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Abstract

We determine the restrictions imposed by primordial nucleosynthesis upon a heavy

tau neutrino, in the presence of ντ annihilations into Majorons, as expected in a wide

class of particle physics models of neutrino mass. We determine the equivalent number

of light neutrino species Neq as a function of mντ and the ντ -ντ -Majoron coupling

g. We show that for theoretically plausible g values >∼ 10−4 present nucleosynthesis

observations can not rule out ντ masses in the MeV range. Moreover, these models give

Neq ≤ 3 in the ντ mass region 1-10 MeV, for very reasonable values of g ≥ 3 × 10−4.

The evasion of the cosmological limits brings new interest to the improvement of the

present laboratory limit on the ντ mass which can be achieved at a tau-charm factory.
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1 Introduction

Despite great experimental efforts, the tau-neutrino still remains as the only one which can

have mass in the MeV range. The present experimental limit on its mass is [1]:

mντ < 23 MeV (1)

Further progress will have to wait for the improvements expected at future tau-charm or B

factories [2]. On the other hand, many particle physics models of massive neutrinos lead

to a tau neutrino with mass in the MeV range [3]. Moreover such a neutrino may have

interesting cosmological implications [4]. It is therefore interesting to examine critically the

cosmological constraints.

The first comes from the critical density argument [5]. However, as has been widely

illustrated with many particle physics models where neutrinos acquire their mass by the

spontaneous violation of a global lepton number symmetry [6], this limit can be avoided

due to the existence of fast ντ decays [7, 8, 9] and/or annihilations [10, 8] into Majorons.

Although the Majoron was first introduced in the context of the seesaw model [11] the

spontaneous breaking of lepton number can be realized in many different models. There is

only one important constraint on its properties following from the precision measurements

of the invisible Z width at LEP, namely the Majoron must be mostly singlet under the

SU(2) ⊗ U(1) symmetry. It has been noted that, in many models of this type the relic

ντ number density can be depleted well below the required value for all masses obeying eq.

(1).

In order to demonstrate the cosmological viability of the MeV tau neutrino we must

also consider the restrictions that follow from primordial nucleosynthesis considerations [12].

In the standard model, these rule out ντ masses in the range [13, 14]:

0.5 MeV < mντ < 35 MeV (2)

This would imply that mντ < 0.5 MeV is the nucleosynthesis limit for the case of a Majorana

tau neutrino. Here we will only assume that ντ is a Majorana particle, which is the most likely

possibility. This assumes for the maximum allowed effective number of extra neutrino species

∆Neq during nucleosynthesis either 0.4 or 0.6. Recent contradictory data on the primordial

deuterium abundance [15, 16] may cast some doubts on the validity of this assumption (for

recent analysis see refs. [17, 18]). In particular, if ∆Neq = 1 is allowed [18], there may be

an open window for neutrino mass somewhere near 20 MeV. However it has been shown in

ref. [19] that this window actually does not exist, when one carefully takes into account

the influence of non-equilibrium electronic neutrinos on the neutron-to-proton ratio. These

neutrinos would come from massive ντ annihilations ντντ → νeνe.

However one knows that new interactions capable of depleting MeV ντ density in the

cosmic plasma are needed, at some level, in order to comply with the limit on the relic
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Figure 1: Feynman diagrams for annihilations of tau neutrinos into Majorons.

neutrino density. It is therefore reasonable to analyse their possible effect in relation with

the primordial nucleosynthesis constraints [20].

In this paper we analyse the effect of neutrinos with large annihilation cross sections

into Majorons. In order to compute the relevant annihilation rates we must parametrize

the majoron interactions. These arise from the diagrams shown in Fig. (1). The t-channel

diagram is present in all Majoron models, while the strength of the s-channel scalar exchange

diagram is somewhat model-dependent.

