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Abstract

The main aim of this paper is to give structural information of a
finite group of minimal order belonging to a subgroup-closed class of
finite groups and whose p-length is greater than 1, p a prime number.
Alternative proofs and improvements of recent results about the in-
fluence of minimal p-subgroups on the p-nilpotence and p-length of a
finite group arise as consequences of our study.

1 Introduction and statement of results

All groups considered are finite. In the following p will be a prime number.
The motivation for this paper comes from [7], where some results about the
influence of minimal p-subgroups on the p-nilpotence and p-length of groups
were given. More precisely, the authors proved there that if p is odd and G

is a group with a Sylow p-subgroup P such that the elements of order p of
P are in Zp−1(P ), then G is p-nilpotent if and only if NG(P ) is p-nilpotent
(Theorem D). In addition, if G is p-soluble and the elements of order p are
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actually in Zp−2(P ), then G is of p-length at most 1 (Theorem E). The p-
nilpotence of G in the above theorem is deduced from [12, Main Theorem],
whose proof depends on the interesting fact that every p-Schur-Frattini ex-
tension of certain groups of p-length 2 has a subgroup isomorphic to a certain
p-group called Yp(m) provided that p is odd ([12, Section 3.4 and Proposition
3.5]).

Unfortunately, we have found some delicate points in the proof of the
above statement. For instance, the image of the form defined in Equa-
tion (3.14) is not contained in general in GF(pe) because we cannot assure
in general that this image is fixed by the corresponding Frobenius-type auto-
morphism. Moreover, in the construction of the subgroup isomorphic to
Yp(m) in Case 1.B in the proof of [12, Proposition 3.5], it is not sufficient
to ensure that the chosen element x is not fixed under the automorphism
x 7→ xpf , because x could be taken as an element of the maximal submodule
of the regular module and hence x might generate a non-regular submodule.

We have been unable to overcome those difficulties, especially the second
one, just following Weigel’s proof and so we have tried to solve them by
presenting an alternative proof of Proposition 3.5 of [12]. This is done in the
paper [2].

The aim of this paper is to describe a completely different approach based
on the classical theory of Hall and Higman (see Chapter IX of [10]). An
improvement of Theorem E and Theorem D of [7] follow from our main
result.

We prove the following general result.

Theorem A. Let P be a subgroup-closed class of p-groups, and let Y(P)

denote the class of all p-soluble groups whose Sylow p-subgroups are in P.
Also, let Lp be the class of all groups of p-length at most one. Suppose that
Y(P) is not contained in Lp, and let G be a p-soluble group of minimal order
in Y(P) \ Lp. If P is a Sylow p-subgroup of G, then Φ(G), the Frattini
subgroup of G, is contained in P and one of the following holds.

1. If p is not a Fermat prime or the Hall p′-subgroups of G are abelian,
then the nilpotence class of P/Φ(G) is greater than or equal to p.

2. If p is a Fermat prime, then the nilpotence class of P/Φ(G) is greater
than or equal to p− 1.

We now come to our principal applications of Theorem A.
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If P is a p-group and k is a natural number, we denote

Ωk(P ) = 〈x ∈ P : xpk = 1〉, and Ω(P ) =

{
Ω1(P ) if p is odd,
Ω2(P ) if p = 2.

Our first corollary is an improvement of Theorem E in [7].

Corollary 1. Let p be a prime. Let G be a p-soluble group.

1. If Ω(P ) ≤ Zp−2(P ), then G has p-length at most 1.

2. If p is not a Fermat prime or the Hall p′-subgroups of G are abelian
and Ω(P ) ≤ Zp−1(P ), then G has p-length at most 1.

Our second corollary confirms Theorem D of [7] and gives some additional
information.

Corollary 2 (See [7, Theorem D]). Suppose that p is a prime. Let G be a
group and P a Sylow p-subgroup of G. Assume that NG(P ) is p-nilpotent.

