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E-mail: akhmedov@ific.uv.es, mariam@ific.uv.es, valle@ific.uv.es

Abstract: In the 3-flavour framework we derive a simple approximate analytic expression

for the day-night difference of the flux of solar νe at terrestrial detectors which is valid for

an arbitrary Earth density profile. Our formula has the accuracy of a few per cent and

reproduces all the known analytic expressions for the Earth matter effects on the solar neu-

trino oscillations obtained under simplifying assumptions about the Earth’s density profile

(matter of constant density, 3 layers of constant densities, and adiabatic approximation).

It can also be used for studying the Earth matter effects on the oscillations of supernova

neutrinos. We also discuss the possibility of probing the leptonic mixing angle θ13 through

day–night asymmetry measurements at future water Cherenkov solar neutrino detectors.

We show that, depending on the measured value of the asymmetry, the current upper

bound on θ13 may be improved, or even a lower bound on this mixing parameter may be

obtained.

Keywords: Neutrino mass and mixing; solar and atmospheric neutrinos; reactor and

accelerator neutrinos.

∗On leave from the National Research Centre Kurchatov Institute, Moscow, Russia

http://arXiv.org/abs/hep-ph/0404083v3
mailto:akhmedov@ific.uv.es
mailto:mariam@ific.uv.es
mailto:valle@ific.uv.es
http://jhep.sissa.it/stdsearch?keywords=Neutrino_mass_and_mixing;_solar_and_atmospheric_neutrinos; __reactor_and_accelerator_neutrinos
http://jhep.sissa.it/stdsearch?keywords=Neutrino_mass_and_mixing;_solar_and_atmospheric_neutrinos; __reactor_and_accelerator_neutrinos


Contents

1. Introduction 1

2. Day-night effect with three flavours: Generalities 3

3. An analytic expression for PN − PD 6

3.1 Matter of constant density 8

3.2 Three layers of constant densities 8

3.3 Adiabatic approximation 9

4. Comparison with numerical results 10

5. Future experiments and sensitivity to θ13 14

6. Discussion and outlook 16

A. Derivation of Eq. (3.6) 18

1. Introduction

Solar neutrinos coming to terrestrial detectors at night travel some distances inside the

Earth and so their oscillations are affected by the Earth’s matter. This leads to a difference

between the day-time and night-time solar neutrino signals – the day-night, or “regenera-

tion” effect [1–7]. Solar neutrino oscillations 1 depend mainly on two parameters, the mixing

angle θ12 and the mass squared difference ∆m2
21. For example, the recent three–neutrino

global fit of solar, atmospheric, reactor and accelerator neutrino data of Ref. [9] gives for

the solar neutrino oscillation parameters the 3σ allowed ranges θ12 = (28.6 ÷ 38.6)◦ and

∆m2
21 = (5.4÷9.5)×10−5 eV2, with the best-fit values θ12 = 33.2◦ and ∆m2

21 = 6.9×10−5

eV2. In the three-flavour framework there is an additional dependence on the mixing angle

θ13 which determines the component of the electron neutrino in the third mass eigenstate

1The presence of non-oscillation phenomena is now strongly constrained by a combination of KamLAND

and solar neutrino data, see, e. g. Ref. [8] and references therein.
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ν3 separated by a large mass gap from the other two mass eigenstates. This mixing pa-

rameter is mainly constrained by the data of the CHOOZ reactor experiment [10] and is

known to be small,

θ13 . 9.8◦ (13.4)◦ , or sin θ13 . 0.17 (0.23) (1.1)

at 90% C.L. (3σ) [9]. The smallness of θ13 implies that its effect on the solar neutrino

oscillations is rather mild; however, with increasing accuracy of the data even relatively

small effects have to be taken into account.

Three-flavour analyses of the solar neutrino data, including the day-night effect, have

been performed in a number of recent studies [9, 11–15]. In particular, in Ref. [15] a

simplified analytic treatment of the day-night effect in the three–flavour framework was

given, and it was shown that the day-night νe flux difference scales essentially as cos6 θ13

rather than cos4 θ13, which is the expected scaling law for the day-time flux. The authors

of [15] considered the Earth matter effect on the solar neutrino oscillations under the

assumption of constant matter density of the Earth. The purpose of the present paper is

to extend their analysis beyond the constant density approximation, and to scrutinize to

what extent day–night asymmetry measurements may become a significant way to probe

for the mixing angle θ13. Using the relative smallness of the matter-induced potential of

neutrinos inside the Earth, we derive a simple and accurate analytic formula for the day-

night flux difference in the case of an arbitrary Earth’s density profile. We compare our

result with the known analytic formulas obtained under simplifying assumptions about the

density profile of the Earth as well as with the results of the exact numerical calculations.

The paper is organized as follows. In sec. 2 a general consideration of the day-

night effect in the 3-flavour framework is given. In sec. 3 we present our main result

– the derivation of an approximate 3-flavour analytic formula for the day-night νe flux

difference in the case of an arbitrary Earth density profile. We also discuss a number

of special cases for which the day-night flux difference can be found analytically. These

include approximating the matter density profile of the Earth by one layer or three layers

of constant densities, and also the adiabatic approximation to neutrino evolution inside the

Earth. In sec. 4 the comparison of our formulas with the results of the exact numerical

calculations is performed. In sec. 5 we make a quantitative study of the simple correlation

between the day–night asymmetry in the solar neutrino flux and the magnitude of the

mixing angle θ13 characterizing leptonic CP violation in neutrino oscillations 2. We use

2There are additional CP violating phases but they do not affect neutrino oscillations, only lepton-

number changing processes, like neutrino-less double beta decay [16–19].
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this correlation in order to forecast the degree to which the mixing angle θ13 can be probed

at future solar neutrino measurements of the day–night asymmetry. We discuss our results

in sec. 6. In the Appendix, we present the derivation of an improved perturbation-theoretic

formula for the Earth regeneration factor.

