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Abstract

We study left–right symmetric models which contain only fermion and gauge boson

fields and no elementary scalars. The Higgs bosons are generated dynamically through

a set of gauge– and parity–invariant 4-fermion operators. It is shown that in a model

with a composite bi-doublet and two triplet scalars there is no parity breaking at low

energies, whereas in the model with two doublets instead of two triplets parity is broken

automatically regardless of the choice of the parameters of the model. For phenomenolog-

ically allowed values of the right–handed scale a tumbling symmetry breaking mechanism

is realized in which parity breaking at a high scale µR propagates down and eventually

causes the electro–weak symmetry breaking at the scale µEW ∼ 100 GeV . The model

exhibits a number of low and intermediate mass Higgs bosons with certain relations be-

tween their masses. In particular, the components of the SU(2)L Higgs doublet χL are

pseudo–Goldstone Bosons of an accidental (approximate) SU(4) symmetry of the Higgs

potential and therefore are expected to be relatively light.
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A few years ago a very interesting approach to electro–weak symmetry breaking was

put forward, the so called “top condensate” model [1, 2, 3, 4]. In this model the low–energy

degrees of freedom are just the usual fermions and gauge bosons, i.e. no fundamental Higgs

boson is present. Instead, it is assumed that there is a strong attractive interaction in the

quark sector which can lead to the formation of a tt bound state playing the role of the

Higgs scalar. This interaction is assumed to result from new physics at some high–energy

scale Λ, the origin and precise nature of which is not specified. At low energies this

new physics would manifest itself through non-renormalizable interactions between the

usual fermions and gauge bosons. At energies E ≪ Λ the lowest dimensional operators

are most important, which are just the four–fermion (4-f) operators. Assuming that the

heaviest top quark drives the symmetry breaking, one arrives at the practically unique

gauge–invariant 4-f operator [1, 2, 3, 4]

L4f = G(QLitR)(tRQLi) , (1)

where QL is the left–handed doublet of the third generation quarks, G is a dimensionful

coupling constant, G ∼ Λ−2, and it is implied that the colour indices are summed over

within each bracket.

The four-fermion interaction of eq. (1) can be studied analytically in the large Nc

(number of colours) limit in the so–called NJL or fermion bubble approximation1 [5, 6].

For G > Gcritical = 8π2/NcΛ
2 the electro–weak symmetry is spontaneously broken, the

top quark and the W± and Z0 bosons acquire masses, and a composite Higgs scalar

doublet H ∼ tRQL is formed. To obtain phenomenologically acceptable values for the

top quark mass mt one has to assume that the 4-f coupling constant G is very close to its

critical value. It has been shown [3] that this is equivalent to the usual fine–tuning of the

Higgs boson mass in the Standard Model. Thus, the gauge hierarchy problem has not been

solved in the top–condensate approach2. In the fermion bubble approximation one obtains

a prediction for mt which depends logarithmically on the scale of new physics Λ and, in

addition, one gets the relation mH = 2mt for the Higgs boson mass. For Λ ≈ 1015 GeV one

finds a value of mt ≈ 165 GeV . However, the renormalization group improved calculations

taking into account the loops with propagating composite Higgs scalar and gauge bosons

result in significantly higher values of the top quark mass, mt = 220 − 240 GeV [3].

Nevertheless, the top condensate approach reproduces correctly the structure of the

low–energy effective Lagrangian of the Standard Model and demonstrates how the electro–

weak symmetry breaking can result from some high–energy dynamics. It is therefore

interesting to study whether a similar approach can work in various extensions of the

minimal Standard Model.
1We use the well known abbreviation NJL though the paper of Vaks and Larkin was received and

published first.
2It has been claimed in [7] that taking into account the loops with composite Higgs scalars results

in the automatic cancelation of quadratic divergences and solves the gauge hierarchy problem of the

Standard Model in the BHL approach. We do not discuss this possibility here.
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In this paper we consider dynamical symmetry breaking in left–right symmetric (LR)

models based on the gauge group SU(2)L × SU(2)R × U(1)B−L [8, 9], following the BHL

approach to the Standard Model. Left-right-symmetric models in general are very attrac-

tive since they treat left–handed and right–handed fermions symmetrically and explain

the parity non-conservation at low energies as a result of spontaneous symmetry breaking.

It is usually assumed that symmetry breaking in LR models occurs in two steps: first,

SU(2)R × U(1)B−L breaks down to U(1)Y at an energy scale µR, and second, the re-

maining Standard Model gauge group is broken down to U(1)em at the electro–weak scale

µEW ∼ 100 GeV . Obviously this more complicated symmetry breaking pattern requires

a richer Higgs sector, and it is interesting to investigate whether the above symmetry

breaking scenario can be successfully reproduced in a dynamical model with composite

Higgs bosons. As in the BHL approach, we will only consider the usual fermions and

gauge bosons of the model as elementary particles, with no fundamental Higgs scalars

being present, and in addition introduce a set of relevant 4-f interactions stemming from

unspecified new physics at a high energy scale Λ. Here we derive our conclusions in

the bubble approximation; more complete results including the renormalization group

improved predictions will be reported elsewhere [10].