1. If Ω(P ) ≤ Zp−1(P ), then G is p-nilpotent.

2. If p = 2, and either Ω(P ) ≤ Z(P ), or Ω1(P ) ≤ Z(P ) and P is
quaternion-free, then G is 2-nilpotent.

We round the paper off with some examples showing that the lower
bounds in Theorem A are attained (Examples 3 and 4). Example 5 shows
that the hypotheses on the Sylow 2-subgroups in Corollary 2 are necessary.

2 Proof of Theorem A

By [5, A, 10.2; IV, 3.4(a) and 4.8(a); IX, 1.11 and 1.12], the class Lp of all
p-soluble groups of p-length at most 1 is a subgroup-closed saturated Fitting
formation. Moreover, since P is subgroup-closed, the class Y(P) is also
subgroup-closed. These facts will be used repeatedly in what follows.

We proceed in a number of steps, the first of which consists of three
closely related statements, all of which are consequences of the structure of
the proper subgroups of G.

(1) Every proper subgroup of G has p-length at most 1. In particular:
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1. Op′(G) = G and then Op(G) is a proper normal subgroup of G;

2. G is a group which has only one maximal normal subgroup;

3. G/Op(G) is cyclic.

Note that every proper subgroup of G belongs to Y(P). The minimality
of G implies that all of them have p-length at most 1.

If Op′(G) were a proper subgroup of G, then Op′(G) would have p-length
at most 1. Then G would be of p-length at most 1, contradicting our as-
sumption. Hence Op′(G) = G.

Since G is p-soluble, Op(G) is a proper normal subgroup of G. Let H

be a maximal normal subgroup of G such that Op(G) ≤ H. Then H has p-
length at most 1. If there were two such maximal normal subgroups, then G

would have p-length at most 1 since the class Lp is a Fitting class. Therefore
G/Op(G) has exactly one maximal subgroup. This implies that G/Op(G) is
cyclic.

(2) Op′(G) = 1. Therefore if F is the Fitting subgroup of G, then F =

Op(G) and CG(F ) ≤ F .

Suppose that Op′(G) 6= 1 and let N be a minimal normal subgroup of G
contained in Op′(G). Then PN/N is a Sylow p-subgroup of G/N such that
PN/N ∼= P . Since |G/N | < |G| the group G/N is of p-length at most 1 and
so is G. This contradicts our assumption. Thus Op′(G) = 1.

In particular, Oq(G) = 1 for all primes q 6= p. Then F(G) = Op(G) and,
since G is p-soluble, CG(F ) ≤ F by [9, VI, 6.5].

(3) G/Φ(G) is primitive and so F/Φ(G) = Soc(G/Φ(G)) is a chief factor
of G/Φ(G).

Moreover, G/F is p-nilpotent and Op(G/F ) = 1.

Since Lp is a saturated formation, it follows that G/Φ(G) /∈ Lp. Let
R/Φ(G) be a minimal normal subgroup of G/Φ(G). Assume that R/Φ(G)

is a p′-group. By [9, VI, 1.7] R has Hall p′-subgroups and all of them are
conjugate in G. Consequently R = KΦ(G) for some Hall p′-subgroup K of R
and G = NG(K)(KΦ(G)) = NG(K). Then K ≤ Op′(G) = 1. Thus R/Φ(G)

is an elementary abelian p-group, R ≤ F and R/Φ(G) is complemented in G.
Let M be a maximal subgroup of G such that MR = G and M ∩R = Φ(G).
Then G/R ∼= M/Φ(G) ∈ Lp. Now suppose that R1/Φ(G) and R2/Φ(G) are
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distinct minimal normal subgroups of G/Φ(G). Then R1 ∩ R2 = Φ(G), so
G/Ri ∈ Lp, i = 1, 2, implies G/Φ(G) ∈ Lp, against supposition. We can
then conclude that Soc(G/Φ(G)) = F/Φ(G) is the unique minimal normal
subgroup of G/Φ(G) and G/F ∈ Lp. Since Op′(G) = G, we have that G/F is
p-nilpotent. If K/F is a normal p-subgroup of G/F , then K ≤ Op(G) = F .
This means that Op(G/F ) = 1. Step (3) is therefore justified.

(4) If U is a maximal subgroup of G containing P , then U = NG(P ).

