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1 Introduction

The magnetic helicity is a relatively new and very attractive point of interest in cosmic
magnetohydrodynamics (MHD) and dynamo theory. The point is that the magnetic helicity
H =

∫

ABd3x where B is the magnetic field and A is the vector potential is an integral
of motion in MHD in the absence of viscosity (inviscid case). It looks natural to base an
understanding of cosmic MHD on balance equations for conserved quantities such as magnetic
field energy and magnetic helicity. It has been noted that the magnetic helicity conservation
is much more restrictive in astrophysical objects than the energy conservation [1, 2]. The
point is that usually there is a huge supply of kinetic energy in the form of a general rotation
of a celestial body and it is quite easy to imagine a spectral energy flux which influences
energy balance including magnetic field energy.

The nature of the initial fields (and corresponding magnetic helicities) that seed sub-
sequent dynamo or turbulent amplifications is largely unknown [3, 4]. It might be that the
seed fields are produced during epoch of galaxy formation from frozen-in magnetic fields of
protogalaxy experiencing gravitational collapse, or ejected by the first supernovae or active
galactic nuclei. Let us call this as the standard astrophysical scenario A. Alternatively the
seed fields might originate from much earlier epochs of the Universe expansion, down to the
cosmological inflation phase transition epoch [5]. Let us call that as the cosmological scenario
B. The standard view in scenario A is that the magnetic field evolution in the early Universe
(or an astrophysical object) starts from a state with almost vanishing magnetic helicity. The
dynamo amplification of a seed field in astrophysical scenarios produces, however, a large-
scale magnetic field with substantial magnetic helicity. In such case one must compensate it
providing a contribution of magnetic helicity of small-scale magnetic fields. Then one faces
with a severe problem of how to redistribute magnetic helicity over the desired scales in or-
der to keep it small. Moreover, it is difficult to prevent a disastrous dynamo suppression of
large-scale magnetic helicity by helical small-scale magnetic field. Alternatively in scenario
B, if the seed magnetic field contained a lot of magnetic helicity one can use that as the he-
licity required to obtain the desired large-scale field at later epochs. This makes the dynamo
generation of galactic magnetic fields much less constrained than in the standard scenario A.
If the galactic dynamo exploits the primordial magnetic helicity then one must expect that
a large-scale galactic magnetic field has also a preferable sign of helicity. Observations show
indeed some hint that one of the possible helicity signs seems preferable [6].
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Relying on scenario B with the hypermagnetic field evolution passing through the elec-
troweak phase transition (EWPT) epoch, we explore here the magnetic helicity generation
in the early universe. This suggests as a new alternative the possibility that the magnetic
field starts from a state with a substantial supply of primordial magnetic helicity. Indeed, a
very small fluctuation of a seed hypermagnetic field at very early epochs before the EWPT
woul be exponentially amplified due to the presence of a large right electron asymmetry,
ξeR = µeR/T 6= 0 [7–9] and hence acquire a huge initial magnetic helicity by the EWPT
epoch and subsequently. This is possible only for hypermagnetic fields having a non-trivial
topological structure with non-vanishing linkage number n 6= 0 [10]. The hypermagnetic
helicity density given by the product hY = Y ·BY , hence proportional to a large hypermag-
netic field squared value hY ∼ B2

Y Λ. This gets transformed to the magnetic helicity, which
can therefore be much larger than the helicity density associated to galactic magnetic fields,
hY ≫ hgal where hgal ∼ B2

gallgal. For Bgal ≃ 10−6 G, lgal = 100 kpc = 3 × 1023 cm, this is

estimated as hgal = 3× 1011 G2cm. Thus, the primordial magnetic helicity can be the main
supply for magnetic helicity of galaxies. The goal of this paper is to provide a complete de-
scription of magnetic helicity evolution passing through the EWPT epoch (we also comment
on later epochs within the causal picture). In Section 2 we calculate the hypermagnetic he-
licity in the symmetric phase of the hot primordial plasma, using the corresponding solution
of the Faraday equation. In Section 3 we review the evolution of the hypermagnetic helicity
passing through the EWPT and in Section 4 we make the final comments on our results and
on the perspectives for the cosmological origin of helical galactic magnetic fields.