One way of writing the couplings of Majorons to neutrinos is using the fact that the

Majorons are Nambu-Goldstone bosons and hence have derivative couplings. This is the so

called polar coordinate method. The other method is to use a pseudoscalar interaction, some-

times refered to as the cartesian method. The two methods are equivalent, even for second

order processes as we are considering here, if we include all the Feynman diagrams contribut-

ing at that order to the process of interest ντ ντ → J J §. In our calculations throughout this

paper we will use the cartesian method of parametrizing the majoron interactions. Though

we must in principle include also the s-channel diagram in Fig. (1), we will neglect this

contribution. We explicitly show in the Appendix, that it is justified in our case to use only

the t-channel contribution in order to derive a conservative limit on neutrino mass mντ and

majoron coupling g.

We have determined the restrictions imposed by primordial nucleosynthesis upon such

§ Although equivalent, for models with a large number of scalars and where the Majoron is a linear

combination of the imaginary parts of several fields, like the model of Ref. [23], the cartesian method is

more convenient.



a heavy tau neutrino in the presence of ντ annihilations into Majorons. We show that if the

ντ ντ Majoron coupling constant exceeds g >∼ 10−4 or so, a large ντ mass in the MeV range

is allowed by the present upper bounds on the extra number of neutrino species. As a result

one cannot rule out any values of the ντ mass up the present laboratory limit of eq. (1). ¶.

We also show how such g values are theoretically plausible in the context of the most

attractive elementary particle physics models where MeV tau neutrinos arise, and which are

based upon the spontaneous violation of lepton number.

2 Evolution of ντ number density in the presence of ντ

annihilations

Massive tau neutrinos certainly interact with leptons via the standard weak interactions,

ντντ ↔ νe,µν̄e,µ, e+e−, as assumed in refs. [13, 14]. Moreover, in many particle physics where

neutrinos acquire mass from the spontaneous violation of a global lepton number symmetry

[6] heavy neutrinos, such as the ντ , annihilate to Majorons ντ ντ → J J via the diagonal

coupling

L = i
1

2
gJνT

τ σ2ντ + H.c. (3)

where ντ represents a two-component Majorana spinor, in the notation of ref. [9, 21, 22].

This corresponds, in the usual four-component notation to

L = i
1

2
gJντγ5ντ (4)

The corresponding elastic processes do not change particle densities, but as long as they are

effective they maintain all species with the same temperature.

We now comment on the cosmological bound provided by the critical density argument

[5]. In order to be consistent with cosmological limits, the relic abundance of the heavy

Majorana tau neutrinos must be suppressed over and above what is provided by the standard

model charged and neutral current weak interactions, as well as those derived from Fig. (1).

This happens automatically in many Majoron models, where neutrinos decay with lifetimes

shorter than required by the critical density constraint [6, 7, 8, 9]. For example, in Majoron

models of the seesaw-type a massive ντ will typically decay with lifetimes shorter than

the one required in order to obey the critical density bound, but longer than the relevant

nucleosynthesis time, as illustrated in figure 18 of ref. [6]. Another example is provided by

the model of ref. [23]. A ντ lifetime estimate was given for this model in Fig. 1 of ref. [24].

It is seen explicitly that a ντ of mass in the MeV range of interest to us is expected to be

¶In fact, with a larger coupling constant g >∼ 10−3 it may be possible for a stable MeV ντ to obey the

critical density limit, suggesting a possible role of ντ as dark matter.



stable on the nucleosynthesis time scale, but decays with lifetimes shorter than required by

the critical density bound. This corresponds to a range of off-diagonal neutrino-majoron

couplings 10−10 > goff−diagonal > 10−13, which naturally occurs in many models.

For simplicity, we will assume from now in this paper that the massive ντ ’s decay with

lifetimes shorter than required by the critical density bound, but are stable on the time

scale relevant for nucleosynthesis considerations. The more general case where both decays

and annihilations are simultaneously active on the nucleosynthesis time scale will be treated

elsewhere [25].

2.1 Before Weak Decoupling

Let us assume first that all species are interacting so that they have the same temperature.