2. Day-night effect with three flavours: Generalities

The 3-flavour day-time probability of finding an electron neutrino produced in the Sun in

the electron neutrino state at the detector is to a very good accuracy given by [20]

PD = c4
13P2f (θ12,∆m2

21, c
2
13V ) + s4

13 . (2.1)

Here P2f (θ12,∆m2
21, c

2
13V ) is the 2-flavour νe survival probability in the Sun, calculated

with the neutrino potential in the Sun V substituted by the effective potential c2
13V , and

we use the standard notation sij = sin θij, cij = cos θij. Upon averaging over fast neutrino

oscillations inside the Sun, this probability can be written as

P2f (θ12,∆m2
21, c

2
13V ) =

1

2

[

1 + cos 2θ12 cos 2θ̂12(1 − 2P ′)
]

, (2.2)

where P ′ is the probability of transition between the first and second matter eigenstates

in the course of the neutrino propagation in the Sun (“hopping” probability), θ̂12(r) is the

effective mixing angle in matter at the point r, and cos 2θ̂12 is the value of cos 2θ̂12 averaged

over the neutrino production point [15]:

cos 2θ̂12 =

∫ R⊙

0
drf(r) cos 2θ̂12(r) . (2.3)

Here f(r) is the normalized spatial distribution function of the neutrino source in the

Sun [21], and the explicit formula for cos 2θ̂12(r) will be given below [Eqs. (2.16) and

(2.17)].

The solar neutrino flux arriving at the Earth is an incoherent sum of the fluxes of

mass-eigenstate neutrinos ν1, ν2 and ν3 (see, e.g., [22]); therefore the day-time νe survival

probability can in general be written as

PD = P⊙
e1 P

(0)
1e + P⊙

e2 P
(0)
2e + P⊙

e3 P
(0)
3e , (2.4)

where P⊙
ei (i = 1, 2, 3) is the probability of νe → νi conversion in the Sun, and P

(0)
ie is the

projection of the ith mass eigenstate onto νe: P
(0)
ie = |Uei|2, U being the leptonic mixing

matrix in vacuum. For this matrix we use the standard parameterization [23]

U = O23ΓδO13Γ
†
δO12
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=









c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23









, (2.5)

where Oij is the orthogonal rotation matrix in the ij-plane which depends on the mixing

angle θij, and Γδ = diag(1, 1, eiδCP ), δCP being the Dirac-type CP-violating phase.

As we shall see shortly (see also the discussion in Ref. [15]), the third matter eigenstate

ν3m inside both the Sun and the Earth essentially decouples from ν1m and ν2m. In addition,

it is practically not affected by the solar or Earth matter, i.e. ν3m ≃ ν3. Therefore one

has P⊙
e3 ≃ P

(0)
3e = s2

13. It is also easy to show that upon averaging over the fast neutrino

oscillations in the Sun one obtains [15]

P⊙
e1 =

c2
13

2

[

1 + cos 2θ̂12(1 − 2P ′)
]

, P⊙
e2 =

c2
13

2

[

1 − cos 2θ̂12(1 − 2P ′)
]

. (2.6)

Substituting (2.6) into (2.4), one recovers Eq. (2.1) with P2f (θ12,∆m2
21, c

2
13V ) given by

Eq. (2.2). Note that for the LMA MSW solution of the solar neutrino problem P ′ is

extremely small; therefore we shall neglect it from now on.

Since the flux of solar neutrinos coming to the Earth is an incoherent sum of the fluxes

of mass-eigenstate neutrinos, the night-time νe survival probability at the detector can be

written as

PN = P⊙
e1 P⊕

1e + P⊙
e2 P⊕

2e + P⊙
e3 P⊕

3e , (2.7)

where P⊕
ie is the probability that a neutrino arriving at the Earth as a mass eigenstate νi

is found at the detector in the νe state after having traveled a distance L inside the Earth.

The night-day probability difference is therefore

PN − PD = P⊙
e1 (P⊕

1e − P
(0)
1e ) + P⊙

e2 (P⊕
2e − P

(0)
2e ) + P⊙

e3 (P⊕
3e − P

(0)
3e ) . (2.8)

The probabilities P⊙
ei , P⊕

ie and P
(0)
ie satisfy the conditions

3
∑

i=1

P⊙
ei =

3
∑

i=1

P⊕
ie =

3
∑

i=1

P
(0)
ie = 1 , (2.9)

which follow from the unitarity of neutrino evolution. Since P⊕
3e = P

(0)
3e , Eq. (2.9) gives

P⊕
1e − P

(0)
1e = −(P⊕

2e − P
(0)
2e ). Substituting this into Eq. (2.8) yields

PN − PD = (P⊙
e2 − P⊙

e1)(P
⊕
2e − P

(0)
2e ) = −c2

13 cos 2θ̂12 (P⊕
2e − P

(0)
2e ) , (2.10)

where in the last equality Eq. (2.6) with P ′ = 0 has been used. The Earth matter effects

on the solar neutrino oscillations are encoded in the factor P⊕
2e − P

(0)
2e ; we now turn to the

calculation of this quantity.
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Neutrino evolution equation in the flavour basis can be written as

i
d

dt
ν =

[

U diag(0, 2δ, 2∆)U † + diag(V (t), 0, 0)
]

ν , (2.11)

where ν = (νe, νµ, ντ )
T is the wave function of the neutrino system, t is the coordinate

along the neutrino trajectory, and the parameters

δ =
∆m2

21

4E
, ∆ =

∆m2
31

4E
(2.12)

involve the mass-squared differences responsible for the solar and atmospheric neutrino

oscillations, with ∆m2
31 large compared to ∆m2

21 [9]: ∆m2
31 ∼ 2 × 10−3 eV2 ∼ 30∆m2

21.

The matter-induced potential of neutrinos in Eq. (2.11) is

V (t) =
√

2 GF Ne(t) , (2.13)

where GF is the Fermi constant and Ne(t) is the electron number density in matter.