2 Hypermagnetic helicity

In the comoving frame V = 0 1 the Faraday induction equation governing the evolution of
hypermagnetic fields BY = ∇×Y reads

∂BY

∂t
= ∇× αY BY + ηY ∇2BY , (2.1)

where the hypermagnetic helicity coefficient αY [9] is given by the right electron chemical
potential µeR and the hot plasma conductivity σcond(T ) ∼ T as

αY (T ) = − g
′2µeR

4π2σcond
, (2.2)

and ηY = (σcond)
−1 is the hypermagnetic diffusion coefficient, g

′

= e/ cos θW is the Standard
Model U(1) gauge coupling. We assume that a certain right electron asymmetry ∼ µeR(t0) at
a very early cosmological epoch , t0 ≪ tEW , has been generated by an unspecified mechanism.
This is our starting point. Then in the presence of the hypercharge field Yµ this asymmetry
neR − nēR = µeRT

2/6 evolves due to the Abelian anomaly for right electrons,

∂µj
µ
eR = −g

′2y2R
64π2

Yµν Ỹ
µν , yR = −2, (2.3)

which evolves together with the hypermagnetic field in Eq.(2.1) in a self-consistent way. Note
that such coupled evolution of BY (t) and µeR(t) has been recently considered in Ref. [11] for

1Note that common expansion can be easily taken into account via conformal coordinates with the change
of the cosmological time t to the conformal one dt → a(t)dη.
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the particular case of the Chern-Simons wave hypermagnetic field configuration, but without
considering such important feature as the hypermagnetic helicity which we discuss here.

Our second assumption is the presence of a non-zero initial hypermagnetic field BY
0 6= 0.

This should be a mean field with a small amplitude provided by some stochastic distribution
of hypermagnetic fields.

The key parameter in the master Eq. (2.1) is the helicity parameter for the hyper-
magnetic field, given in eq. (2.2). This can be obtained from the Chern-Simons term in the
effective Standard Model Lagrangian density for the hypercharged field Yµ :

LCS = −g
′2µeR

4π2
BY Y. (2.4)

An recent interpretation of the Chern-Simons anomaly parameter αY as a polarization effect
has been given in Ref. [9] using standard statistical averaging of the right electron pseudovec-
tor current < ēγjγ5e > in the Standard Model Lagrangian in vacuum (alternative one-loop
level calculations in finite temperature field theory were used in [12, 13]).

Multiplying Eq. (2.1) by the corresponding vector potential and adding the analogous
expression obtained from the evolution equation governing the vector potential (multiplied
by hypermagnetic field) and integrating over space, one gets the evolution equation for the
hypermagnetic helicity HY =

∫

d3xY ·BY as

dHY

dt
= −2

∫

V
(EY ·BY )d

3x−
∮

[Y0BY +

+EY ×Y]d2S = −2ηY (t)

∫

d3x(∇×BY ) ·BY +

+2αY (t)

∫

d3xB2
Y (t). (2.5)

Note that we have omitted in the last equality the surface integral
∮

(...) since fields vanish at
infinity during the symmetric phase. However, such surface integral can be important at the
boundaries of different phases at the electroweak phase transition, T ∼ TEW . In Ref. [10] the
authors have studied how the hypermagnetic helicity flux penetrates the surface separating
the symmetric and broken phases, and how the hypermagnetic helicity density hY = BY Y

converts into the magnetic helicity density h = BA at the EWPT time, see also discussion
in Sec. 3 below.

