition

P, (1) = (vivs) =1 = Py, (1) = (¥ivy) .

Defining P,,_,,, = P(t) and averaging over the ensemble of random magnetic fields
one obtains:

t

%’; + AP + (43) /dnK(t - tl)dl;(t:l) & Siznz %, (4.2)
0
where the initial conditions are given by
P(0) = P(0) =0. (4.3)
The factor before the second term,
A2, = (Vg — Acos20)% + A?sin® 20 (4.4)

is the well known oscillation squared frequency in an isotropic hot plasma [5]. Due to
the property of randomness (B, ) = 0 the factor before integral term in Eq. (4.2), (43) =
2(Vy — Acos26)(f(q,B)) + (f*(q, B)), with the function f(g,B) from Eq. (3.8), is
determined mainly by the second term (4%) = (f2(gq, B)). For collisionless neutrino
propagation along z-axis ¢ = (0,0, g), the factor (43) takes of the form

(43) ~ p2(B*)/3, (4.5)

after averaging over random magnetic fields.

Here the effective neutrino magnetic moment is given by Eq. (3.9) with the mean
squared first term of Eq. (3.8) given by (B2(¢)) = (B?)/3. Note that the second term
contribution can be neglected in the ultrarelativistic limit. Finally the kernel in Eq. (4.2)
K(ti — 1) = (Bz(tl)BZ(tg))/(Bz(t)) depends on the model of random fields. If we
choose the simple model with uncorrelated magnetic field domains of the same small
size Ly 8, K(t; —t) = Lyd(t; — 1), the integro-differential equation Eq. (4.2) reduces
to a second order differential equation with the boundary conditions Eq. (4.3). The
solution of this equation is of the form

8 For neutrinos crossing many domains ¢ = L 3> Ly the size Ly corresponds to the width of the narrow
resonance L3 /(L3 + ¢*) for our assumed 8-correlated random fields

K@ Ly

—_— ~

a
im ——— = —6&(1).
Ly L—o2+L} 2 (0
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Asin? 20
W{l —exp(—TIt)

x [cosh(,/rz — 21 + \/% sinh(1/12 — Az,,t)} } (4.6)

P(1) =

where

(45)Lo
—2—
is the damping parameter of neutrino oscillations in a random field. In the weak magnetic

field limit I < 4,,, where the neutrino oscillation frequency in matter 4,, is given by
Eq. (4.4), such solution,

I = (4.7)

A sin® 26

P(t) ~ 2

(1 —exp(—1t) cos 4pt), (4.8)
reproduces the known case of »; < v; oscillations in an isotropic hot plasma if I" = 0.
For strong random magnetic fields generated at the electroweak phase transition [8] the

opposite condition I" >> 4,, is fulfilled. The corresponding asymptotics of the solution
Eq. (4.6),

2 ain2
P(1) ~ iSm—w( 1 —exp(—A,znt/2F)>, (4.9)

m

is mostly aperiodic, in contrast to Eq. (4.8). From Eq. (4.9) one define the relaxation
time frelax ~ 207/42, = (4%)Lo/42,. The condition that the neutrino crosses many do-
mains, leads to the requirement (4%) > 42. In the next section we verify that this
condition is indeed fulfilled.

5. Random magnetic fields before nucleosynthesis

In order to show the validity of Eq. (4.9) let us estimate the factor (A%) in Eq. (4.5)
in formula Eq. (4.7) substituting to Eq. (4.5) the mean squared random magnetic field

. (ﬂ)p (5.1)

(B2) = 10% G(TL) L

EW
with the scale dependence obeying the index p = 1/2 [15].
Requiring that the primordial magnetic field survives beyond the recombination epoch
leads to a minimal domain size [16],

Lo = 10* cm (Tppn/T) ~ 10°cm (MeV/T). (5.2)

With this assumption let us now estimate a lower limit for Eq. (4.5). In order to do this
we use the collisionless neutrino propagation approximation, ie. t = L < teon = I ;,1,
and substitute Eq. (5.2) into Eq. (5.1) leading to
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B2\1/2 5
(42)1/2 = ﬁ"i-3>— > 6 x 10—”(%) MeV . (5.3)
Note that this is significantly larger than the nonlocal vector potential term given in
Eq. (2.7). Therefore, we have obtained a self-consistent requirement (4%) > A2, which
justifies our use of the §-correlated random magnetic fields.