The evolution of the ντ density can be found from the corresponding Boltzmann equation,

ṅντ + 3Hnντ = −
∑

i=J,e,νe,µ

〈σiv〉
(

n2
ντ

− (neq
ντ

)2 n2
i

(neq
i )2

)

(5)

In this expression 〈σiv〉 is the thermal average of the annihilation cross section times the

ντ relative velocity v. Using the convention for the momenta as in figure 1, its value for the

process ντν
′
τ ↔ xix

′
i is ‖

〈σiv〉 ≡
1

(neq
ντ )2

∫

dΠντ dΠν′

τ
dΠxi

dΠx′

i
(2π)4δ4(p + p′ − k − k′)

× | M |2 e−Ep/T e−Ep′/T (6)

Here we have assumed kinetic equilibrium amongst the different species, as well as Boltzmann

statistics. By | M |2 we denote the invariant amplitude obtained with the usual Feynman

rules for Majorana neutrinos [9, 21, 22], summed over all spins (and averaged over initial

spins). Moreover we have set dΠA ≡ d3pA/(2π)32EpA
.

Following reference [26] we express 〈σiv〉 as a single integral using the dimension-less

variable x ≡ mντ /T ,

〈σiv〉 =
x

8m5
ντ

K2
2 (x)

∫ ∞

4m2
ντ

ds (s − 4m2
ντ

)σi(s)
√

sK1

(x
√

s

mντ

)

(7)

where Ki(x) are the modified Bessel functions of order i (see for instance [27]) and s = (p+p′)2

is the invariant of the process ντν
′
τ ↔ xix

′
i. Using the new variable η ≡ 1 − 4m2

ντ
/s instead

of s,

〈σiv〉 =
4x

K2
2(x)

∫ 1

0
dη

η

(1 − η)7/2
σi(η)K1

( 2x√
1 − η

)

(8)

‖Here v = [(pp′)2 − m4
ντ

]1/2/EpEp′ .



The cross-sections of the different annihilation processes are listed below. For annihilations

to Majorons we have ∗∗

σJ(η) =
g4

128π

1 − η

m2
ντ

η

[

ln
(1 +

√
η

1 −√
η

)

− 2
√

η
]

. (9)

where we have divided by 2! in order to account for identical Majorons in the final state

and divided by 4 in order to account the ντ spin factors. For the standard weak interaction-

induced annihilations ντ ν̄τ ↔ fif̄i, in the limit of massless products we take

σi(η) =
2G2

F

3π

m2
ντ

√
η

1 − η
(b2

Li + b2
Ri) , (10)

where b2
L + b2

R = 1/2 for i = νe,µ and b2
L + b2

R = 2((−1/2 + sin2 θW )2 + (sin2 θW )2) ≃ 0.25 for

i = e.

One may write evolution equations analogous to eq. (5) for the other species present

in the plasma, namely νe,µ and e±. However we assume that the weak and electromagnetic

interactions are effective enough to keep νe,µ’s and e’s densities in their equilibrium values,

nk = neq
k for k = νe,µ, e. Thus we are left with a system of just two coupled Boltzmann

equations:

ṅντ + 3Hnντ = −
∑

i=e,νe,µ

〈σiv〉 (n2
ντ

− (neq
ντ

)2) − 〈σJv〉
(

n2
ντ

− (neq
ντ

)2 n2
J

(neq
J )2

)

≡ Sντ (11)

ṅJ + 3HnJ = 〈σJv〉 (n2
ντ

− (neq
ντ

)2 n2
J

(neq
J )2

) ≡ SJ (12)

Now let us briefly describe our calculations. First we normalized the number densities

to the number density of a massless neutrino species, n0 ≃ 0.181T 3, introducing the quanti-

ties rα ≡ nα/n0, where α = ντ , J , and the corresponding equilibrium functions req
α . We then

have for the time derivative of nα

ṅα = Ṫ
dnα

dT
= Sα − 3Hnα

dnα

dT
= n0

drα

dT
+ rα

3

T
n0

or, equivalently,
drα

dT
=
(Sα

n0

− 3Hrα

) 1

Ṫ
− 3

T
rα (13)

On the other hand, the time derivative of the temperature is obtained from covariant energy

conservation law

ρ̇ = −3H(ρ + P ) → Ṫ = −3H(ρ + P )
1

dρ/dT
(14)

∗∗The general formula is given in the Appendix, eq. (29).