Notice also that the evolution equation in eq. (2.5) is similar to eq. (7) in Ref. [14],
which holds after the electroweak phase transition, T ≪ TEW . There the point-like short-
range Fermi neutrino-plasma interaction mediated by heavy W,Z-bosons was used, instead of
the long-range interaction through the massless hypercharge field Yµ in the unbroken phase.

Now using the simplest solution of the Faraday equation (2.1) in the α2-dynamo [15]
that corresponds to maximum hypermagnetic field amplification rate 2,

BY (t) = BY
0 exp

[

∫ t

t0

α2
Y (t

′

)

4ηY (t
′)
dt

′

]

, (2.6)

2This is the case for the particular hypermagnetic field scale Λ = k−1 = κηY /αY where κ = 2, k being the
Fourier wave number in BY (x, t) =

∫
(d3k/(2π)3)BY (k, t)eikx.
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we obtain from Eq. (2.5) the hypermagnetic helicity :

HY = HY (t0) + 2(BY
0 )2

∫

d3x

∫ t

t0

dt
′

αY (t
′

)×

× exp

[

2

∫ t
′

t0

[

α2
Y (t

′′

)

4η(t′′)

]

dt
′′

]

, (2.7)

where HY (t0) is the initial helicity value at the moment t0 and we have omitted the hy-
permagnetic diffusion term. The latter is usually neglected for an ideal Maxwellian plasma
σcond → ∞, ηY → 0, while here we must compare in Eq. (2.5) the second helicity generation
term αY ∼ (σcond)

−1 given by Eq. (2.2) with the first diffusion term ηY ∼ (σcond)
−1. Notice

that in Ref. [14] one could neglect the diffusion term for the Maxwellian plasma in the broken
phase, T ≪ TEW , since for that case the magnetic helicity coefficent α [14, 16] did not depend
on the conductivity.

The direct estimate of the relative magnitude of the terms in the r.h.s. of Eq. (2.5)
allows us to neglect the diffusion term only for hypermagnetic field inhomogeneity scales
obeying the inequality:

Λ ≫ ηY
αY

. (2.8)

For an arbitrary (large) scale in our causal scenario, lH > Λ = κηY /αY ≫ ηY /αY , the
amplification of hypermagnetic field is given by [9]

BY (t) = BY
0 exp

[

(

1

κ
− 1

κ2

)
∫ t

t0

α2
Y (t

′

)

ηY (t
′)
dt

′

]

=

= BY
0 exp



83

(

1

κ
− 1

κ2

)
∫ x0

x

dx
′

x′2

(

ξeR(x
′

)

0.0001

)2


 ,

(2.9)

and that of the hypermagnetic helicity is given by

HY (t) = HY (t0) + 2(BY
0 )2

∫

d3x

∫ t

t0

dt
′

αY (t
′

)×

× exp

[

(

2

κ
− 2

κ2

)
∫ t

′

t0

(

α2
Y ((t

′′

)

η(t′′)

)

dt
′′

]

=

= HY (t0) + 2(BY
0 )2

∫

d3x

∫ t

t0

dt
′

αY (t
′

)×

× exp



166

(

1

κ
− 1

κ2

)
∫ x0

x′

dx
′′

x′′2

(

ξeR(x
′′

)

0.0001

)2


 .

(2.10)

Here the ratio x = T/TEW = (tEW/t)1/2 is given by the Friedman law and ξeR = µeR/T is
the dimensionless right electron asymmetry. Thus, from Eq. (2.9) for the extremum value
κ = 2 we obtain the strongest amplification eq. (2.6) and from Eq. (2.10) one finds the
corresponding value of the hypermagnetic helicity in eq. (2.7).
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Let us comment on our reference value choice ξeR ∼ 10−4 used in eqs. (2.9),(2.10).
Taking into account the right electron (positron) asymmetry neR − nēR = µeRT

2/6 in the
presence of chirality flip processes with the rate Γ, and substituting the hyperelectric field
EY = −V ×BY + ηY ∇×BY − αY BY [9] into the Abelian anomaly Eq. (2.3) rewritten in
uniform medium as ∂t(neR−nēR) = −(g