The Higgs sector of the most popular LR model [9] consists of a bi-doublet φ ∼ (2, 2, 0)

and two triplets, ∆L ∼ (3, 1, 2) and ∆R ∼ (1, 3, 2), where the quantum numbers with

respect to the LR gauge group are shown. Assuming that these scalars are bound states

of the usual fermions, the following fermionic content reproduces the correct quantum

numbers:

φij ∼ α(QRjQLi) + β(τ2QLQRτ2)ij + leptonic terms ,

~∆L ∼ (ΨT
LCτ2~τΨL), ~∆R ∼ (ΨT

RCτ2~τΨR) . (2)

Here QL, ΨL (QR, ΨR) are left–handed (right–handed) doublets of quarks and leptons,

respectively; i and j are isospin indices.

In models with Higgs bosons generated by 4-f operators the composite scalars are,

roughly speaking, “square roots” of these 4-f operators. One can therefore obtain the

above composite Higgs bosons starting from the 4-f operators which are “squares” of the

expressions in eq. (2). A convenient way to study models with composite Higgs bosons is

the auxiliary field technique, in which one introduces the static auxiliary scalar fields (with

appropriate quantum numbers) with Yukawa couplings and mass terms but no kinetic

terms and no quartic couplings. Since the modified Lagrangian of the system is quadratic

in these auxiliary fields they can always be integrated out in the functional integral [11].

Equivalently, one can use the equations of motion for these fields to express them in terms

of the fermionic degrees of freedom. After substituting the resulting expressions into the

auxiliary Lagrangian one reproduces the initial 4-f structures.

The static auxiliary fields can acquire gauge–invariant kinetic terms and quartic self–

interactions through radiative corrections and become physical propagating scalar fields at

2



low energies provided that the corresponding gap equations are satisfied [3]. The kinetic

terms and mass corrections can be derived from the 2–point Green function, whereas the

quartic couplings are given by the 4–point functions. Given the Yukawa couplings of the

scalar fields one can readily calculate these functions in the fermion bubble approximation,

in which they are given by the corresponding 1-fermion–loop diagrams.

Consider now spontaneous parity breakdown in LR models with composite Higgs bo-

sons. It is usually assumed that, in addition to the gauge symmetry, the Lagrangian of

the LR model possesses the discrete parity symmetry under which

QL ↔ QR, ΨL ↔ ΨR, φ ↔ φ†, ∆L ↔ ∆R, WL ↔ WR . (3)

Even if the Higgs potential of the model is exactly symmetric with respect to the discrete

parity transformation, parity can be spontaneously broken by 〈∆R〉 > 〈∆L〉 [12]. It is

easily seen that this can only occur provided λ2 > λ1 where λ1 and λ2 are the coeffi-

cients of the [(∆†
L∆L)2 + (∆†

R∆R)2] and 2(∆†
L∆L)(∆†

R∆R) quartic couplings in the Higgs

potential. While in the conventional approach λ1 and λ2 can be chosen appropriately as

free parameters of the model, the scalar mass terms and couplings in the composite Higgs

approach are not arbitrary; they are all calculable in terms of the 4-f couplings Ga and the

scale of new physics Λ [3]. In particular, in the fermion bubble approximation at one loop

level the quartic couplings λ1 and λ2 are induced through the Majorana–like Yukawa cou-

plings f(ΨT
LCτ2~τ ~∆LΨL + ΨT

RCτ2~τ ~∆RΨR) + h.c., and are given by the diagrams of Fig. 1.

It can be seen from Fig. 1b that to induce the λ2 term one needs the ΨL–ΨR mixing in the

Figure 1: Fermion loop diagrams contributing to the quartic couplings λ1 (Fig. 1a) and

λ2 (Fig. 1b) for Higgs triplets.

fermion line in the loop, i.e. the lepton Dirac mass term insertions. However, the Dirac

mass terms are generated by the VEVs of the bi-doublet φ; they are absent at the parity

breaking scale which is supposed to be higher than the electro–weak scale. Even if parity

and electro–weak symmetry are broken simultaneously (which is hardly a phenomenolog-

ically viable scenario), this would not save the situation since the diagram of Fig. 1b is
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finite in the limit Λ → ∞ whereas the one of Fig. 1a is logarithmically divergent and so

the inequality λ2 > λ1 cannot be satisfied.

Therefore one is lead to consider a model with a different composite Higgs content.

The simplest LR model [8] includes two doublets, χL ∼ (2, 1,−1) and χR ∼ (1, 2,−1),

instead of the triplets ∆L and ∆R. As we shall see, the model with composite doublets

will automatically result in the correct pattern of the dynamical breakdown of parity.