If instead we put into Eq. (5.1) the maximum scale L = Iy (T), where Iy is the horizon
length at temperature 7 we obtain another estimate (43)'/2 > 2x10~16(T/MeV)3 MeV,
which also exceeds Eq. (2.7). However, in such case one should include the effect of
collisions on the neutrino conversions.

Substituting the limit Eq. (5.2) rewritten as Lo 2 (10'*/1.9) (MeV/T) MeV~! and
the estimate in Eq. (5.3) into Eq. (4.7) we see that random magnetic field Eq. (5.1)
obeys the condition I >> A4,, ~ |V;|. This demonstrates the validity of our main approx-
imation to the conversion probability Eq. (4.9).

6. Nucleosynthesis bounds on the sterile neutrino conversions

Comparing the relaxation time in the probability Eq. (4.9) estimated with help of
Eq. (2.7), Eq. (44), Eq. (5.2) and Eq. (5.3) as

tretax ~ 207/ 4% 2> 2 x 1007} (6.1)
with the collision time,
foolt ~ 2 X 10?1 (MeV)*T =3, (6.2)

one finds a critical temperature which separates two regimes T, ~ 10/ MeV above
which it should be important to take into account collisions. For times less than the
neutrino collision time f.o; = I V‘,‘ we can directly estimate the sterile neutrino conversion
probability of Eq. (4.9) in the collisionless approximation. It is also very simple to
consider the alternative limit where one can average over many collisions. In both cases
one obtains essentially the same result. Finally, for the case of intermediate temperatures
close to T, ~ 2 MeV one needs a more accurate kinetic approach as in Ref. {5].

For definiteness, we consider here the regime the derivation of the nucleosynthesis

bounds for active-sterile neutrino oscillations in the case where one can average over

many collisions. Averaging tc—o}l 0'00“ dtP(t) from Eq. (4.9) one obtains the result

(6.3)

Py H_A?'sin220[ 2rTy | 2Ty ( A )]
coll = - .

242 A 2 “P\7arry,

The factor in brackets above, f(x) =1 — x~! + exp(—x)/x, where x = 42, /2I'T'y, is
a monotonic function which attains its minimum value f(0) =0 as I" — oo and tends
asymptotically to f(x = co) = 1 when one neglects the magnetic field, i.e. I' — 0. In
a strong random magnetic field this factor is restricted by f(xmax), when we substitute
the estimates Eq. (5.2) and Eq. (5.3) into the damping factor I" in Eq. (4.7),

I' > Fpin =~ 1072(T/MeV)® MeV (6.4)
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or

f < x = A ~10(T)_4 (6.5
N~ D Fwlmin \MeV )

and f(x) < f{xmax)- In Eq. (6.5) we have used the neutrino non-resonant oscillation
frequency estimate 4, ~ V;, where Vj is given by the Notzold-Raffelt result Eq. (2.7)
and the usual weak interaction rate I'y = 4.0GETS ~ 5.4 x 10~22(T/MeV)® MeV.

One can easily see from Eq. (6.5) that for temperatures T > 3MeV the argument x
is very small, x < 1, so we can rewrite the probability Eq. (6.3) as

sin2 203
Alolw

(P)con = (6.6)

where the mixing angle in the the hot plasma with magnetic field is given by sin265 =
A%sin?260/(4%) and is restricted due to Eq. (5.3) ((g) ~ 3T) by

.2 242 2
) sin” 260 ( 4m*) S rAmiN2 T =12,
205 ~ 2m ER 0 < 107( 22 (—) 26. 6.7
S <5 367X ™ (eVz) MeV o (©.7)

Taking into account Eq. (5.2), we find that the sterile neutrino production rate I, (# <
teonl) = Py obtained from Eq. (6.6), I',, = sin® 205 /4Lg, obeys the inequality

Am?\? T
S _7(_) i’ (—MV
S x10 ovz ) sin 20 x

Sterile neutrinos would be thermalized if this rate Eq. (6.8) exceeds the Hubble expan-
sion rate H = 4.5 x 10722(T/MeV)*MeV,

r,

s

)_” MeV. (6.8)

r,/H>1.