′2/4π2)EY BY one finds the kinetic equation for µeR:

∂µeR

∂t
= −6g

′2(∇×BY ) ·BY

4π2T 2σcond
− (ΓB + Γ)µeR. (2.11)

Here the rate ΓB = 6(g
′2/4π2)2B2

Y /T
2σcond coming from the helicity term ∼ αY occurs in

strong hypermagnetic fields much bigger than the chirality flip rate Γ, ΓB ≫ Γ [9].
Under the assumption of slowly changing hypermagnetic fields BY (t) ≈ const, and

choosing the Chern-Simons wave configuration of the hypercharge field as,

Y0 = Yz = 0, Yx = Y (t) sin k0z, Yy = Y (t) cos k0z,

for which (∇×BY ) ·BY = B2
Y (t)k0, BY (t) = k0Y (t), we can easily solve the kinetic equation

(2.11) getting:

ξeR(t) =

[

ξeR(t0)−
Q

ΓB + Γ

]

e−(ΓB+Γ)(t−t0) +

+
Q

ΓB + Γ
≈ Q

ΓB + Γ
≈ Q

ΓB
= −4π2k0

Tg′2
. (2.12)

Here we used notation Q = −(6g
′2/4π2T 3σcond)(∇×BY )·BY = −(6g

′2/4π2T 3σcond)B
2
Y k0. In

obtaining (2.12) we neglected the time dependence for times t → tEW for which ΓBtEW ≫ 1.
On the other hand, retaining the time term for the zero initial asymmetry ξeR(t0) = 0 we
get from (2.12) the asymptotical growth of | ξeR | in a strong hypermagnetic field due to the
Abelian anomaly:

| ξeR(t) |=
| Q |

ΓB + Γ

[

1− e−(ΓB+Γ)(t−t0)
]

≈

≈ 4π2k0
Tg′2

[

1− e−ΓB(t−t0)
]

.

Taking into account for the survival condition of the Chern-Simons wave versus ohmic
diffusion, k0 < 10−7T , substituting weak coupling g

′2 = 0.12 we get the estimate of the
lepton asymmetry in a strong hypermagnetic field, | ξeR |∼ 3 × 10−5, hence we adopted
ξeR ∼ 10−4 as the reference value in Eqs.(2.9),(2.10) above. For a topologically non-trivial
3D-hypermagnetic field configuration with linkage (Gauss) number n ≫ 1 for which the
pseudoscalar BY · (∇ × BY) ∼ n one can expect the right electron asymmetry at the level
ξeR ∼ 10−4, which will be used below as an estimated reference value with respect to which
we choose to normalize the right electron asymmetry ξeR.

3 Hypermagnetic helicity evolution

Let us now turn to the evolution of the hypermagnetic (magnetic) helicity through various
stages in the evolution of the universe, as illustrated in Fig. 1.
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3.1 Hypermagnetic helicity evolution through the electroweak phase transition

Let us note that for Higgs masses mH > 80 GeV the electroweak phase transition cannot be
first order in the minimal standard electroweak theory, so that a smooth cross-over between
symmetric and broken phases is more likely [17], given the experimental lower bound on
Higgs masses and the recent hints from the LHC [18].

However, in the presence of strong hypermagnetic fields in the primordial plasma the
dynamics of the phase transition changes in analogy with the superconductivity in the pres-
ence of magnetic fields: the second order phase transition may become first order [7]. We
rely here on such scenario assuming the presence of strong hypermagnetic fields for which
first order EWPT becomes allowed in the mass region 80 GeV < mH < 160 GeV (see Fig.
8 in [7]) indicated by current LHC data.