where ρ is the total energy density and P is the pressure. Finally, as ρ = ρ(T, rJ , rντ ) we

can rewrite
dρ

dT
=

∂ρ

∂T
+

∂ρ

∂rJ

drJ

dT
+

∂ρ

∂rντ

drντ

dT
,

and for the normalized particle densities one has

drντ

dT
= −Σντ

( ∂ρ

∂T
+

∂ρ

∂rJ

drJ

dT
+

∂ρ

∂rντ

drντ

dT

)

− 3

T
rντ (15)

drJ

dT
= −ΣJ

( ∂ρ

∂T
+

∂ρ

∂rJ

drJ

dT
+

∂ρ

∂rντ

drντ

dT

)

− 3

T
rJ (16)

where, for α = ντ , J , we have introduced

Σα ≡ 1

ρ + P

( Sα

3Hn0
− rα

)

(17)

The final Boltzmann system for the normalized particle densities is obtained from eq. (15)

and eq. (16) introducing the dimension-less variable x previously defined. Denoting r′ ≡
dr/dx, we have

r′ντ

(

1 + Σντ

∂ρ

∂rντ

)

+ r′JΣντ

∂ρ

∂rJ
= Σντ

T

x

∂ρ

∂T
+

3

x
rντ (18)

r′J
(

1 + ΣJ
∂ρ

∂rJ

)

+ r′ντ
ΣJ

∂ρ

∂rντ

= ΣJ
T

x

∂ρ

∂T
+

3

x
rJ (19)

This system is valid as long as the tau neutrinos are coupled to the weak interactions.

The following is the complete set of entries in equations (18) and (19) for the equilibrium

quantities, total energy density and pressure, respectively:

req
ντ

=
1

0.181π2
x3I1(x) , req

J =
2

3

ρ = ρν0
+ ρe + ργ + ρJ + ρντ =

3π2

10
T 4

(

1 +
1

6
rJ + 0.06x

I2(x)

I1(x)
rντ

)

P = Pν0
+ Pe + Pγ + PJ + Pντ =

π2

10
T 4

(

1 +
1

6
rJ + 0.06x

I3(x)

I1(x)
rντ

)

. (20)

In these expressions we have introduced the integral functions Ij, where j = 1, 2, 3, defined

as

I1(x) =
∫ ∞

0
du u2 exp(−x

√
1 + u2)

I2(x) =
∫ ∞

0
du u2

√
1 + u2 exp(−x

√
1 + u2)

I3(x) =
∫ ∞

0
du

u4

√
1 + u2

exp(−x
√

1 + u2) (21)

2.2 Past Weak Decoupling

Once the ντ ’s decouple from the standard weak interactions, they remain in contact only

with Majorons. Then one has two different plasmas, one formed by ντ ’s and J ’s and the



other by the rest of particles, each one with its own temperature†† (denoted as T and Tγ).

Let us define now the variables

x =
mντ

T
, y =

mντ

Tγ

We assume that the photon temperature evolves in the usual way, ẏ = Hy. The evolution

equation of the ντ and J number densities are now simplified versions of (11) and (12),

because Sντ ≡ −SJ ,

ṅντ + 3Hnντ = −SJ

ṅJ + 3HnJ = SJ (22)

or, in terms of rα’s,

r′ντ
= − SJ

n0Hy

dy

dx

r′J = −r′ντ
(23)

Due to the second equation, the Boltzmann system reduces to a single evolution equation say,

for rντ . However, one must still determine dy/dx which differs from unity because T 6= Tγ .

An equation relating y and x is obtained using the energy balance condition for the ντ + J

plasma. If ρ ≡ ρντ + ρJ and P ≡ Pντ + PJ , we can write

ρ̇ = −3H(ρ + P ) , where H =

√

√

√

√

8πρtot

3M2
pl

(24)

The expressions for req
α , ρ and P given in equations eq. (20) need to be modified in order

to take into account the fact that there are two distinct temperatures T and Tγ . This leads

to the following equation

dy

dx
=

y
[

π2

20
rJ

x2 +
(

I4(x)
I1(x)

−
(

I2(x)
I1(x)

)2)

rντ

]

3
(

0.06 I3(x)
I1(x)

rντ + π2

60
rJ

x

)

− r′ντ

H

(

π2

20x
− 0.18 I2(x)

I1(x)

) . (25)

Here we defined I4(x) ≡ −dI2(x)/dx.