For our purposes it proves convenient to go to the new basis defined through

ν = O23ΓδO13ν̃ . (2.14)

The evolution equation for the rotated ν̃ state is

i
d

dt









ν̃1

ν̃2

ν̃3









=









2s2
12 δ + c2

13V (t) 2s12c12 δ s13c13V (t)

2s12c12 δ 2c2
12 δ 0

s13c13V (t) 0 2∆ + V (t)s2
13

















ν̃1

ν̃2

ν̃3









. (2.15)

For neutrino evolution in the Sun and in the Earth one has V . 2δ ≪ 2∆ (actually, inside

the Earth V ≪ 2δ). Since, in addition, s13 ≪ 1, one can to a very good accuracy neglect

the (1-3) and (3-1) elements of the effective Hamiltonian in Eq. (2.15) compared to the

(3-3) element. This means that the evolution of the third matter eigenstate essentially

decouples from that of the first two eigenstates and, in addition, that matter effects on the

third eigenstate are negligible. This approximation is especially good for the νe survival

probability since, as was shown in [24, 25], terms of first order in s13 cancel in this quantity,

and the correction only appears at order s2
13V

2/∆2.

Diagonalization of the (ν̃1, ν̃2) - subsector of the effective Hamiltonian in Eq. (2.15)

yields the instantaneous effective mixing angle in matter θ̂12(t), which can be determined

through

cos 2θ̂12(t) =
cos 2θ12 δ − c2

13V (t)/2

ω(t)
, (2.16)

where

ω(t) =
√

[cos 2θ12 δ − c2
13V (t)/2]2 + δ2 sin2 2θ12 . (2.17)
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Let us introduce the neutrino evolution matrix in the rotated basis according to

ν̃(t) = S̃(t, t0)ν̃(t0) , S̃(t0, t0) = 1 . (2.18)

The matrix S̃(t, t0) satisfies the same evolution equation, Eq. (2.15), as ν̃. The decoupling

of the third eigenstate implies that it can be written as

S̃(t, t0) =









α̃(t, t0) β̃(t, t0) 0

−β̃∗(t, t0) α̃∗(t, t0) 0

0 0 f(t, t0)









, (2.19)

where

f(t, t0) = exp [−2i∆(t − t0)] , (2.20)

and the parameters α̃(t, t0) and β̃(t, t0) (satisfying |α̃|2 + |β̃|2 = 1) are to be found from the

solution to the two-flavor problem governed by the mass squared difference ∆m2
21, mixing

angle θ12, and matter potential c2
13V (t).

It is now easy to find the probabilities P⊕
1e and P⊕

2e in terms of α̃ and β̃. Direct

calculation yields P⊕
1e = c2

13|c12α̃ − s12β̃|2, P⊕
2e = c2

13|s12α̃ + c12β̃|2, and

P⊕
2e − P

(0)
2e = c2

13[cos 2θ12 |β̃|2 + sin 2θ12 Re(α̃∗β̃)] . (2.21)

3. An analytic expression for PN − PD

We shall now derive an approximate analytic expression for P⊕
2e−P

(0)
2e valid for an arbitrary

matter density profile of the Earth. Our basic point is that the neutrino potential in the

Earth V is small (V/2δ . 0.05), and so can be considered as a perturbation.

We shall use the standard perturbation theory for the evolution matrix (see, e.g. Ap-

pendix B of Ref. [25]). The effective Hamiltonian in the rotated basis in Eq. (2.15) can be

decomposed as H̃(t) = H̃0 + H̃1(t), where H̃0 and H̃1(t) are of zeroth and first order in

V (t), respectively. Then to first order in V (t), the evolution matrix S̃(t, t0) can be written

as

S̃(t, t0) ≃ S̃0(t, t0) − iS̃0(t, t0)

∫ t

t0

[S̃0(t
′ , t0)

−1H̃1(t
′)S̃0(t

′ , t0)] dt′ . (3.1)

Both S̃0(t, t0) and S̃(t, t0) have the form (2.19). For the zeroth-order matrix S̃0(t, t0) we

find

α̃0 = cos δL + i cos 2θ12 sin δL , β̃0 = −i sin 2θ12 sin δL . (3.2)

Eq. (3.1) then gives

α̃ = α̃0(1 − iA) − iβ̃0B
∗ , β̃ = β̃0(1 + iA) − iα̃0B , (3.3)

– 6 –



where

A =
c2
13

2

∫ t

t0

(|α̃0|2 − |β̃0|2)V dt′ , B = c2
13

∫ t

t0

α̃∗
0β̃0 V dt′ . (3.4)

Substituting Eqs. (3.3) and (3.4) into Eq. (2.21), one arrives, after a little algebra, at a

remarkably simple result:

P⊕
2e − P

(0)
2e = c4

13 sin2 2θ12
1

2

∫ L

0
dxV (x) sin[2δ · (L − x)] . (3.5)

Here x is the coordinate along the neutrino path inside the Earth and L = 2R⊕ cos θZ ,

where R⊕ is the Earth’s radius and θZ is the zenith angle of neutrino trajectory. The

night-day flux difference PN−D is then given by (2.10). Equations (2.10) and (3.5) are our

main results.

Strictly speaking, for perturbation theory in V to be valid, two dimensionless param-

eters have to be small, namely V/2δ and V L (or, more precisely,
∫ L

0 V dx). While the first

parameter is indeed very small in our case, for long enough distances travelled by neutrinos

in the Earth the second parameter may be rather large. Nevertheless, as we shall see in

sec. 4, Eq. (3.5) yields very accurate results even for large V L provided that integration

over neutrino energies or zenith angles is involved. A more accurate formula can be ob-

tained by replacing in the integrand of Eq. (3.5) the in-vacuum oscillation phase by the

corresponding adiabatic phase:

P⊕
2e − P

(0)
2e = c4

13 sin2 2θ12
1

2

∫ L

0
dxV (x) sin



2

L
∫

x

ω(x′) dx′



 , (3.6)

where ω(x) is given in Eq. (2.17). We shall show in sec. 4 that this considerably improves

the agreement with the exact results in the cases when the oscillation phase is large but

no averaging over zenith angles or neutrino energies is performed. Eq. (3.6) is based on

perturbation theory in V/2δ rather than in V and thus is valid for arbitrary values of V L.