We first consider what happens with the hypermagnetic helicity passing-through the
electroweak phase transition. For that let us mention results from paper [10] where the
flow of the hypermagnetic helicity in the embryo of the new (broken) phase was considered.
If a single bubble of broken phase appears at T = TEW growing with constant velocity,
R(t) = v(t − tEW ) 3, then a value of the flow of hypermagnetic helicity density through the
bubble surface is determined by the surface integral in Eq. (2.5) which we neglected above
for the symmetric phase with boundary at infinity. The result (Eq. (17) in [10]) shows that
the value of the hypermagnetic helicity density penetrating the surface of a single bubble,

hY (t)

G2cm
=

5× 10−3n

d(cm)

(

BY (tEW )

1 G

)2( t− tEW

tEW

)2

, (3.1)

is also large. Here the integer n = ∓1,∓2, ... denotes the number of pairs of linked hyper-
magnetic field loops (or knot number) for the non-trivial 3D-configuration, as in Eq. (7) in
Ref. [10]. Note that n is the pseudoscalar entering the Gauss integral for magnetic helicity

H(t) =

∫

d3xh(x, t) = nΦ1Φ2

which changes the sign, n → −n, after one of the overlapping oriented loops in a pair of
magnetic closed tubes changes the direction.

In order to avoid screening of the hyperelectric field EY and the time component Y0

over the surface of the bubble the thickness d of the domain wall separating the two phases
should be less than the Debye radius, d < rD =

√

3TEW/4πe2ne ∼ 10/TEW , which allows us
to estimate the factor d−1 in eq. (3.1) as [d(cm)]−1 > 1015/2. Then substituting the value
of the hypermagnetic field BY (tEW ) estimated in in the leptogenesis scenario as BY (tEW ) ∼
5× 1017 G [9, 21] , one gets from Eq. (3.1) the helicity density

h/G2cm = 6.25 × 1047n[(t− tEW )/tEW ]2.

Such huge value is estimated at the moment of the growth of a bubble of the new phase, e.g.
for R(t)/lH < [(t − tEW/tEW )] ∼ 10−7 4. Taking into account the subsequent conservation
of the net global helicity, summed over different protogalactic scales, one finds values that
are much larger than the helicity density associated to galactic magnetic field strengths,

hgal ∼ 1011 G2cm.

3Here time is fixed at TEW , (t− tEW )/tEW ≪ 1, v = 0.1− 1 accordingly [19, 20].
4Such bubble size is relevant before percolation (collision and following junction) of the two bubbles, see

Eq. (21) in Ref. [20].
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During the electroweak phase transition the hypermagnetic helicity density converted
from the symmetric phase to the Maxwellian one is redistributed within a bubble over its
volume in correspondence with the ratio of volumes

Vsurface/Vball = 3d/R(t).

This is because we calculated the helicity flux density in eq. (3.1) only within a thin spherical
layer Vsurface = 4πR2(t)d. Then assuming that all bubbles are tight-fitting each other within
the horizon size lH(tEW ) = 1.44 cm or the mean magnetic helicity density coincides with
that within one bubble, and using the ratio 3d/R(t) we obtain from (3.1) at T ≃ TEW the
magnetic helicity density in the new (broken) phase

h(x ∼ 1)

G2 cm
=

1.5 × 10−2n

(lH(tEW )/1 cm)

(

BY (tEW )

1 G

)2

×

×
(

R(t)

lH(tEW )

)

=
1.5× 10−9n

1.44

(

BY
0

1 G

)2

×

× exp

[

166(κ − 1)

κ2

∫

∞

1

dx

x2

(

ξeR(x)

0.0001

)2
]

, (3.2)

where we have substituted R/lH = 10−7 as an estimate of the beginning of percolation
(junction) of bubbles (see Eq. (21) in Ref. [20]).

We now turn to a brief discussion of the bounds on the topological linkage number
n = ±1,±2, ... (|n| > 1) in eq. (3.2).