In order to determine the final frozen density of ντ which will be relevant during nucleo-

synthesis we have to solve numerically the corresponding set of differential equations. Before

weak decoupling these are (18) and (19), while after decoupling one should combine eq. (23)

and eq. (25), with the initial conditions rα = req
α , α = J, ντ valid at high temperatures.

In Fig. (2) we show the results of our calculations of the asymptotic (frozen) values of

rντ mντ as a function of mντ for the standard model (g = 0) and for the Majoron model with

different g values. Note that in the standard g = 0 case we agree with the previous results

of ref. [14] but get somewhat larger values than those obtained in ref. [13]. We ascribe this

small discrepancy to the use, in ref.[13] of an approximate expression for the ντ energies,

rather than the exact ones.
††Eventually the massless neutrinos will also decouple from the second plasma, while the e+e− pairs will

annihilate to photons, thus generating the well known Tν0
− Tγ difference.
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Figure 2: Frozen values of rντ mντ as a function of mντ for the standard model (g = 0) and

for the Majoron model with different g values in units of 10−5.
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Figure 3: Effective number of massless neutrinos equivalent to the contribution of heavy

ντ ’s with different values of g in units of 10−5. For comparison, the dashed line corresponds

to the standard model case when g = 0.

3 Nucleosynthesis constraints on (mντ , g)

In this section we use the results obtained for the ντ number density in order to constrain

its mass from nucleosynthesis arguments. The value of rντ as a function of (mντ , g) is used

in order to estimate the variation of the total energy density ρtot = ρR + ρντ . In ρR all

relativistic species are taken into account, including Majorons and two massless neutrinos,

whereas ρντ is the energy density of the massive ντ ’s.

In order to compare with the standard model situation it is convenient for us to express

the effect of the ντ mass and that of the presence of the Majoron in terms of an effective

number of massless neutrino species (Neq) which we calculate for each frozen value of rτ (mντ ).

In reality, the true value of rτ (mντ ) is always larger than its frozen value, and we have taken

this into account in order to obtain reliable limits in the low ντ mass region.

In order to derive the nucleosynthesis limits, first we developed a simple code for the

numerical calculation of the neutron fraction rn, as presented e.g. in ref. [28], varying

the value of Neq. Then we incorporated ρtot to this numerical code and performed the



integration of the neutron-proton kinetic equations for each pair of (mντ , g) values, where g

is the coupling constant which determines the strength of the ντ annihilation cross section.

Comparing rn(mντ , g) with rn(Neq) at Tγ ≃ 0.075 MeV (the moment when practically all

neutrons are wound up in 4He), we can relate (mντ , g) to Neq.

We repeated this calculation adapting Kawano’s nucleosynthesis code [29] to the case

of a massive tau neutrino, both in the standard model and the Majoron extension. We have

found that both methods are in good agreement. The results for the numerical calculations of

the equivalent number of massless neutrinos during nucleosynthesis with the use of Kawano’s

numerical code are shown in figure 3. For comparison the case of g = 0 is shown (dashed line).

From figure 3 one can see that, in the asymptotic limit of very large mντ the annihilation

into Majorons is very inefficient (see eq. (9)), so that the effective Neq value is larger than in

the standard g = 0 case precisely by a factor 4/7, which corresponds to the extra Majoron

degree of freedom. Thus, if we take also g very large we get just Neq = 2 + 4/7 ≃ 2.57. Of

course this asymptotic limit is already experimentally ruled out by the Aleph ντ mass limit

[1] and thus is not displayed. For mντ values in the range from 10 to 23 MeV or so, Neq can

be made acceptable, provided g is raised sufficiently. For the intermediate ντ mass region,

1-10 MeV, and g > 3 × 10−4 the model may even give Neq ≤ 3, which is possibly supported

by some of the observational data.