We give its derivation in the Appendix.

It is interesting to note that Eq. (3.6) depends on the adiabatic phase even though no

explicit assumptions about adiabaticity is made in its derivation. This is related to the fact

that in the limit V ≪ 2δ the adiabaticity condition is satisfied automatically, irrespective

of the spatial behaviour of the potential V (x). Indeed, the adiabaticity condition requires

that the mixing angle in matter θ̂12 change little on the length scales of the order of the

neutrino oscillation length in matter. In the case V ≪ 2δ this mixing angle is always close

to the vacuum mixing angle θ12 and so changes little over the whole scale L which contains

many oscillation lengths, i.e. the neutrino evolution is automatically adiabatic.
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We will consider now several special cases for which exact analytic expressions can be

found for α̃ and β̃ (and so also for P⊕
2e − P

(0)
2e ).

The matter density of the Earth changes relatively slowly both within its mantle and

core, while at the mantle-core border it jumps by about a factor of two. Therefore as a

first approximation one can consider the matter densities in the mantle and core as being

constant. In other words, for neutrinos traversing only the mantle of the Earth one can use

the constant density approximation, whereas for core-crossing neutrinos the Earth density

can be approximated by three layers of constant densities (mantle-core-mantle). More

accurate treatment along these lines would include a larger number of layers, allowing for

several layers within the mantle and the core [26].

For existing solar neutrino detectors, most of the neutrinos detected during the night

time cross only the mantle of the Earth but not its core (the Super-Kamiokande (Super-K)

detector has the largest fractional core coverage time equal to 7%). We therefore start with

the case of one layer of constant density.

3.1 Matter of constant density

In this case one readily finds

α̃ = cos ωL + i cos 2θ̂12 sinωL , β̃ = −i sin 2θ̂12 sin ωL , (3.7)

where the mixing angle in matter θ̂12 and ω are given by Eqs. (2.16) and (2.17) with

V =const. Substituting (3.7) into Eq. (2.21) and the result into Eq. (2.10), one finds

P⊕
2e − P

(0)
2e = c4

13 sin2 2θ12
V δ

2ω2
sin2 ωL , (3.8)

PN − PD = −c6
13 cos 2θ̂12 sin2 2θ12

V δ

2ω2
sin2 ωL . (3.9)

This is the result obtained in Ref. [15]. In the limit s13 → 0 one recovers the 2-flavour day-

night probability difference in the constant-density approximation to the Earth’s density

profile given in [27]. To leading order in the potential V Eq. (3.9) simplifies to

PN − PD = −c6
13 cos 2θ̂12 sin2 2θ12

V

2δ
sin2 δL . (3.10)

3.2 Three layers of constant densities

For neutrinos crossing the core of the Earth, the Earth’s density profile can be approximated

by three layers of constant densities ρ1, ρ2 and ρ1 and widths L1, L2 and L1 (mantle-core-

mantle). In this case one can write α̃ = Z − iW3, β̃ = −iW1 with real Z and W1,3, which

yields P⊕
2e − P

(0)
2e = c2

13W1(cos 2θ12 W1 + sin 2θ12 W3). Here [28]

W1 = 2 sin 2θ1 Y sin ω1L1 + sin 2θ2 sin ω2L2 ,
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W3 = −(2 sin 2θ1 Y cos ω1L1 + sin 2θ2 cos ω2L2 ) , (3.11)

with

Y = cos ω1L1 cos ω2L2 − cos(2θ1 − 2θ2) sin ω1L1 sin ω2L2 , (3.12)

and θ1 and θ2 are the values of the effective mixing angle θ̂12 in matter of densities ρ1 and

ρ2, respectively. After a simplification one then obtains

P⊕
2e − P

(0)
2e = c4

13 sin2 2θ12
δ

2ω1
(2Y sinω1L1 +

ω1

ω2
sin ω2L2)

×
(

V1

ω1
2Y sin ω1L1 +

V2

ω2
sinω2L2

)

. (3.13)

In the 2-flavour limit θ13 → 0 the expression for P⊕
2e − P

(0)
2e for the 3-layer model of the

density profile of the Earth was first obtained in [29]. In the limiting cases V2 = V1, L2 = 0

or L1 = 0 Eq. (3.13) goes into the corresponding expressions for one layer of constant

density, Eq. (3.8).

To first order in V1,2 Eq. (3.13) simplifies to

P⊕
2e−P

(0)
2e = c4

13 sin2 2θ12
1

2δ
[V1 sin δ(2L1 + L2) + (V2 − V1) sin δL2] sin δ(2L1+L2) . (3.14)

3.3 Adiabatic approximation

If the matter density changes slowly enough along the neutrino path, the evolution of the

neutrino system can be studied in the adiabatic approximation. This approximation should

be especially good for neutrinos crossing the Earth’s mantle only, and can be considered

as an improvement of the constant-density approximation. For core-crossing neutrinos one

can consider the evolution inside the core and inside the mantle as adiabatic and match

the wave function of the neutrino state at the mantle-core borders; here we discuss the

adiabatic evolution for mantle-crossing neutrinos.

In the adiabatic approximation one has [24]

α̃ = cos(θf − θi) cos φ + i cos(θf + θi) sin φ ,

β̃ = sin(θf − θi) cos φ − i sin(θf + θi) sin φ , (3.15)

where

φ =

∫ L

0
ω(x)dx , (3.16)

and θi and θf are the values of the mixing angle in matter θ̂12 at the initial and final

points of neutrino evolution. To a good accuracy, the matter density profile of the Earth

– 9 –



is spherically symmetric, so that one can set θf = θi; however, for generality we shall allow

for different values of θi and θf .

Substituting (3.15) into Eq. (2.21), one finds

P⊕
2e−P

(0)
2e = c2

13

[

sin(θf − θi) sin(θf − θi + 2θ12) cos2 φ + sin(θf + θi) sin(θf + θi − 2θ12) sin2 φ
]

.