Let U be a maximal subgroup of G containing P . Since F ≤ U we have
Op′(U) ≤ CU(F ) ≤ F , and therefore Op′(U) = 1. Since U ∈ Lp, P is normal
in U . Then U ≤ NG(P ). If P were normal in G, then G would be of p-length
at most 1, contradicting our hypothesis. Hence U = NG(P ).

(5) G is a {p, q}-group for some prime q 6= p and G = Op,q,p(G). In
particular G is soluble. Write A = Op,q(G).

If N/Op(G) = Φ(A/Op(G)), then A/N is the only minimal normal sub-
group of G/N and U = PN .

Moreover Op(G) ≤ A and, in particular, G/A is a cyclic p-group.

By Step (4), G has precisely one maximal subgroup containing P . Hence
we can appeal to [11, X, 9.9] and conclude that G = Op,q,p(G), for some prime
q 6= p, A/N is the only minimal normal subgroup ofG/N and U = PN . Since
G is a {p, q}-group, G is soluble by the well-known theorem of Burnside ([5,
I, Section I]).

Since G/A = Op(G/A), Op(G) ≤ A and so G/A is a cyclic p-group by
Step (1).

(6) Let M be a maximal subgroup of G complementing F/Φ(G). Write
B = P ∩M and let Q be a Sylow q-subgroup of G contained in M . We have:

(i) B is a Sylow p-subgroup of M and M = QB.

(ii) B/Φ(G) is a cyclic p-group.

(iii) M = NG(Q) and Z(M/Φ(G)) is cyclic.

(iv) [Op(G),Φ(G)] = 1.

(v) B ≤ CG(Φ(Q)).

(vi) Z∞(G) = Φ(G).
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(i) Since G = MF and F = Op(G), P = F (P ∩M) and B = P ∩M is a
Sylow p-subgroup of M . Note that every Sylow q-subgroup of G is contained
in A. In fact if Q is a Sylow q-subgroup of G contained in M , then A = QF

and A ∩M = QΦ(G). Therefore QΦ(G) is normal in M and M = QB.
(ii) Since G = AM and M = QB, we have

G/A ∼= M/QΦ(G) ∼= B/Φ(G)

and then B/Φ(G) is cyclic by Step (5).
(iii-iv) We know that G/F ∼= M/Φ(G). Hence

M/Φ(G) = Op′(M/Φ(G)) = Op′(M)Φ(G)/Φ(G).

This means that M = Op′(M)Φ(G) and so M = Op′(M) because Φ(G) is
a p-group. This forces M to be p-nilpotent as M has p-length at most 1.
Then Q is normal in M and M ≤ NG(Q). Since Q is not normal in G

and M is maximal in G, M = NG(Q). Thus [Q,Φ(G)] = 1. Consequently
Q ≤ CG(Φ(G)). Since Op(G) is generated by all conjugates of Q, we have
that Op(G) ≤ CG(Φ(G)) and hence [Op(G),Φ(G)] = 1.

Now F/Φ(G) can be regarded as an irreducible M -module over the finite
field of p elements. Since CM(F/Φ(G)) = Φ(G), it follows that Z(M/Φ(G))

is cyclic by [5, B, 9.4].
(v) Note that Q ∼= A/F and then N/F = Φ(A/F ) ∼= Φ(Q). Thus

N = Φ(Q)F and U = PN = PΦ(Q). Hence U ∩M = NG(P ) ∩ NG(Q) =

PΦ(Q) ∩ M = Φ(Q)(P ∩ M) = Φ(Q)B is a system normaliser of G and
therefore is nilpotent by [5, I, 5.4]. Thus B ≤ CG(Φ(Q)).

(vi) Applying [5, I, 5.9], we have that CoreG(U ∩M) = Z∞(G). Therefore
Φ(G) ≤ Z∞(G). Now, since (U ∩M)/Φ(G) is core-free in G/Φ(G), Z∞(G) =

CoreG(U ∩M) = Φ(G).

(7) Let H be the maximal normal subgroup of G. Then H = FQ = A

and B/Φ(G) is a cyclic group of order p.