Starting from Gauss formula,

H = nΦ2 = nB2π2Λ4 ,

and substituting the corresponding helicity density h = 3H/4πR3, and using the maximum
helicity density hmax = B2Λ one can find a bound on “n” from the requirement that h < hmax:

n <
4

3π

(

R

Λ

)3

=
4× 106

κ3

(

ξeR(TEW )

0.0001

)3

, (3.3)

where we have substitutedR = 10−7lH(TEW ) and Λ = κηY /αY = 3.3×106κ/[TEW (ξeR/0.0001)].
On the other hand, from the same bound h < hmax using Eq. (3.2) and cancelling

B2(tEW ) one finds:

h(x = 1)

B2Λ
=

1.5× 10−9n(ξeR(TEW )/0.0001)

2.88 × 3.3 × 106κ× 10−16
< 1,

or

κ > 1.6n

(

ξeR
0.0001

)

. (3.4)

Combining (3.3) and (3.4) from the chain of inequalities we get,

n <
4× 106

κ3

(

ξeR(TEW )

0.0001

)3

<
4× 106

(1.6)3n3
,

hence we find an upper bound on the linkage number

| n |< 33 . (3.5)
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Note that it does not depend on a right electron chemical potential nor on the bubble size
before percolation, chosen in Eq. (3.3) as R = 10−7lH(TEW ) [19]. Indeed, the scale Λ ∼ κ is
proportional to the bubble size R, Λ ∼ R, as seen from Eq. (3.4) where κ ∼ R through the
helicity h(x = 1) in Eq. (3.2).

3.2 Hypermagnetic helicity evolution before the electroweak phase transition

For an arbitrary scale Λ = κηY /αY , κ > 1, we obtain from eq. (2.10) the hypermagnetic
helicity in the unbroken phase (x ≥ 1) as

hY (x)

G2 cm
=

−0.88 × 10−8

(

BY
0

1 G

)2 ∫
∞

x

dx
′

x
′3

(

ξeR(x
′

)

0.0001

)

×

× exp





166(κ − 1)

κ2

∫

∞

x′

dx
′′

x′′2

(

ξeR(x
′′

)

0.0001

)2


 , (3.6)

where we put x0 = ∞, substituted αY (t) from eq. (2.2), and used the expansion time t =
(MP l/1, 66

√
g∗)/2T 2 = M0/2T

2, omitting the initial helicity value HY (t0).
Dividing the helicity density (3.6) by its value at TEW (3.2) we get the ratio valid at

x ≥ 1:

hY (x)

h(x = 1)
= −8.5

n

∫

∞

x

dx
′

x′3

(

ξeR(x
′

)

0.0001

)

×

× exp





166(κ − 1)

κ2

∫ 1

x
′

(

ξeR(x
′′

)

0.0001

)2
dx

′′

x′′2



 , (3.7)

that for a constant value of the right electron asymmetry ξeR/0.0001 = β = const equals to

hY (x)

h(x = 1)
=

8.5 | β |
n

(

1

aβ2

)

[exp[−aβ2(1− 1/x)]

x
−

−exp[−aβ2(1− 1/x)] − exp(−aβ2)

aβ2

]

, (3.8)

where a = 166(κ − 1)/κ2 and we took into account the negative sign of the right electron
asymmetry, β < 0, as seen, e.g., from Eq. (2.12). For a small parameter aβ2 ≪ 1, or
κ ≫ 166β2 that is allowed for larger bubbles R ≫ 10−7lH one gets from (3.8) (using relation
t/tEW = (TEW /T )2 = x−2) the temporal dependence

hY (t < tEW )

h(tEW )
=

4.25 | β |
n

[

(1− aβ2)
t

tEW
−

−aβ2

3

(

t

tEW

)3/2

+O((aβ2)2)
]

, (3.9)

which is almost linear in the region t < tEW . Thus, we see from (3.9) that like for EWPT of
the first order there is the jump of helicity density (here for large scales κ ≫ 166β2):

hY (t <∼ tEW )

h(tEW )
=

4.25 | β |
n

, (3.10)
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where the linkage number | n |> 1 has the upper bound given by Eq. (3.5). Note that
the straight lines in Fig. 1 shown for some particular parameters: a given by κ = 2, 103;
| β |= 0.1, 1; n = 1, 30 correspond at t < tEW to the limiting case presented in Eq. (3.9).