Finally, in the small ντ mass limit the energy density of ντ is roughly the same as that

of the massless νe or νµ , so that all g values shown in the figure lead to the same asymptotic

value Neq = 3 + 4/7 ≃ 3.57, corresponding to the three massless neutrinos plus Majoron

(instead of 2 + 4/7 for a very heavy ντ ). However, it might be that observations eventually

could lead to a tighter limit Nmax
eq ≤ 3.57. In such event a simple way out is to have the

Majoron out-of-equilibrium, which would require a very small g value, g < (2 − 3) × 10−5,

so that the production of Majorons through annihilations of ντ ’s would be negligible ‡‡.

Should the observations eventually lead to an even tighter limit Nmax
eq ≤ 3 the situation is

qualitatively different, as it would raise a conflict with the standard model. A possible way

to lower Neq below three provided by our model is to have a massive ντ in the MeV range

and with a relatively strong coupling with Majorons. Indeed, one can see from Figure 3 that,

while it is not possible in the standard model to account for Nmax
eq ≤ 3, it is quite natural

in our model to have Nmax
eq ≤ 3 for a wide range of intermediate tau neutrino masses and

reasonable large values of the coupling constants g.

In summary, one sees that all ντ masses below 23 MeV are allowed by the nucleosyn-

thesis condition Neq ≤ Nmax
eq if Nmax

eq ≥ 3.57, provided that the coupling between ντ ’s and

J ’s exceeds a value of a few times 10−4. This situation seems at the moment compatible

with the experimental data, at least the 4He and 7Li determinations [18].

‡‡Of course such mντ
values are allowed by nucleosynthesis in the absence of ντ annihilations.
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Figure 4: The values of g(mντ ) above each line would be allowed by nucleosynthesis if one

adopts the Nmax
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It is instructive to express the above results in the mντ − g plane, as shown in figure 4.

The region above each curve is allowed for the corresponding Nmax
eq .

4 Significance of the Nucleosynthesis Limits

There has been a variety of Majoron models proposed in the literature [6]. They are attrac-

tive extensions of the standard electroweak model where neutrinos acquire mass by virtue of

the spontaneous violation of a global lepton number symmetry. Apart from their phenomeno-

logical interest as extensions of the lepton and/or Higgs sectors of the standard model [3],

Majoron models offer the possibility of loosening the cosmological limits on neutrino masses,

either because neutrinos decay or because they annihilate to Majorons. The first and most

obvious of these is the limit that follows from the cosmological density argument [7, 8]. As

we saw in the previous section one can also place limits on a heavy tau neutrino with mass

in the MeV range by using primordial element abundances. We have determined the restric-

tions imposed by primordial nucleosynthesis upon a heavy tau neutrino, in the presence of

ντ ντ annihilations into Majorons. Our results are completely general and may be compared

to any bound characterized by an allowed value of Nmax
eq . Given any Nmax

eq value one can

readily obtain the allowed regions of mντ and the Majoron coupling constant g as shown

in Fig. (4). As an example, a recent model-independent likelihood analysis of big bang

nucleosynthesis based on 4He and 7Li determinations has claimed an upper limit Neq < 4.0

(at 95% C.L.) [18]. From Fig. (4) this would imply that all mντ masses are allowed, as



long as g exceeds 10−4 or so. However we believe that, in the present state of affairs, one

should probably not assign a statistical confidence to nucleosynthesis results, to the extent

that these are still dominated by systematic, rather than statistical errors. Strictly speaking,

what Fig. (4) really displays is the equivalent neutrino number Neq for various combinations

of (mντ ,g) parameters that give the same helium abundance, rather than real limits. Of

course, from these contours which contain the raw information an educated reader can judge

which helium abundance should be considered plausible or not.