Using the inequality Eq. (6.8) we obtain a new constraint on the | 4m?|, sin 26 oscillation
parameters,

T \13/2
an?|[5in26] S 1077 x (=) V2, :
|4m?| [sin26| < * VeV eV (6.9)
Note that the sign of 4m? for us here is irrelevant, in contrast to the isotropic case.

Self-consistency of our approximations (see Eq. (6.5)) requires us to assume in
Eq. (6.9) a minimal temperature T > Tipin ~ 3 MeV which then allows us to rewrite
Eq. (6.9) as

|am?| |sin26| < 1074eV2, (6.10)

We see that this bound can be significantly stronger than the nonresonant estimate
Eq. (1.1) obtained for the case of an isotropic hot plasma (see Fig. 1). This is especially
so for the case of small mixing angle (sin26 ~ 0.1), where we obtain from Eq. (6.10)
an excluded region of the squared mass difference |Am?| > 10~3eV? instead of the
result of Eq. (1.1), |4m?| > 5 x 10~ 2eV2.
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10?
10° x=a_ a

Am?2] 1072

10-*

10-9}

10_8 3

1074 1073 1072 107! 10°

sin® 26

Fig. 1. Regions of v, < v oscillation parameters excluded by nucleosynthesis: (a) the region above the
dotted line is excluded by the requirement that N, < 3.4 for the non-resonant isotropic hot plasma estimate
of Ref. [5]; (b) the region above the solid line is excluded in present work for the the case a hot plasma
with primordial random magnetic field, seed for the galactic field, by the requirement that N, < 4 for
T 2 Tyin ~ 3MeV, Eq. (6.10).

Note also that, in the case of the MSW resonance, (42 = A?sin 26, see Eq. (4.4),
the argument x = A2 /2I' 'y in the probability Eq. (6.3) is less than

2.2 —
% < Xmax = 3 X 10“(%) sin? 29(%\;) ) (6.11)
If the upper limit here is much less than unity, we automatically obtain from Eq. (6.3)
the same probability Eq. (6.6) that does not depend on the frequency 4,, at all. There-
fore, the constraint Eq. (6.9) would be a general one and substituting acceptable values
of the product (4m?/eV?)2sin? 26 < 10~ 4(T/MeV)!? into Eq. (6.11) we confirm the
validity of the ultrarelativistic approximation x < xmax < 3 x (T/MeV) ~3 <« 1 for this
resonant regime of », < v, oscillations too.

7. Discussion and conclusions

The existence of huge magnetic fields generated at the electroweak phase transition
modifies the neutrino spectrum in the early universe hot plasma. This happens due to the
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magnetization of each component of the plasma. Within a small random magnetic field
domain the local uniform constant magnetic field approximation allows us to calculate
the magnetization, which is proportional to the random magnetic field.

In contrast to the small lepton antilepton density asymmetry produced by the mean
vector current the magnetization asymmetry produced by the mean axial current is large,
due to their opposite charge conjugation properties. As a result the lepton and anti lepton
magnetizations add instead of subtract.

Averaging the differential equation describing the evolution of the v; — v, conversion
probabilities over the random magnetic field distribution we find a nonvanishing mean
squared field contribution which drastically changes the conversion rates with respect to
those of the isotropic case.

Assuming that the primordial magnetic fields generated at the electroweak phase
transition are the origin of the observed galactic fields and requiring that there should be
no more than one extra neutrino species in equilibrium before nucleosynthesis we derive
new and more stringent constraints on the active-sterile neutrino oscillation parameters
than in the isotropic case without random magnetic field. In contrast to what happens in
the isotropic case, our constraints do not depend on the active-sterile neutrino conversion
channel beyond the obvious dependence contained in 4m?.

The fact that the constraints can be stronger in our case than in the isotropic case,
despite the fact that the conversion rates is smaller, follows from the different way
in which these conversion rates depend on the oscillation parameters. In particular, in
the random field case there is a more sensitive dependence of the average conversion
rates upon the neutrino squared mass difference. While in the isotropic case there is a
saturation of this probability as a function of the neutrino squared mass difference, in
our case we have a linear dependence upon Am?.
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