(3.17)

To leading order in Vi,f this simplifies to

P⊕
2e − P

(0)
2e = c4

13 sin2 2θ12
1

2

[

Vf − Vi

2δ
cos2 δL +

Vi + Vf

2δ
sin2 δL

]

. (3.18)

It is easy to make sure that for all the special cases discussed above our formula (3.5)

exactly reproduces the corresponding leading-order in V expressions. The cases of one

layer of constant density and three layers of constant densities [Eqs. (3.10) and (3.14)]

are immediately obtained from Eq. (3.5) by a straightforward calculation of the integral

with the corresponding matter density profiles. The adiabatic case is recovered when one

integrates in Eq. (3.5) by parts and neglects the term with the derivative of the potential

(i.e. keeps only the off-integral term). This gives

P⊕
2e − P

(0)
2e ≃ c4

13 sin2 2θ12
1

4δ
{V (r) cos[2δ · (L − r)]} |L0

= c4
13 sin2 2θ12

1

4δ
{Vf − Vi cos 2δL} , (3.19)

which coincides with Eq. (3.18).

Quite analogously, in all these special cases Eq. (3.6) exactly reproduces the corre-

sponding leading-order in V/2δ expressions for P⊕
2e − P

(0)
2e .

4. Comparison with numerical results

We now proceed to test the accuracy of our approximations by comparing the results

obtained using our main formulas in Eqs. (2.10) and (3.5), as well as Eq. (3.6), with those

following from the exact numerical integration of the three–neutrino evolution equation

employed in Ref. [9].

As has already been pointed out, for the validity of perturbation theory in V the con-

dition V ≪ 2δ is not sufficient: one must also require that the correction to the oscillation

phase, which is ∼ V L, is small compared to unity, and not only compared to the main

contribution to the phase, δL. This is illustrated in Fig 1, which gives the comparison of

the predicted probability differences due to the regeneration effect at the Earth, P⊕
2e−P

(0)
2e ,

versus zenith angle, corresponding to different solar neutrino arrival directions. The solid
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Figure 1: Two-flavour Earth regeneration factor versus zenith angle for a 10 MeV solar neutrino

from the exact numerical calculation and the analytic form given in Eq. (3.5).

(red) curve follows from the exact numerical calculation, while the dashed (black) curve

corresponds to the analytic formula in Eq. (3.5). One sees clearly that the difference be-

tween the night-day probability differences found in our analytic approximation and those

that follow from the exact numerical integration of the three–neutrino evolution equation

is maximal for neutrinos with small zenith angle. For such neutrinos with a longer path

inside the Earth the difference between the exact and approximate oscillation phases accu-

mulates and becomes relatively large, leading to significant differences between the exact

and analytic results, as can be seen from the figure.

0 0.2 0.4 0.6 0.8 1
cos θ

z

-0.01

0

0.01

0.02
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P 2e⊕

 -
 P

2e(0
) >

numerical
analytical

Figure 2: Two-flavour Earth regeneration factor versus zenith angle averaged for the Super-K

detector, from the exact numerical calculation and the analytic formula in Eq. (3.5).
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On the other hand, for large enough baselines, when V L becomes of order unity, also

δL ≫ 1, so that the averaging regime sets in, either because of the integration over the

baselines or, for a fixed zenith angle, because of the integration over energies. Note that

averaging over energies is always present in the experimental data due to the fact that the

neutrino energy is not directly measured and also due to the finite energy resolution of the

detectors. In addition to the energy resolution, for comparison with data one has also to

fold in the neutrino spectrum and relevant neutrino-detection cross section. All this leads

to the smoothening of the above difference. The net effect is that even order 1 shifts of the

phase become unimportant in practice, and neglecting the matter-induced correction to the

phase is justified. This is illustrated in Fig. 2, which compares the probability differences

P⊕
2e − P

(0)
2e properly averaged over the full energy range relevant for the Super-K detector.

It can be seen from this figure that the averaging gives a much better agreement between

the analytic and exact results.

0 0.2 0.4 0.6 0.8 1
cos θ

z

-0.02

0

0.02

0.04

0.06

0.08

P 2e⊕
 -

 P
2e(0

)

numerical calculation
adiabatic improvement

Figure 3: Two-flavour Earth regeneration factor versus zenith angle for a 10 MeV solar neutrino

from the exact numerical calculation and the improved analytic formula given in Eq. (3.6).

Finally, note that due to relatively low statistics in the solar neutrino experiments,

integration over zenith angles is also usually required. This also leads to an averaging

over the oscillation phase, giving a very good agreement between the analytic and exact

numerical results (see Fig. 4 below).

In the situations when no (or little) averaging over neutrino energies or integration

over zenith angles is involved, the improved perturbation theory formula given in Eq. (3.6)

yields much better results. This is illustrated by Fig. 3 which shows that in this case there

is perfect agreement between the analytic and numerical results.
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Figure 4: Comparison of predicted Earth regeneration factors and day–night survival probability

differences: solid lines correspond to exact numerical calculation, dashed ones are the results of the

analytic formulas in Eqs. (2.10) and (3.5). See text for details.

Finally, we turn to the case of interest of three-flavour day–night solar flux differences.

Fig. 4 compares, for the site of the Super-K detector, the analytic and numerical predictions

for the probability differences P⊕
2e −P

(0)
2e and PN −PD, integrated over the whole night and

day ranges of the zenith angles and averaged over one year. The results are given for the

neutrino energy E = 10 MeV.

The left panels give the dependence of these probability differences on the angle θ13.

The middle and right panels display the dependence on the “solar” mixing angle θ12 and

solar mass–squared difference ∆m2
21, respectively. The vertical bands in the left and middle

panels indicate the allowed 3σ regions for sin2 θ13 and sin2 θ12 respectively. The central

curves in all panels are obtained for the best–fit values of the undisplayed neutrino os-

cillation parameters, as obtained in Ref. [9]. On the other hand the outer curves in all

panels correspond to the currently allowed 3σ range of the corresponding undisplayed pa-

rameter. For example in the left panels the upper curves correspond to sin2 θ12 = 0.39

and ∆m2 = 5.4 × 10−5 eV2, while the lower ones correspond to sin2 θ12 = 0.23 and
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∆m2 = 9.5 × 10−5 eV2, for energy E = 10 MeV. In other words, the separation band

between the upper and lowermost curves in each panel gives a measure of the uncertainty

in the theoretical prediction allowed by current data.