We now illustrate in concrete models the fact that such values of the ντ ντ Majoron

coupling >∼ 10−4 are theoretically plausible. Different models imply different expectations

for the Majoron coupling constants g and the relation they bear with the ντ mass mντ . Our

discussion so far is applicable to the simplest seesaw Majoron model of ref. [11]. In this case

one expects that [9]

g = O
(

m2
D

M2
R

)

(26)

where mD is a typical Dirac neutrino mass and MR ∝ 〈σ〉 is the Majorana mass of the

right-handed SU(2) ⊗ U(1) singlet neutrino. Clearly g values in the range required by

nucleosynthesis are quite reasonable say, for mD ∼ 1 − 100 GeV and MR ∼ 104 − 108 GeV.

Moreover, it is a good approximation in this model to neglect the s-channel scalar exchange

diagram of Fig. (1).

There is a wide class of alternative Majoron models characterized by a low scale of

lepton number violation [8, 30, 31]. These models are attractive because they lead to a wide

variety of processes which may be experimentally accessible [3]. In this case one expects

a simple direct correlation between the mass of the neutrinos and the magnitude of the

diagonal couplings of neutrinos to Majorons. The neutrino mass is simply the product

of the Yukawa coupling g and the vacuum expectation value 〈σ〉 which characterizes the

spontaneous violation of the global lepton number symmetry [6],

m = g 〈σ〉 (27)

From this it follows that for mντ ∼ 10 MeV and 〈σ〉 ∼ 100 GeV one obtains g ∼ 10−4. This

situation is therefore characteristic of models where lepton number spontaneously breaks at

the weak scale.

There are more complicated models where the degree of correlation between the ντ mass

mντ and the lepton number violation scale may be different and may involve more free pa-

rameters. Just to give a concrete example of such models, let us consider the supersymmetric

models with spontaneous violation of R parity [23]. These models lead to

m ∝ 〈σ〉2
MSUSY

(28)

where 〈σ〉 is identified with the vacuum expectation value of the right-handed SU(2)⊗U(1)

singlet sneutrino and MSUSY denotes a typical neutralino mass. The expected values of



(g,mντ ) are depicted in Fig. (5), obtained when one varies the other relevant free parameters

over a theoretically reasonable range.

For all models with low-scale lepton number violation we have shown, by doing the

full calculation, that the overall annihilation cross section for ντ ντ annihilation into two

Majorons can be enhanced by an order of magnitude with respect to our above simplified

calculation which neglected the s-channel scalar exchange diagram in Fig. (1). Although

this would allow us to weaken our limits, the effect on g would only be a factor 101/4 <∼ 2, so

that the limits derived in figure 4 could be relaxed by a factor <∼ 2 in this class of models.

As a last comment, we note that the limits obtained in our paper could also be tight-

ened by including the influence of non-equilibrium electronic neutrinos (and anti-neutrinos)

produced by ντ ντ annihilations on the neutron-to-proton ratio [19] but, again, the effect is

quite small on the bounds derived on g.

Last but not least, we must compare the limits obtained by primordial big bang nucleo-

synthesis with those derived from astrophysics. A new light particle, like the Majoron, may

have an important effect on stellar evolution and this allows one to place stringent limits

on the strength of the interaction of such particles [32]. In the case we consider here, the

Majorons interact predominantly with a heavy ντ (with the mass in MeV range), so its influ-

ence may be noticeable in supernova explosions when the temperature reaches tens of MeV.

The bounds on Majoron properties which can be deduced from supernova physics have been

widely discussed [33] and recently analysed in ref. [32] (see also references therein). For

example a Majoron with Yukawa coupling to electronic neutrinos in the range 10−6 − 10−3

could be important for supernova physics. However in our model this coupling to νe is much

smaller. A Majoron coupling constant to tau-neutrinos around 10−4 may be potentially in-

teresting for supernova physics and will be discussed elsewhere. Here we only mention that g

values larger than (a few)×10−5
√

m/MeV may be dangerous because the coupling is strong

enough for abundant production of Majorons in high temperature regions in the supernova

core and simultaneously small enough so that the mean free path of the produced Majorons

is larger than the central stellar core. Still the coupling g > 10−4 seems to be allowed.