It is clear that G/H has order p and A = QF ≤ H. Therefore H =

H ∩ FM = F (H ∩M) = F (H ∩ QB) = FQ(H ∩ B) and B0 = H ∩ B is
maximal in B. Since B/Φ(G) is cyclic, B0/Φ(G) = Φ(B/Φ(G)). Moreover
H has p-length at most 1 and Op′(H) = 1 by Step (1). Therefore the Sylow
p-subgroup FB0 of H is normal in H. Hence FB0 ≤ Op(G) = F and so
B0 ≤ F ∩M = Φ(G). This implies that H = A and the Frattini subgroup of
the cyclic p-group B/Φ(G) is trivial. This is to say that B/Φ(G) has order p.
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Next we focus our attention on the quotient group G = G/Φ(G). For
any subgroup X of G we will write X to denote the image of X in G:
X = XΦ(G)/Φ(G).

(8) Q is either elementary abelian or an extraspecial q-group.

Let x ∈ G be an element of G such that B = 〈x〉, x = xΦ(G). Since
G is not nilpotent, it follows that B is a p-group of automorphisms of the
q-group Q. Let T be a proper subgroup of Q containing Φ(G) such that T is
a B-invariant normal subgroup of Q. Then C = FT 〈x〉 is a proper subgroup
of G and so it is of p-length at most 1. In addition, Op′(C) = 1. Thus F 〈x〉
is normal in C and so T is centralised by B. Applying [8, 5.3.7], we have:

• either Q is elementary abelian,

• or Q has class 2 and Q
′

= Z(Q) = Φ(Q) is elementary abelian, and x

acts trivially on Z(Q). This implies that Z(Q) ≤ Z(M). Since Z(M) is
cyclic, by part (iii) of Step (6), we have that Q is extraspecial.

Recall that F can be regarded as an irreducible and faithful M -module
over K = GF(p), the finite field of p elements. Let FB denote the subgroup
F regarded as B-module over K by restriction.

(9) If Q is abelian, then FB is a direct sum of copies of the regular
KB-module.

Since F is an irreducible M -module over K, we can apply [1, 3.3.40]
to conclude that FB is isomorphic to a direct sum of copies of the regular
KB-module.

(10) Assume that Q is extraspecial.

• If p is not a Fermat prime, then regular KB-module is a direct sum-
mand of FB.

• If p is a Fermat prime then two possibilities arise:

– either the regular KB-module is a direct summand of FB,

– or FB is a direct sum of copies of the Jacobson radical, J(KB),
of the regular KB-module.
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First we claim that x ∈ B induces a fixed-point-free automorphism on
Q/Q

′. Thus if g ∈ Q \Q′, then gxQ
′ 6= gQ

′.
Write Q∗ = Q/Q

′ and M∗ = M/Q
′. Then Q∗ is the only minimal normal

subgroup of M∗ by (5). If CQ∗(B) 6= 1, then CQ∗(B) is a non-trivial normal
subgroup of M∗ contained in Q∗. Then CQ∗(B) = Q∗. This implies that
B stabilises the chain 1 ≤ Q

′ ≤ Q and then [B,Q] = 1, by [5, A, 12.3].
Therefore P is normal in G, against supposition. Hence CQ∗(B) = 1. In
particular, x acts fixed-point-freely on Q∗.

Since [Q
′
, B] = 1 by Statement (v) of Step (6), M = QB is critical in the

sense of [10, IX, 2.1].
Let L be an algebraic closure ofK and let FL be the LM -module obtained

from F by extending the field to L. Since F is a faithful M -module over K,
F

L is a faithful M -module over L by [5, B, 5.2]. According to [5, B, 5.15],
F

L
= F1 ⊕ · · · ⊕ Fr is a direct sum of irreducible LM -modules and all Fi

are Galois-conjugate. In particular CM(F1) = CM(Fi) for all i = 1, . . . , r by
[5, B, 5.12]. Then CM(F1) = CM(F

L
) = CM(F ) = 1. Therefore F1 is an

irreducible and faithful M -module over L. In particular, Q is represented
faithfully on F1.