Since we want the doublet scalars to be composite, we require an additional gauge–

singlet fermion as a necessary constituent. We therefore assume that in addition to the

usual quark and lepton doublets there is a gauge–singlet fermion

SL ∼ (1, 1, 0) . (4)

To maintain the discrete parity symmetry one needs a right–handed counterpart of SL.

This can be either another particle, SR, or the right–handed antiparticle of SL, (SL)c ≡
CS

T
L = Sc

R. The latter choice is more economical and, as we shall see, leads to the desired

symmetry breaking pattern. We therefore assume that under parity operation

SL ↔ Sc
R . (5)

With this new singlet and the usual quark and lepton doublets we introduce the following

set of gauge–invariant 4-f interactions:

L4f = G1(QLiQRj)(QRjQLi) + [G2(QLiQRj)(τ2QLQRτ2)ij + h.c.]

+G3(ΨLiΨRj)(ΨRjΨLi) + [G4(ΨLiΨRj)(τ2ΨLΨRτ2)ij + h.c.]

+[G5(QLiQRj)(ΨRjΨLi) + h.c.] + [G6(QLiQRj)(τ2ΨLΨRτ2)ij + h.c.]

+G7[(S
T
LCΨL)(ΨLCS

T
L) + (SLΨR)(ΨRSL)] + G8(S

T
LCSL)(SLCS

T
L) . (6)

In analogy to the BHL model the Ga are dimensionful 4-f couplings of the order of Λ−2

motivated by some new physics at Λ. Notice that the above interactions are not only

gauge–invariant, but also (for hermitian G2, G4, G5 and G6) symmetric with respect to

the discrete parity operation (3), (5).

We assume that only the third generation fermions contribute to L4f , i.e., deal with

a limit where only the heaviest fermions are massive while all the light fermions are

considered to be massless. This seems to be a good starting point from where light

fermion masses could, e.g., be generated radiatively. In addition to the bidoublet φ of the

structure given in eq. (2), the above 4-f couplings, if critical, can give rise to a pair of

composite doublets χL and χR and also to a singlet scalar σ:

χL ∼ ST
LCΨL, χR ∼ SLΨR = (Sc

R)T CΨR, σ ∼ SLCS
T
L . (7)

From eqs. (3) and (5) it follows that under parity we have χL ↔ χR and σ ↔ σ†. Switching

to the auxiliary field formalism, the scalars χL, χR, φ and σ have the following bare mass
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terms and Yukawa couplings:

Laux = −M2
0 (χ†

LχL + χ†
RχR) − M2

1 tr (φ†φ) − M2
2

2
tr (φ†φ̃ + h.c.) − M2

3 σ†σ

−
[
QL(Y1φ + Y2φ̃)QR + ΨL(Y3φ + Y4φ̃)ΨR + h.c.

]

−
[
Y5(ΨLχLSc

R + ΨRχRSL) + Y6(S
T
LCSL)σ + h.c.

]
, (8)

where the field φ̃ ≡ τ2φ
∗τ2 has the same quantum numbers as φ: φ̃ ∼ (2, 2, 0). By

integrating out the auxiliary scalar fields one can reproduce the 4-f structures of eqs. (6)

and express the 4-f couplings G1, ..., G8 in terms of the Yukawa couplings Y1, ..., Y6 and

the mass parameters M2
0 , M2

1 , M2
2 and M2

3 (explicit formulas can be found in [10]). In

components, the scalar multiplets of the model are

φ =

(
φ0

1 φ+
2

φ−
1 φ0

2

)
, 〈φ〉 =

(
κ 0

0 κ′

)
, χL =

(
χ0

L

χ−
L

)
, χR =

(
χ0

R

χ−
R

)
. (9)

Let us now consider parity breaking in the present LR model. In a viable scenario

the SU(2)R symmetry should be broken at the right–handed scale µR by 〈χ0
R〉 = vR, and

the electro–weak symmetry has to be broken at µEW by the VEVs of φ and possibly of

χ0
L (≡ vL). Using the Yukawa couplings of the doublets χL and χR (see eq. (8)), one can

calculate the fermion-loop contributions to the quartic couplings λ1[(χ
†
LχL)2 + (χ†

RχR)2]

and 2λ2(χ
†
LχL)(χ†

RχR) in the effective Higgs potential (Fig. 2a and 2b). The λ1 and λ2

Figure 2: Fermion loop diagrams contributing to the quartic couplings λ1 (Fig. 2a) and

λ2 (Fig. 2b) for the Higgs doublets χL/R.

terms are now given by similar diagrams. Since the Yukawa couplings of χL and χR

coincide (which is just the consequence of the discrete parity symmetry), Figs. 2a and 2b

yield λ1 = λ2. Recall that one needs λ2 > λ1 to have spontaneous parity breakdown in

the LR models. As we shall see, taking into account the gauge boson loop contributions

to λ1 and λ2 will automatically secure this relation.
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Both λ1 and λ2 obtain corrections from U(1)B−L gauge boson loops, whereas only λ1 is

corrected by diagrams with W i
L or W i

R loops (see Fig. 3). Since all these contributions have

Figure 3: Gauge boson loop diagrams contributing to the quartic couplings λ1 (Fig. 3a) and

λ2 (Fig. 3b) for the Higgs doublets χL/R in Landau gauge.

a relative minus sign compared to the fermion loop ones, one finds λ2 > λ1 irrespective

of the values of the Yukawa or gauge couplings or any other parameter of the model,

provided that the SU(2) gauge coupling g2 6= 0 [compare the expressions for λ1 and λ2

in (20) below]. Thus the condition for spontaneous parity breakdown is automatically

satisfied in our model.