Clearly, in all cases our approximate results reproduce very well the results found from

the exact numerical integration of the three–neutrino evolution equation, with a precision

much better than current experimental sensitivities.

5. Future experiments and sensitivity to θ13

The three-flavour day–night asymmetry in the solar neutrino flux correlates with the mag-

nitude of the leptonic mixing angle θ13 [15]. Adopting the standard definition

AND = 2
N − D

N + D
(5.1)

and using (2.10) and (3.5) one can see that the main dependence on cos θ13 is quadratic.

Here we give a quantitative study of this interesting correlation, as displayed in Figs. 5 and

6. The left panel in Fig. 5 gives the magnitude of the day-night asymmetry measured at the

0.5 0.6 0.7 0.8 0.9 1

cos
2θ

13

-0.01

0

0.01

0.02

0.03

0.04

0.05

A
N

D

0.5 0.6 0.7 0.8 0.9 1

cos
2θ

13

σ = 25% σ
SK

σ = 10% σ
SK

SK 1σ region

Figure 5: Day–night asymmetries in three-flavour solar neutrino oscillations versus the mixing

angle θ13. The left panel shows the present status, while the right one gives the projected sensitivities

in future water Cherenkov experiments assuming the same central value of AND.

Super-K experiment 2.1%± 2.0%(stat)± 1.3%(syst) [30] compared with the range for this

quantity which is theoretically predicted on the basis of current analysis of solar neutrino

data [9]. The horizontal band corresponds to the current 1σ uncertainty in the measured

day-night asymmetry, while the hatched region shows the 3σ uncertainty implied by the
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current global determination of oscillation parameters. Clearly, the large errors with which

the small day–night asymmetries are determined by current experiments are such that the

asymmetry measurement does not play a significant role in constraining the angle θ13, the

upper bound on which is dominated by other data in the global fit, mainly by the reactor

data. However, the simple and direct correlation between the predicted asymmetries and

θ13 that can be appreciated in Figs. 5 and 6 can be used to provide an estimate of the degree

to which the mixing angle θ13 can be probed at a future generation of water Cherenkov

solar neutrino experiments. The significance of the future data for the determination of θ13

will depend substantially on both the central value and the errors of the measured AND.
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cos
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SK
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Figure 6: Same as the right panel of Fig. 5, but for different central values of expected measured

AND: 2.8% (left panel) and 1.4% (right panel).

The horizontal bands in the right panel of Fig. 5 and in both panels of Fig. 6 pro-

vide an estimate of the expected improved day-night asymmetry measurements at a larger

Super-K–like water Cherenkov detector, with 1σ errors at 25% and 10% of the current

Super-K error. Such errors might be realistic at future detectors. For example, the Un-

derground Nucleon decay and Neutrino Observatory (UNO) experiment is expected to

improve the sensitivity on the day-night asymmetry down to σ = 0.25σSK , while for the

Hyper-Kamiokande experiment the errors can be much smaller [31].

On the other hand, the hatched regions in the right panel of Fig. 5 and in Fig. 6 cor-

respond to the 3σ range for solar neutrino oscillation parameters expected after improved

KamLAND results. Although further improvements on the determination of solar neutrino

oscillation parameters are likely to be available by then, the figure shows how the uncer-
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tainty in the day–night asymmetry measurement dominates the projected accuracy on the

mixing angle θ13.

Let us first assume that the central value of AND measured in future experiments

coincides with the current value found by Super-K (right panel of Fig. 5). As one can see

from the figure, no improvement on the current upper bound on θ13 can be obtained in

that case. However, it is quite possible that the future central value of the measured night-

day asymmetry will differ from the currently measured one, at least within the current

1σ experimental error 3. This situation is illustrated in Fig. 6. As one can see from the

left panel, if the future central value of measured AND is higher than the present Super-K

one, the current upper limit on θ13 can actually be improved. If, on the contrary, a lower

value of AND is measured (right panel of Fig. 6), the derived upper limit on θ13 will be

substantially weaker than the current one and thus irrelevant. However, as can be seen

from the figure, in that case a lower bound on θ13 may appear; together with the current

upper bound it may actually lead to a rather precise determination of θ13.

Thus, an improved measurement of the day–night asymmetry can be immediately

converted into more precise information on θ13.

It should be noted that, even though the day-time solar neutrino signal depends on

θ13 more sensitively than the day-night asymmetry (essentially as c4
13), this dependence is

always multiplied by the overall normalization of the solar neutrino flux. For 8B neutrinos,

the uncertainty in the flux normalization factor fB is of the same size as the possible effect

of non-zero θ13. This makes it difficult to disentangle the two effects and hinders the precise

determination of both fB and θ13 from the charged-current data. In contrast to this, the

day-night asymmetry is independent of the overall flux normalization and so may provide

an unambiguous information on θ13.

6. Discussion and outlook

We have derived a simple and accurate analytic expression for the day-night difference of

the flux of solar νe coming to terrestrial detectors, with 3-flavour effects fully taken into

account. Our approach was based on a simple perturbation theory in the matter-induced

potential of neutrinos inside the Earth, without any assumptions regarding the Earth’s

density profile. Our results are therefore valid for an arbitrary density profile.

3Future best-fit values of the parameters θ12 and ∆m
2
12, which determine the position of the hatched

regions in Figs. 5 and 6, can also differ from the current ones. However, the effect of this deviation cannot

be as large as that for AND since their present-day errors are significantly smaller.
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We have checked our analytic formula by comparing it with the results of the exact

numerical calculations with the 3-flavour evolution equation, and found that the accuracy of

the analytic approach is typically about a few per cent when the neutrino path length inside

the Earth is small, or when the integration over the zenith angles or averaging over neutrino

energies are performed. On the other hand, when both the neutrino energy and zenith angle

are fixed, the formula in Eq. (3.5) does not provide a sufficient accuracy. For this case we

have derived an improved perturbation-theoretic formula [Eq. (3.6)]. Compared to the

expression in Eq. (3.5) it contains the adiabatic oscillation phase in the integrand instead

of the in-vacuum one. The improved formula gives a perfect agreement with the exact

numerical results even when no averaging over the zenith angles or neutrino energy (i.e.,

over the oscillation phase) is performed.