Write |Q| = q2m+1 (m > 0). Applying a theorem of Hall and Higman [10,
IX, 2.6], we have:

1. dimL(F1) = qm, and

2. (F1)B = V ⊕Y where V is a free LB-module and Y is indecomposable
and dimL Y = 1 or p− 1.

Suppose that no direct summand of (F1)B is isomorphic to the regular
LB-module. Then V = 0 and (F1)B = Y . In this case qm = dimL F1 =

dimL Y = 1, and therefore m = 0. This contradicts our assumption. Hence
qm = dimL Y = p−1. By [10, IX, 2.7], we have q = 2, m = 2r and p = 22r +1

is a Fermat prime. In this case, by [10, VII, 5.3], we have:

Y ∼= LB/J(LB)p−1 ∼= J(LB) = J(KB ⊗ L) ∼= J(KB)⊗ L

by [10, VII, 1.5].
By [10, VII, 1.21], the regular KB-module is a direct summand of FB

provided the regular LB-module is a direct summand of (FB)L ∼= (F
L
)B.

Hence we have:
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• If p is not a Fermat prime, then the B-module FB contains a direct
summand isomorphic to KB, the regular KB-module.

• If p is a Fermat prime then two possibilities arise:

(a) either FB contains a direct summand isomorphic to KB, the reg-
ular KB-module,

(b) or FB is a direct sum of indecomposable modules isomorphic to
J(KB).

(11) Conclusion.

Write W = Cp o Cp. Note that that Z(W ) is of order p, W ′ is elementary
abelian of order pp and the nilpotence class of W is p. Hence the nilpotence
class of W/Z(W ) is p− 1.

(a) Suppose that p is not a Fermat prime or Q is abelian. Then a dir-
ect summand of FB is isomorphic to the regular KB-module. In this case
P/Φ(G) contains a subgroup isomorphic to W by [5, B, 11.1]. Then the
nilpotence class of P/Φ(G) is greater or equal than p by [5, A, 8.2].

(b) Suppose that p is a Fermat prime. Then it could occur that FB

is a direct sum of indecomposable KB-modules isomorphic to J(KB). In
this case P/Φ(G) contains a subgroup isomorphic to W/Z(W ) and so the
nilpotence class of P/Φ(G) is greater or equal to p− 1 by [5, A, 8.2].

3 Proofs of the Corollaries

Proof of Corollary 1. Consider the class Pk the class of all p-groups P such
that Ω(P ) ≤ Zk(P ), for some integer k. Then Pk is a subgroup-closed class
of p-groups. Let Y(Pk) denote the class of all p-soluble groups whose Sylow
p-subgroups are in Pk. Assume that Y(Pk) is not contained in Lp. If G
is a group of minimal order in Y(Pk) \ Lp, then G is a group described in
Theorem A. We follow the same notation. Consider the normal subgroup
A. Suppose that every element of order p of A is in Φ(G). By part (vi) of
(6) this is to say that Ω(F ) ≤ Z∞(G) ∩ A ≤ Z∞(A). Then A is p-nilpotent,
by [3, Corollary 4]. This implies that Q ≤ CG(F ) ≤ F , and this is not true.
Therefore there exists an element of order p, or order 2 or 4 if p = 2, say g,
in F \ Φ(G).
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Since F/Φ(G) is a minimal normal subgroup of G/Φ(G), then the normal
closure of 〈gΦ(G)〉 in G/Φ(G) is F/Φ(G). Hence 〈g〉GΦ(G) = F . In fact.
since g ∈ F , then 〈g〉G ≤ F and then 〈g〉G ≤ Ω(P ). Hence F = 〈g〉GΦ(G) ≤
Ω(P )Φ(G).

Since Ω(P ) ≤ Zk(P ), then

F/Φ(G) ≤ Ω(P )Φ(G)/Φ(G) ≤ Zk(P )Φ(G)/Φ(G) ≤ Zk(P/Φ(G)).