We have a very interesting situation here. In a model with composite triplets ∆L and

∆R parity is never broken, i.e. the model is not phenomenologically viable. At the same

time, in the model with two composite doublets χL and χR instead of two triplets (which

requires introduction of an additional singlet fermion SL) parity is broken automatically.

This means that, unlike in conventional LR models, in the composite Higgs approach

whether or not parity can be spontaneously broken depends on the particle content of the

model rather than on the choice of the parameters of the Higgs potential.

From eq. (8) one can readily find the fermion masses. The masses of the quarks and

charged leptons and the Dirac neutrino mass mD are given by the VEVs of the bi–doublet

(we assume all the VEVs to be real):

mt = Y1κ + Y2κ
′, mD = Y3κ + Y4κ

′,

mb = Y1κ
′ + Y2κ, mτ = Y3κ

′ + Y4κ. (10)

It is well known that LR models with only doublet Higgs scalars usually suffer from the

large neutrino mass problem. It turns out that introducing the singlet fermion SL not

only provides the spontaneous parity breaking in our model, but also cures the neutrino

mass problem. In fact, as it was first noticed in [13], with an additional singlet neutral
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fermion SL the neutrino mass matrix takes the form (in the basis (νL, νc
L, SL))

Mν =




0 mD β

mD 0 M

β M µ̃


 , (11)

where the entries β, M and µ̃ can be read off from eq. (8),

β = Y5vL , M = Y5vR µ̃ = 2Y6σ0 , (12)

with σ0 ≡ 〈σ〉. For vR ≫ κ, κ′, vL and vR >∼ σ0 one obtains two heavy Majorana neutrino

mass eigenstates with the masses ∼ M and a light Majorana neutrino with the mass

mν ≃ µ̃(m2
D/M2) − 2βmD/M which vanishes in the limit M → ∞. This is the modified

seesaw mechanism which provides the smallness of neutrino mass.

As we mentioned before, radiative corrections in the auxiliary field formalism result in

gauge–invariant kinetic terms, quartic interactions and renormalized mass terms for the

scalar fields at low energies E < Λ. The effective low–energy Lagrangian of the system in

the bubble approximation can be written as3

Leff = L0 + Zφ tr
[
(Dµφ)†(Dµφ)

]
+ Zχ

[
(DµχL)†(DµχL) + (DµχR)†(DµχR)

]

+Zσ(∂µσ)†(∂µσ) + LY uk + Veff , (13)

where L0 contains the gauge–invariant kinetic terms of fermions and gauge bosons and

LY uk is given by the Yukawa–coupling terms in eq. (8). The scalar wave-function renor-

malization constants are

Zφ =
1

16π2

[
Nc(Y

2
1 + Y 2

2 ) + Y 2
3 + Y 2

4

]
ln

(
Λ2

µ2

)
,

Zχ =
1

16π2
Y 2

5 ln

(
Λ2

µ2

)
, Zσ =

1

16π2
2Y 2

6 ln

(
Λ2

µ2

)
. (14)

Further, the effective Higgs potential Veff in eq. (13) is given by

Veff = M̃2
0 (χ†

LχL + χ†
RχR) + M̃2

1 tr (φ†φ) +
M̃2

2

2
tr (φ†φ̃ + h.c.) + M̃2

3 σ†σ

+λ1[(χ
†
LχL)2 + (χ†

RχR)2] + 2λ2(χ
†
LχL)(χ†

RχR) +
1

2
λ3[χ

†
L(Y3φ + Y4φ̃)χRσ† + h.c.]

+λ4[χ
†
L(Y3φ + Y4φ̃)(Y3φ

† + Y4φ̃
†)χL + χ†

R(Y3φ
† + Y4φ̃

†)(Y3φ + Y4φ̃)χR]

+λ5(χ
†
LχL + χ†

RχR) tr(φ†φ) + λ6(χ
†
LχL + χ†

RχR)σ†σ

+λ′
7 tr(φ†φφ†φ) +

1

3
λ′

8 tr(φ†φ̃φ̃†φ) +
1

12
λ′

8[tr(φ
†φ̃φ†φ̃) + h.c.]

+
1

2
λ9[tr(φ

†φφ†φ̃) + h.c.] + λ0[tr(φ
†φ)]2 + λ10(σ

†σ)2 . (15)

3For a detailed derivation of Leff see [10].
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Here we give explicitly only the mass terms and the quartic couplings which we will refer

to later, the complete set is given in [10].