Let us stress that our assumption of a constant right electron asymmetry ξeR/0.0001 =
β = const is provided by the adiabatic condition ∂tξeR ≈ 0 which we tacitly assume.

4 Discussion

The lepton asymmetry plays a crucial role in the amplification of hypermagnetic fields, which
become helical and supply magnetic helicity to the cosmological and subsequently to the
galactic magnetic fields. The lepton asymmetry itself evolves due to the Abelian anomaly for
the right electron current given by Eq. (2.3) in the unbroken phase of the Standard Model. It
starts from an initial ξeR(t0) generated by an unspecified mechanism and then rises driven by
αY -helicity parameter (2.2) arising from the Chern-Simons term (2.4). One should note that
the absence of the Chern-Simons term in the broken phase [12] does not mean that parity
violation in electroweak interactions disappears. Indeed the polarization effect leading to the
helicity α parameter governing Maxwellian field evolution exists due to paramagnetism of
fermions populating the main Landau level [16].

The magnetic helicity parameter α which governs the evolution of the magnetic helicity
after the electroweak phase transition is shown in Fig. 1 by short horizontal lines for t > tEW .
This change of the magnetic helicity density profile h(t) is explained by a negligible value
of the helicity parameter α for weak interactions in broken phase at T ≪ TEW , α ∼ GF

[14, 16], comparing with αY given by Eq. (2.2) for symmetric phase, α ≪ αY .
The jump of helicity density at t = tEW is the topological effect of a difference between

the volume helicity density entering the first line in Eq. (2.5) and the surface helicity term in
the same equation. While the volume term gives the smooth function (3.6) in the numerator
of the ratio in Eq. (3.7) the surface term leads to the helicity density at EWPT ∼ n given
by (3.2) in the denominator of Eq. (3.7).

Note also that, following standard practice, we have neglected turbulence due to a non-
zero plasma vorticity arising e. g. through bubble collisions during the electroweak phase
transition. Such simplification is justified in the treatment of hypermagnetic helicity since
the fluid velocity V(x, t) does not contribute to helicity evolution. As a result here we have
confined our attention only to the α2-dynamo mechanism, avoiding αΩ -dynamo scenario.

In summary, we have found that the magnetic helicity which becomes an inviscid in-
variant after the EWPT, varies dramatically before this phase transition. Due to this, the
cosmological magnetic field becomes helical before the phase transition and remains helical
after it, at least within the range of applicability of our causal scenario. It means that the
seed magnetic field for the galactic dynamo if provided by a primordial cosmological magnetic
field should be substantially helical. This seed magnetic helicity must be taken into account
in scenarios of galactic magnetic field evolution with a cosmological seed. In particular, the
intergalactic magnetic field suggested in [22] is expected to be substantially helical.
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under grants FPA2011-22975 and MULTIDARK CSD2009-00064 (Consolider-Ingenio 2010
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Figure 1. Magnetic helicity evolution in the EWPT epoch for various parameter choices: top:
a = 0.166, | β |= 1, n = 1; middle: a = 41.375 (i.e. κ = 2), | β |= 0.1, n = 30; bottom: red line
a = 41.375 , | β |= 0.1, n = 1, blue a = 41.375, | β |= 0.1, n = 30, green: a = 0.166 (i.e. κ = 103),
| β |= 0.1, n = 1; for t > tEW red and green lines are identical.

– 12 –


	1 Introduction
	2 Hypermagnetic helicity
	3 Hypermagnetic helicity evolution 
	3.1 Hypermagnetic helicity evolution through the electroweak phase transition
	3.2 Hypermagnetic helicity evolution before the electroweak phase transition

	4 Discussion