Since P/F ∼= B is a cyclic group, we have that the nilpotence class of P/Φ(G)

is less than or equal to k.
Consequently, the class Y(Pk) is contained in Lp for all k < p − 1. If

k = p − 1 and p is not a Fermat prime, Y(Pp−1) is contained in Lp either.
Moreover, every groupG inY(Pp−1) whose Hall p′-subgroups ofG are abelian
is of p-length at most 1. This proves Corollary 1.

Remark. Note that Corollary 1 improves Theorem E of [7] for non-Fermat
odd primes and groups with abelian Hall p′-subgroups.

Proof of Corollary 2. (1) We suppose that the statement is false and derive
a contradiction. Let G be a non-p-nilpotent group of minimal order subject
to having a Sylow p-subgroup P , p odd, such that NG(P ) is p-nilpotent and
Ω(P ) ≤ Zp−1(P ). Then G satisfies the following properties.

(a) Op′(G) = 1.

Assume Op′(G) 6= 1, and let N be a minimal normal subgroup of G such
that N ≤ Op′(G). Note that PN/N is a Sylow p-subgroup of G/N such that
PN/N ∼= P . Hence Ω(PN/N) ≤ Zp−1(PN/N). Moreover, NG/N(PN/N) =

NG(P )N/N is p-nilpotent. The minimality of G yields G/N is p-nilpotent
and so G is p-nilpotent, giving a contradiction.

(b) Write F = F(G) = Op(G). G is p-soluble and CG(F ) ≤ F .

Let Z J(P ) denote the centre of the Thompson subgroup of P (see [8, 8,
Section 2]). Clearly P ≤ NG(P ) ≤ NG(Z J(P )). If NG(Z J(P )) is a proper
subgroup of G, then the choice of G ensures that NG(Z J(P )) is p-nilpotent.
Applying [8, 8.3.1], we deduce that G is p-nilpotent, contrary to supposition.
Hence NG(Z J(P )) = G. Therefore, 1 6= Z J(P ) ≤ Op(G) = F (G) = F since
Op′(G) = 1.

Suppose that G/F is not p-nilpotent. Then F is a proper subgroup of
P and thus Z J(P/F ) is a non-trivial subgroup of P/F which is not normal
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in G/F . Write Z/F = Z J(P/F ). Then NG(Z) is a non-p-nilpotent proper
subgroup ofG containing P . This contradicts the minimal choice ofG. Hence
G/F is p-nilpotent. In particular, G is p-soluble and then CG(F ) ≤ F by [9,
VI, 6.5].

(c) G is a soluble group whose p-length is at most 1.

Let U be a maximal subgroup of G containing P . Since F ≤ U we have
Op′(U) ≤ CU(F ) ≤ F , and therefore Op′(U) = 1. By minimality of G, U is
a p-nilpotent group and then P = U .

Applying [11, X, 9.9], we have that G is a {p, q}-group for some prime
q 6= p. Then G is a {p, q}-group, and there exists a Sylow q-subgroup Q of
G such that G = PQ.

Note that F = CoreG(P ). Then G/F is a primitive group and P/F

is a core-free maximal subgroup of G, which is complemented in G/F by
a minimal normal subgroup of G/F (note that G is soluble by Burnside’s
theorem). Then Soc(G/F ) = QF/F . Since Q ∼= QF/F , it follows that Q is
an elementary abelian Sylow q-subgroup of G.

Therefore G is a p-soluble group with abelian Hall p′-subgroups and
Ω(P ) ≤ Zp−1(P ). By Corollary 1, G has p-length at most 1.

(d) We have a contradiction.

Since G has p-length at most 1 and Op′(G) = 1, then P is normal in G.
This is to say that G = NG(P ). Then G is p-nilpotent by hypothesis. This
final contradiction completes the proof.

(2) Suppose that p = 2 and Ω(P ) ≤ Z(P ). Since NG(P ) is 2-nilpotent, it
follows that Ω(P∩G′) is contained in the centre of NG(P ). We can apply then
[4, Theorem 1] to conclude that G is 2-nilpotent. Moreover, if Ω1(P ) ≤ Z(P )

and P is quaternion-free, then G is 2-nilpotent by [4, Theorem 2].

4 Examples

The next two examples show that there exist groups in which the bounds of
Theorem A are attained.