M̃2
0 = M2

0 − 1

8π2

[
Y 2

5 − 3

8
Zχ(3g2

2 + g2
1)
]
(Λ2 − µ2) (16)

M̃2
1 = M2

0 − 1

8π2

{[
Nc(Y

2
1 + Y 2

2 ) + (Y 2
3 + Y 2

4 )
]
− 9

4
Zφg

2
2

}
(Λ2 − µ2) (17)

M̃2
2 = M2

2 − 1

4π2
(NcY1Y2 + Y3Y4)(Λ

2 − µ2) (18)

M̃2
3 = M2

0 − 1

4π2
Y 2

6 (Λ2 − µ2) (19)

λ1 =
1

16π2

[
Y 4

5 − 3

16
(3g4

2 + 2g2
2g

2
1 + g4

1)Z
2
χ

]
ln

(
Λ2

µ2

)

λ2 =
1

16π2

[
Y 4

5 − 3

16
g4
1Z

2
χ

]
ln

(
Λ2

µ2

)

λ0 =
1

16π2

[
−3

2
g4
2Z

2
φ

]
ln

(
Λ2

µ2

)
, λ5 =

1

16π2

[
−9

8
g4
2ZφZχ

]
ln

(
Λ2

µ2

)

λ′
7 =

1

16π2

[
Nc(Y

4
1 + Y 4

2 ) + (Y 4
3 + Y 4

4 )
]
ln

(
Λ2

µ2

)
, λ7 = λ′

7 + λ0 . (20)

Here g2 and g1 are the SU(2) and U(1)B−L gauge couplings, respectively. The parameters

of the above effective Lagrangian depend on the energy scale µ, i.e. they are the running

parameters4. At µ → Λ the kinetic terms and quartic couplings of the scalar fields vanish,

their mass terms are driven towards their bare values, and one recovers the Lagrangian

with auxiliary static scalar fields.

While the bare mass parameters M2
i in eq. (8) are positive, the corresponding running

quantities M̃2
i , given by eqs. (16) – (19), may become negative at low energy scales

provided that the corresponding Yukawa couplings are large enough. Those values for

which this occurs at µ = 0 we shall call the critical Yukawa couplings. For M̃2
i to become

negative at some scale µ2 > 0 the corresponding Yukawa couplings or combinations of

them must be above their critical values. If this is to happen at scales µ ≪ Λ the

Yukawa couplings must be fine-tuned very closely to their critical values to ensure the

proper cancelation between the large bare masses of the scalars and the Λ2 corrections

in eqs. (16) – (19). This is equivalent to the usual fine–tuning problem of gauge theories

with elementary Higgs scalars [3].

We assume that the scale µR at which parity gets spontaneously broken (i.e. χ0
R

4This bubble–approximation running exactly coincides with the running one would get from 1–loop

renormalization group equations keeping only trace terms in the relevant β functions and imposing the

compositeness boundary conditions [3]. The results of the renormalization group study with the full

1–loop β functions will be reported in [10].

8



develops a VEV) is higher than the electro–weak scale µEW ∼ 100 GeV , i.e. that M̃2
0

changes its sign at a higher scale than M̃2
1 . This means that Y 2

5 −(3/8)Zχ(3g2
2 +g2

1) should

be bigger than Ỹ 2− 9

4
Zφg

2
2 [see eqs. (16) and (17)], where Ỹ 2 ≡ Nc(Y

2
1 +Y 2

2 )+(Y 2
3 +Y 2

4 ) .

The analysis of the vacuum structure in our model [10] shows that if the condition

Y 2
5 − 3

8
Zχ(3g2

2 + g2
1) > 2 Y 2

6 (21)

is satisfied, either χR or χL (but not both) acquire a VEV but the σ field does not, whereas

for the opposite condition σ acquires a non-zero VEV but not χR or χL. Clearly the latter

situation is phenomenologically unacceptable, but by choosing the 4-f couplings G7 and

G8 accordingly [10] we can easily satisfy eq. (21).

Let us now discuss the vacuum structure below the electro–weak breaking scale. The

non-vanishing VEVs are vR, κ and κ′. Since mt ≫ mb, it follows from eq. (10) that κ

should be much larger than κ′ or vice versa provided no significant cancelation between

Y1κ
′ and Y2κ occurs. Without loss of generality one can take κ ≫ κ′. To further simplify

the discussion, we shall make the frequently used assumption [14] κ′ = 0. The relation

mt ≫ mb then translates into Y1 ≫ Y2. In the conventional approach this assumption

does not lead to any contradiction with phenomenology. However, as we shall see, in our

case the condition κ′ = 0 cannot be exact.