We have studied the dependence of our results on the leptonic mixing angle θ13 which

is of great interest for many reasons, most importantly because it governs CP violation in

neutrino oscillations. We have found that for an arbitrary Earth density profile the day-

night difference of the solar neutrino flux at the detector scales mainly as c6
13, as previously

found for the constant density profile in [15]. The remaining (milder) dependence stems

primarily from the θ13-dependence of the neutrino mixing angle in matter at the production

point inside the Sun.

Although the smallness of θ13 implies that the solar neutrino data, including the day-

night asymmetry, should depend rather weakly on this parameter, this dependence may

not be negligible. For example, the current 3σ limit sin2 θ13 < 0.054 [9] means that the

day-night difference of the solar neutrino signal can be suppressed by up to 15% compared

to the 2-flavour (i.e. θ13 = 0) case. If one fixes ∆m2
31 = 2 × 10−3 eV2 (which is the

best-fit value coming from the analysis of the atmospheric neutrino oscillations performed

by the Super-K collaboration [32]), then the 3σ upper bound is sin2 θ13 < 0.066 [9], and

the day-night difference of the solar neutrino signal can be suppressed by as much as 20%

compared to the 2-flavour case.

While the accuracy with which the solar neutrino day-night effect is measured by the

current experiments is insufficient for probing the value of θ13, future very large water

Cherenkov detectors, such as UNO or Hyper-Kamiokande, may be able to provide a sig-

nificant information on it. Depending on the measured value of AND, the current upper

bound on θ13 may be improved, or even a lower bound on this mixing parameter may be

obtained. An advantage of the day-night asymmetry as opposed to the day-time signal is

that AND is independent of the overall normalization of the solar neutrino flux, which is
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currently not known with sufficient accuracy.

It should be noted that the Earth matter effects on the oscillations of the supernova

neutrinos inside the Earth are governed by the same quantity, P⊕
2e−P

(0)
2e , which determines

the Earth matter effects on the solar neutrino oscillations (see, e.g., [33]). Therefore our

results, Eqs. (3.5) and (3.6), can also be used for studying the supernova neutrino oscil-

lations inside the Earth. Note, however, that the typical energies of supernova neutrinos

(E ∼ 30 MeV) are higher than those of solar neutrinos, and so the expected accuracy of

our approximation for supernova neutrinos is ∼ (10 – 15)%.
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Note added. As we completed our paper, two new papers appeared [34, 35], in which

analytic formulas for the Earth matter effect on neutrino oscillations, similar to ours, were

derived. The first [34] is based on adiabatic perturbation theory, while Ref. [35] employs

ordinary perturbation theory, similar to that used in the present paper. Note, however,

that Refs. [34, 35] adopt the two-flavour approximation, while our analysis is performed in

the three-flavour framework.

A. Derivation of Eq. (3.6)

We shall derive here expression (3.6) for the Earth regeneration factor P⊕
2e − P

(0)
2e . In

contrast to perturbation theory in V developed in sec. 3, we employ here perturbation

theory in the small parameter V/2δ, so that the obtained results will be valid for arbitrary

values of V L.

Consider the neutrino evolution equation in the mass-eigenstate basis, i(d/dt)νmass =

Hmassνmass. Here νmass = U †ν, and the Hamiltonian Hmass = U †HU can be written

explicitly as

Hmass =









c2
12 c2

13 V s12 c12 c2
13V c12 s13 c13 e−iδCP V

s12 c12 c2
13 V s2

12 c2
13 V + 2δ s12 s13 c13 e−iδCP V

c12 s13 c13 eiδCP V s12 s13 c13 eiδCP V 2∆ + s2
13 V









. (A1)
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Since V ≪ 2δ ≪ 2∆ and s13 ≪ 1, one can neglect the (1-3) and (2-3) elements of Hmass

compared to the (3-3) element. This means that the evolution of the third mass eigenstate

ν3 essentially decouples from that of the first two eigenstates and, in addition, that matter

effects on the third mass eigenstate are negligible.

Diagonalization of the (ν1, ν2)-subsector of Hmass is performed through the rotation

by the angle θ′(t) which is determined according to

cos 2θ′(t) =
δ − cos 2θ12 c2

13V (t)/2

ω(t)
, sin 2θ′(t) =

sin 2θ12 c2
13V (t)/2

ω(t)
, (A2)

with ω(t) given in Eq. (2.17). Note that θ′ = θ̂12−θ12, where θ̂12 was defined in Eq. (2.16).

The smallness of the potential V compared to 2δ means that the neutrino matter eigenstates

almost coincide with mass eigenstates, i.e. θ′(t) ≪ 1. We shall now employ perturbation

theory in sin θ′, which is essentially the same as perturbation theory in V/2δ.

The decoupling of ν3 allows one to write

Hmass ≃ ω(t)









− cos 2θ′(t) sin 2θ′(t) 0

sin 2θ′(t) cos 2θ′(t) 0

0 0 2∆̃/ω(t)









. (A3)

Here ∆̃ = ∆ − (V/2 + δ)/2, and we have redefined the common phase of the neutrino

states so as to make the Hamiltonian of the (ν1, ν2) sector traceless and used Eq. (A2).

The Hamiltonian Hmass in Eq. (A3) can be decomposed into the term of zeroth order in

s′ ≡ sin θ′ and term that contains first and higher orders in s′ according to

Hmass ≃









−ω(t) 0 0

0 ω(t) 0

0 0 2∆̃









+ 2ω(t)









s′(t)2 s′(t)c′(t) 0

s′(t)c′(t) −s′(t)2 0

0 0 0









≡ Hm0 + Hm1 . (A4)

To leading order in s′(t), only the (1-2) and (2-1) elements of Hm1 are different from zero.