Example 3. The group of automorphisms of Q ∼= C11 has a subgroup iso-
morphic to H = C5. Let S = [Q]H be the corresponding semidirect product.
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Let V be an irreducible and faithful module for S over the field of 5 ele-
ments. The dimension of V as a GF(5)-vector space is 5. Let G = [V ]S be
the corresponding semidirect product.

The Sylow 5-subgroup of G is isomorphic to [V ]H, which is isomorphic to
the wreath product C5 oC5. The nilpotence class of P is exactly 5. Moreover,
the maximal subgroups of G are isomorphic to S, to [V ]S or to [V ]Q, all of
them of 5-length one. Since the Frattini subgroup Φ(G) of G is trivial, the
bound of Theorem A cannot be improved in general.

Example 4. Let Q = 〈g2, g3, g4, g5, g6 | g22 = g23 = g24 = g25 = g6, g
2
6 =

1, [g3, g2] = [g4, g3] = [g5, g4] = [g6, g2] = [g6, g3] = [g6, g4] = [g6, g5] =

1, [g4, g2] = [g5, g2] = [g5, g3] = g6〉 be an extraspecial group of order 32

which is the central product of a quaternion group 〈g2, g4〉 and a dihed-
ral group 〈g3, g4g5〉 of order 8. This group has an automorphism g1 of or-
der 5 given by gg12 = g2g3g4g5, gg13 = g2, gg14 = g3, gg15 = g4, gg16 = g6.
We can take the semidirect product R = [Q]〈g1〉. Now consider the ex-
traspecial group E = 〈g7, g8, g9, g10, g11 | g57 = g58 = g59 = g510 = g511 =

1, [g7, g8] = [g9, g10] = g11, [g7, g9] = [g7, g10] = [g7, g11] = [g8, g9] = [g8, g10] =

[g8, g11] = [g9, g10] = [g9, g11] = [g10, g11] = 1〉 of order 55 and exponent 5.
The group R is a subgroup of automorphism group of E by means of the
action given by gg17 = g27g8g

2
9g10g

3
11, g

g1
8 = g7g

2
8g9g

2
10g

3
11, g

g1
9 = g47g

3
8g9g

2
10g

3
11,

gg1110 = g27g8g
3
9g

4
10g

3
11, gg111 = g11, gg27 = g48, gg28 = g7, gg29 = g10, gg210 = g49,

gg211 = g11, gg37 = g310, g
g3
8 = g39, g

g3
9 = g38, g

g3
10 = g37, g

g3
11 = g11, gg47 = g38,

gg48 = g37, g
g4
9 = g310, g

g4
10 = g39, g

g4
11 = g11, gg57 = g38, g

g5
8 = g37, g

g5
9 = g210,

gg510 = g29, gg511 = g11, gg67 = g47, gg68 = g48, gg69 = g49, gg610 = g410, gg611 = g11
(the details can be checked with GAP [6]). The corresponding semidirect
product G = [E]R is a group of order 25 · 56 = 500,000. This is a sol-
uble group of 5-length 2 and every maximal subgroup of G is of 5-length 1.
Its Sylow 5-subgroup P = 〈g1, g7, g8, g9, g10, g11〉 and its Frattini subgroup is
Φ(G) = 〈g11〉. The nilpotency class of P/Φ(G) is exactly 4 = 5 − 1. This
shows that the bound of Theorem A cannot be improved for the Fermat
prime p = 5.

The thesis of Corollary 2 (2) does not hold if Ω1(P ) ≤ Z(G) but G has
sections isomorphic to the quaternion group Q8 of order 8, as the following
example shows.

Example 5. There are groups G with a Sylow 2-subgroup P such that
Ω1(P ) ≤ Z(P ) but G is not p-nilpotent. Let G = SL2(3) be the special linear
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group of dimension 2 over GF(3). Then G is not 2-nilpotent. However, a
Sylow 2-subgroup P of G is isomorphic to a quaternion group of order 8

and Ω1(P ) ≤ Z(P ). Therefore the hypothesis of Corollary 2 (2) cannot be
removed.
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