Consistency of the first–derivative conditions with κ′ = 0 requires Y1Y2 = 0, Y3Y4 = 0

and M2
2 = 0 (this gives M̃2

2 = λ9 = 0, and as follows from eq. (15), all the terms in the

effective potential which are linear in κ′ become zero in this limit, as they should). The

condition Y1Y2 = 0 along with κ′ = 0 implies that either Y1 = 0, mt = 0 or Y2 = 0,

mb = 0. The first possibility is obviously phenomenologically unacceptable whereas the

second one can be considered as a reasonable first approximation; we therefore assume

Y1 6= 0 and Y2 = 0. The situation is less clear for the lepton Yukawa couplings Y3 and Y4.

Since mτ ≪ mt and the Dirac mass mD of ντ is unknown, one can choose either Y3 6= 0,

Y4 = 0 or Y3 = 0, Y4 6= 0. It turns out that the vacuum stability condition in our model

requires Y 2
4 > Y 2

3 , therefore we choose Y3 = 0 and Y4 6= 0.

For σ0 = vL = κ′ = Y2 = Y3 = 0 one can easily find expressions for the VEVs of χR

and φ [10]. Approximate expressions in terms of the parity breaking scale µR and the

electro–weak breaking scale µEW are

v2
R ≃

(
M2

0

Λ2

)
µ2

R

2λ1

, κ2 ≃
(

M2
0

Λ2

)
µ2

EW

2λ7

, (22)

and the ratio of the squared VEVs can be written as

κ2

v2
R

≃
(

λ1

λ7

)
µ2

EW

µ2
R

∼ µ2
EW

µ2
R

≃ |λ5|
2λ1

+
µ2

1

µ2
R

. (23)

The parity breaking scale µR is the scale where the effective mass term M̃2
0 becomes

negative for a given Yukawa coupling Y5 > (Y5)crit (formally µ2
R < 0 for sub–critical Y5),

9



while µ1 is the scale, different from µEW , where this happens for the mass term M̃2
1 and

a given Ỹ 2.

Recall now that in conventional LR models with µEW ≪ µR ≪ ΛGUT (or ΛPlanck)

one has to fine-tune two gauge hierarchies: ΛGUT —µR and µR—µEW . We have a similar

situation here: to achieve µEW ≪ µR ≪ Λ one has to fine-tune two Yukawa couplings,

Y 2
5 and Ỹ 2. Tuning of Y 2

5 allows for the hierarchy µ2
R ≪ Λ2; one then needs to adjust Ỹ 2

(or µ2
1) to achieve µ2

EW ≪ µ2
R through eq. (23).

Since λ5 only contains relatively small gauge couplings while Y5 ∼ O(1), we typically

have |λ5|/2λ1 ∼ 10−2. Thus, if there is no significant cancellation between the two terms

in (23), one obtains a right–handed scale of the order of a few TeV . Unfortunately, such

a low LR scale scenario is not viable. As we shall see below, the squared masses of two

Higgs bosons in our model become negative (i.e. the vacuum becomes unstable) unless

vR ∼> 20 TeV . This requires some cancellation5 in eq. (23), and then the right-handed

scale vR ∼ µR can in principle lie anywhere between a few tens of TeV and Λ. However,

if one prefers “minimal cancellation” in eq. (23), by about two orders of magnitude or so,

one would arrive at a value of vR around 20 TeV . In any case it is interesting that the

partial cancellation of the two terms in (23) implies µ2
1 < 0, i.e. that Ỹ 2 must be below

its critical value. This means that M̃2
1 never becomes negative. In fact it is the M̃2

0 term,

responsible for parity breakdown, that also drives the VEV of the bi-doublet. It follows

from the condition ∂Veff/∂κ = 0 that the effective driving term for κ is M̃2
1 +λ5v

2
R in our

model; it may become negative for large enough v2
R even if M̃2

1 is positive (remember that

λ5 < 0). Thus we have a tumbling scenario where the breakdown of parity and SU(2)R

occurring at the scale µR causes the breakdown of the electro–weak symmetry at a lower

scale µEW .

To calculate physical observables one should first rescale the Higgs fields so as to

absorb the Z factors in eq. (13) into the definitions of the scalar fields and bring their

kinetic terms into the canonical form. This amounts to dividing the (mass)2 terms by

the corresponding Z factors, Yukawa couplings by
√

Z and multiplying the scalar fields

and their VEVs by
√

Z. Renormalization factors of the quartic couplings depend on the

scalars involved and can be readily read off from the effective potential. We will use hats

(̂ ) to denote quantities in the new normalisation.

As we already pointed out, the minimization of the effective Higgs potential gives

σ0 = 0 = vL. This means that the entries β and µ̃ in the neutrino mass matrix (11)

are zero. As a result we have an exactly massless neutrino eigenstate and two heavy

Majorana neutrinos with degenerate masses
√

M2 + m2
D and opposite CP–parities which

combine to form a heavy Dirac neutrino. Since mD ≪ M the electro–weak eigenstate

νL ≡ ντ is predominantly the massless eigenstate whereas the right–handed neutrino νR

5Notice that this does not increase the number of the parameters to be tuned but just shifts the value

to which one of them should be adjusted.
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and the singlet fermion SL consists predominantly of the heavy eigenstates. As mentioned

before, in the simplified limit κ′ = 0 that we are mainly considering we have Y2 = 0 = Y3.