The evolution matrix to first order in s′ can be found from a formula which coincides with

Eq. (3.1) with S̃0 and H̃1 replaced by (Smass)0 and Hm1, respectively. The zeroth-order

evolution matrix in the mass eigenstates basis is (Smass)0 = diag(eiφ, e−iφ, f̃), and to first

order in s′ we find

Smass ≃









eiφ −iCeiφ 0

−iC∗e−iφ e−iφ 0

0 0 f̃









, (A5)

where

φ =

∫ t

t0

ω(t′)dt′ , C = 2

∫ t

t0

ω(t′)s(t′)e
−2i

∫

t
′

t0
ω(x)dx

dt′ . (A6)
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The parameter f̃ is not relevant to our discussion. The amplitude A⊕(ν2 → νe) is obtained

as

A⊕(ν2 → νe) = (1 0 0) USmass









0

1

0









= c13(−ic12Ceiφ + s12e
−iφ) . (A7)

This gives

P⊕
2e − P

(0)
2e = c2

13 sin 2θ12 Im(e2iφC) , (A8)

which immediately leads to Eq. (3.6).

The two-flavour limit of Eq. (3.6) was derived in Ref. [35] by dividing the interval [0, L]

into small intervals of constant matter densities.

References

[1] S. P. Mikheev and A. Y. Smirnov, ’86 Massive Neutrinos in Astrophysics and Particle

Physics, Proceedings of the Sixth Moriond Workshop, ed. by O. Fackler and J. Tran

Thanh Van. (Editions Frontières, Gif-sur-Yvette, 1986, p. 355).

[2] J. Bouchez et al., Z. Phys. C32, 499 (1986).

[3] M. Cribier, W. Hampel, J. Rich and D. Vignaud, Phys. Lett. B182, 89 (1986).

[4] E. D. Carlson, Phys. Rev. D34, 1454 (1986).

[5] A. J. Baltz and J. Weneser, Phys. Rev. D35, 528 (1987).

[6] A. Dar, A. Mann, Y. Melina and D. Zajfman, Phys. Rev. D35, 3607 (1987).

[7] For a recent theoretical discussion see, e. g. M. C. Gonzalez-Garcia, C. Pena-Garay

and A. Y. Smirnov, Phys. Rev. D63, 113004 (2001), [hep-ph/0012313].

[8] S. Pakvasa and J. W. F. Valle, hep-ph/0301061, Proceedings of the Indian National

Academy of Sciences on Neutrinos, Part A: Vol. 70A, No.1, p.189 - 222 (2004), Eds.

D. Indumathi, M.V.N. Murthy and G. Rajasekaran.

[9] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, Phys. Rev. D68, 113010

(2003), [hep-ph/0309130].

[10] CHOOZ, M. Apollonio et al., Phys. Lett. B466, 415 (1999), [hep-ex/9907037].

[11] A. Bandyopadhyay, S. Choubey, S. Goswami, S. T. Petcov and D. P. Roy, Phys.

Lett. B583, 134 (2004), [hep-ph/0309174].

– 20 –



[12] P. C. de Holanda and A. Y. Smirnov, hep-ph/0309299.

[13] M. C. Gonzalez-Garcia and C. Pena-Garay, hep-ph/0306001.

[14] G. L. Fogli et al., Phys. Rev. D67, 073002 (2003), [hep-ph/0212127].

[15] M. Blennow, T. Ohlsson and H. Snellman, Phys. Rev. D69, 073006 (2004), [hep-

ph/0311098].

[16] J. Schechter and J. W. F. Valle, Phys. Rev. D22, 2227 (1980).

[17] J. Schechter and J. W. F. Valle, Phys. Rev. D23, 1666 (1981).

[18] S. M. Bilenky, J. Hosek and S. T. Petcov, Phys. Lett. B94, 49 (1980).

[19] M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Phys. Lett. B102, 323

(1981).

[20] C. S. Lim, (Talk Presented at BNL Neutrino Workshop, Upton, N.Y., Feb 5-7, 1987),

preprint BNL-39675, 1987.

[21] J. Bahcall, Home page http://www.sns.ias.edu/ jnb/.

[22] A. S. Dighe, Q. Y. Liu and A. Y. Smirnov, hep-ph/9903329.

[23] Particle Data Group, K. Hagiwara et al., Phys. Rev. D66, 010001 (2002).

[24] E. K. Akhmedov, P. Huber, M. Lindner and T. Ohlsson, Nucl. Phys. B608, 394

(2001), [hep-ph/0105029].

[25] E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, hep-

ph/0402175.

[26] E. Lisi and D. Montanino, Phys. Rev. D56, 1792 (1997), [hep-ph/9702343].

[27] M. C. Gonzalez-Garcia, C. Pena-Garay, Y. Nir and A. Y. Smirnov, Phys. Rev. D63,

013007 (2001), [hep-ph/0007227].

[28] E. K. Akhmedov, Nucl. Phys. B538, 25 (1999), [hep-ph/9805272].

[29] H. Minakata, H. Nunokawa, K. Shiraishi and H. Suzuki, Mod. Phys. Lett. A2, 827

(1987).

[30] Super-Kamiokande, M. B. Smy et al., Phys. Rev. D69, 011104 (2004), [hep-

ex/0309011].

– 21 –



[31] UNO, Home page at Stonybrook http://superk.physics.sunysb.edu/nngroup/uno/main.html.

[32] C. Yanagisawa, Proc. of International Workshop on Astroparticle and High En-

ergy Physics, October 14 - 18, 2003, Valencia, Spain, published at JHEP, PRHEP-

AHEP2003/062, accessible from http://ific.uv.es/ahep/.

[33] A. S. Dighe and A. Y. Smirnov, Phys. Rev. D62, 033007 (2000), [hep-ph/9907423].

[34] P. C. de Holanda, W. Liao and A. Y. Smirnov, hep-ph/0404042.

[35] A. N. Ioannisian and A. Y. Smirnov, hep-ph/0404060.

– 22 –