5 Conclusions

In this paper we have investigated the implications for primordial nucleosynthesis of a heavy

tau neutrino in the MeV range, in the presence of sufficiently strong ντ annihilations into

Majorons. We have determined the effective neutrino number Neq, or equivalently the pri-

mordial helium abundance, and studied the level of sensitivity that it exhibits when expressed

in terms of the underlying ντ mass mντ and coupling parameter g, the relevant coupling con-

stant determining the ντ ντ annihilation cross section. Given the fact that present nucleo-
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Figure 5: Expected values of mντ and g in model of ref. [23]

synthesis discussions are still plagued by systematics, it is useful to interpret our results this

way, rather than as an actual limit in the statistical sense. For each mντ value, one can in

principle identify the corresponding lower bounds on g for which the ντ ντ annihilations to

Majorons are sufficiently efficient in order not to be in conflict with nucleosynthesis. More-

over, in contrast to the standard model, these models can account for a value of Neq ≤ 3 if

the ντ mass lies in the region 1-10 MeV, provided ≥ 3 × 10−4.

We have been conservative in determining the nucleosyhthesis limits, to the extent that

we have neglected model-dependent contributions from s-channel Higgs boson exchange,

given in Fig. (1). This seems reasonable from the point of view of the relevant particle

physics models [11, 8, 30, 31, 23].

We have also concluded that, indeed, the required choice of parameters can be naturally

realized in Majoron models both with weak and large-scale lepton number violation. As a

result, for sufficiently large but plausible values of the ντ ντ Majoron coupling >∼ 10−4 one

can not rule out any values of the ντ mass up the present laboratory limit based on the

cosmological argument. This highlights the importance of further experimental efforts in

laboratory searches for the ντ mass. Improvements expected at a tau-charm factory are

indeed necessary, since the primordial nucleosynthesis constraints on the ντ mass can be

easily relaxed in a large class of extensions of the standard electroweak model.



Appendix

Here we show why one can neglect the s-channel diagram of Fig. (1) in the determination

of the nucleosynthesis bound on mντ and majoron coupling g.

The total cross-section for the annihilation to Majorons that corresponds to s-channel

and t-channel diagrams of Fig. (1) is given by

σJ(ǫ, η) =
1

64π

g4

m2
ντ

[

ǫ2√η + (1 − 2ǫ)
1 − η

2η

[

ln

(

1 +
√

η

1 −√
η

)

− 2
√

η

]]

. (29)

where the parameter ǫ is defined by

ǫ ≡ mντ

g2
ννJ

∑

i

(

gννHi
gHiJJ

m2
Hi

)

(30)

and gννHi
, gHiJJ are the couplings relevant for the s-channel diagram of Fig. (1). In Eq.

(30) the sum is over all the CP-even scalars present in the model. From its definition, one

can see that ǫ is proportional to the couplings ννHi and HiJJ . When ǫ → 0 the s-channel

becomes zero.

The value of ǫ depends very much on the model. For the pure-singlet majoron models

with low lepton number violation scale considered in ref. [30] there is a strict correlation

between the neutrino mass and the lepton number violation scale. In this case one has ǫ = 1.

For seesaw models, with lepton number violated at a large mass scale, one has ǫ ≪ 1. For

the supersymmetric model with spontaneous breaking of R parity [23] at the weak scale one

can show that ǫ typically lies in a range around the value 1/2. In our analysis we wanted to

stay as much model independent as possible. In order to have an idea of the dependence of

our results on ǫ we define

F (x, ǫ) ≡
∫ 1

0
dη

η

(1 − η)7/2
σJ(ǫ, η)K1

( 2x√
1 − η

)

(31)

which is just the integrand of eq. (8) in section 2.1. In Fig. (6) we plot the function

F (x, ǫ) for ǫ = 0, 1/2 and 1. We see that the value ǫ = 0 represents a lower bound on that

integral. For most models we would get a higher value. If we notice that the cross section

is proportional to g4, that diference in F (x, ǫ) would translate into a smaller value needed

for g to satisfy the nucleosynthesis bounds. Therefore, one can obtain a model-independent

and conservative bound by taking the worst possible case, which corresponds to ǫ = 0. Due

to the dependence of F on g4 the bounds on g would not be too sensitive to the value of ǫ

in the range of interest. This justifies our simplified expression for σJ used in eq. (9).
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