This yields mt = Y1κ, mτ = Y4κ and mb = mD = 0. Vanishing Dirac neutrino mass

mD implies absence of neutrino mixing, and the heavy neutrino mass is now M = Y5vR.

From eqs. (10) and (14) and the definition of the renormalized Yukawa couplings one can

readily find

κ̂2 = (174 GeV )2 = Ncm
2
t

(
1 +

Y 2
4

NcY
2
1

)
1

16π2
ln

(
Λ2

µ2

)
≈ m2

t Nc

16π2
ln

(
Λ2

µ2

)
≡ m2

t Ncl0 . (24)

Here κ̂ (or
√

κ̂2 + κ̂′2 for κ′ 6= 0) should be identified with the usual electro–weak VEV.

This expression coincides with the one derived in the bubble approximation by BHL [3].

Eq. (24) gives the top quark mass in terms of the known electro–weak VEV and the scale

of new physics Λ. For example, for Λ = 1015 GeV one finds mt ≃ 165 GeV . However, this

result is limited to the bubble approximation, and the renormalization group improved

result for κ′ = 0 turns out to be substantially higher6 [10]. Notice that mt ≈ 180 GeV ,

which is the central value of the Fermilab results [15, 16], would mean l0 ≈ 1/3. Similar

considerations lead to the following relation between the right-handed VEV vR, the heavy

neutrino mass M and the scale Λ:

v̂2
R = M2 1

16π2
ln

(
Λ2

µ2

)
= M2 · l0 . (25)

Note that µ ≈ mt is understood in eq. (24), whereas µ ≈ M in eq. (25). However, we

assume mt, M ≪ Λ and M/mt ≪ Λ/M throughout this paper, therefore ln Λ2

m2

t

≈ ln Λ2

M2 ,

i.e. the logarithmic factor l0 is universal. From eqs. (24) and (25) one thus finds

v̂2
R

M2
≈ 1

3

κ̂2

m2
t

. (26)

The mass of the τ lepton is not predicted in our model since it is only weakly coupled to

the bi-doublet; it is given by mτ = (Y4/Y1)mt and can be adjusted to a desirable value

by choosing the proper magnitude of the ratio Y4/Y1, or G3/G1.

The composite Higgs bosons in our model include the would-be Goldstone Bosons

G±
1 ≈ χ±

R (eaten by W±
R ), G±

2 = φ±
1 (eaten by W±

L ), G0
1 = χ0

Ri (eaten by ZR) and G0
2 = φ0

1i

(eaten by ZL). The physical Higgs boson sector of the model contains two CP–even

neutral scalars H0
1 ≈ χ0

Rr and H0
2 ≈ φ0

1r with the masses

M2

H0

1

≃ 4M2

[
1 − 3

16

(
3g4 + 2g2g′2 + g′4

)
l20

]
≈ 4M2 , (27)

M2

H0

2

≃ 4m2
t

(
1 − m2

τ

3m2
t

− 9

4
g4l20

)
≈ 4m2

t , (28)

6The renormalization group improved values of mt will be viable for appropriate values of tanβ ≡ κ/κ′

which in fact is a free parameter in our model depending on the ratio Y4/Y3. In the limit tanβ → ∞
one obtains too high a top mass, e.g. mt = 233 GeV for Λ = 1015 GeV , whereas for tanβ = (2.1 − 2.8),

Λ = 1015 GeV and µR = 107 GeV one finds mt = (168 − 192) GeV [10].
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which are directly related to the two steps of symmetry breaking, SU(2)R × U(1)B−L →
U(1)Y and SU(2)L ×U(1)Y → U(1)em. The mass of the scalar H0

2 , which is the analog of

the Standard Model Higgs boson [eq. (28)], essentially coincides with the one obtained in

the bubble approximation by BHL [3]. This just reflects the fact that this boson is the tt

bound state with a mass of ≈ 2mt. Analogously, the mass of the heavy CP–even scalar

H0
1 ≈ χ0

Rr is approximately 2M since it is a bound state of heavy neutrinos.

Further, there are the charged Higgs bosons H±
3 ≈ φ±

2 with their neutral CP–even

and CP–odd partners H0
3r = φ0

2r and H0
3i = φ0

2i , and finally the χL-fields H±
4 = χ±

L ,

H0
4r = χ0

Lr and H0
4i = χ0

Li with the masses

M2

H±

3

≈ 2

3
M2 m2

τ

m2
t

, (29)

M2

H0

3r

= M2

H0

3i

≈ 2

3
M2 m2

τ

m2
t

− 1

2
M2

H0

2

, (30)

M2

H±

4

=
3

8

(
3g4

2 + 2g2
2g

2
1

)
l20 M2 + 2m2

τ (31)

M2

H0

4r

= M2

H0

4i

=
3

8

(
3g4

2 + 2g2
2g

2
1

)
l20 M2 . (32)

In conventional LR models only one scalar, which is the analog of the Standard Model

Higgs boson, is light (at the electro–weak scale), all the others have their masses of the

order of the right–handed scale M [8, 9, 14, 17]. In our case, the masses of those scalars

are also proportional to M , but all of them except the mass of H0
1 have some suppression

factors. The mass of the charged scalars H±
3 ≈ φ±

2 is suppressed by the factor mτ/mt and

is therefore of the order 10−2M . The masses of the neutral H0
3r and H0

3i are even smaller;

they are related to the masses of of the charged H±
3 and the Standard Model Higgs H0

2

by eq. (30). From the vacuum stability condition M2

H0

3

> 0 one thus obtains an upper

limit on the Standard Model Higgs boson mass MH0

2
(for a given M) or a lower limit on

the right–handed mass M (for a given MH0

2
). For example, for MH0

2
≈ 60 GeV we find

M∼>5 TeV . However, since in the top condensate approach the Standard Model Higgs

mass is ∼ 2mt (or ∼ mt after the renormalization group improvement), a stronger bound

on the right handed gauge symmetry breaking scale of about 20 TeV results.

The masses of the χL scalars [eqs. (31),(32)] vanish in the limit (λ2 − λ1) → 0 (i.e.

g2 → 0) and mτ → 0. This fact has a simple interpretation. In the limit λ2 = λ1

(which corresponds to the fermion-bubble level) the (χL, χR) sector of the effective Higgs

potential [eq. (15)] depends on χL and χR only through the combination (χ†
LχL + χ†

RχR).

This means that the potential has a global SU(4) symmetry which is larger than the

initial SU(2)L × SU(2)R × U(1)B−L symmetry. After χ0
R gets a non-vanishing VEV vR,

the symmetry is broken down to SU(3), resulting in 15− 8 = 7 Goldstone Bosons. Three

of them (χ±
R and Im χ0

R) are eaten by the SU(2)R gauge bosons W±
R and ZR, and the

remaining four (χ±
L , Re χ0

L and Im χ0
R) are physical massless Goldstone Bosons. The SU(4)

12



symmetry is broken by the φ–dependent terms in the effective potential and by SU(2)

gauge interactions. As a result, χ±
L , Reχ0

L and Im χ0
L acquire small masses and become

pseudo–Goldstone Bosons. In fact, the origin of this approximate SU(4) symmetry can

be traced back to the 4-f operators of eq. (6). It is an accidental symmetry resulting from

the gauge invariance and parity symmetry of the G7 term. Note that no such symmetry

occurs in conventional LR models.

Finally, we would like to comment on the approximation κ′ = 0 which we have used.

If we relax this condition, we will obtain non-vanishing masses mb and mD (notice that

the Yukawa couplings Y2 and Y3 will also be non-zero in this case). However, these

masses are not predicted in our model and can simply be adjusted to desirable values.

The Dirac neutrino mass mD is unknown and so remains a free parameter; however, it

must be smaller than mτ in our model in order to satisfy the vacuum stability condition

Y 2
4 − Y 2

3 > 0 [10] which is equivalent to m2
τ − m2

D > 0. For κ′ ≪ κ our predictions for

the Higgs boson masses are only slightly modified. As our renormalization–group analysis

performed in [10] shows, some interesting results emerge for sizeable values of κ′. The

Higgs boson masses and mass eigenstates for the general case κ′ 6= 0 can be found in [10].

In our model we have 9 input parameters (eight 4-f couplings G1, ..., G8 and the scale of

new physics Λ) in terms of which we calculate 16 physical observables (5 fermion masses, 8

Higgs boson masses and 3 VEVs κ, κ′ and vR), so there are 16−9 = 7 predictions. In the

simplified case κ′ = 0 that we were mainly considering we have only 5 input parameters

since κ′ = 0 requires G2 = G4 = G5 = 0, G6 =
√

G1G3. At the same time we have only

13 non-trivial physical observables since the bottom quark mass and Dirac neutrino mass

vanish identically in this case. This yields 13 − 5 = 8 predictions.

To summarize, this is to our knowledge the first successful attempt to break LR

symmetry dynamically. We find a tumbling scenario where the breaking of parity and

SU(2)R eventually drives the breaking of the electro–weak symmetry. The model gives a

viable top quark mass value and exhibits a number of low and intermediate scale Higgs

bosons. Furthermore it predicts relations between masses of various scalars and between

fermion and Higgs boson masses which are in principle testable. If the right–handed scale

µR is of the order of a few tens of TeV , the neutral CP–even and CP–odd scalars φ0
2r

and φ0
2i can be even lighter than the electro–weak Higgs boson. In fact, they can be as

light as ∼ 50 GeV and so might be observable at LEP2. Such light φ0
2r and φ0

2i can

also provide a positive contribution to Rb = Γ(Z → bb)/Γ(Z → hadrons) [18] which is

necessary to account for the discrepancy between the LEP observations and the Standard

Model predictions.
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