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Abstract

In this paper families of non-nilpotent subgroups covering the non-
nilpotent part of a finite group are considered. An A5-free group pos-
sessing one of these families is soluble, and soluble groups with this
property have Fitting length at most three. A bound on the number
of primes dividing the order of the group is also obtained.
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1 Introduction and statement of results
All groups considered in this paper are finite.

The results presented here spring from the classical results of Schmidt
[13] about the structure of the minimal non-nilpotent groups and later de-
velopments from them ([12], [2], [3], [9], [10]). Schmidt proved that if all the
maximal subgroups of a group G are nilpotent, then G is soluble, and that,
in addition, if G is not nilpotent, |G| has exactly two distinct prime factors,
G has a normal Sylow subgroup and a cyclic non-normal Sylow subgroup.
These groups are called minimal non-nilpotent groups or Schmidt groups.

Rose [12] studied the effects of replacing maximal subgroups by non-
normal (or abnormal) maximal subgroups in the hypothesis of Schmidt’s
result, and the following fact is established:
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Theorem A. If every non-normal maximal subgroup of a group G is nilpo-
tent, then G has a normal Sylow subgroup P such that G/P is nilpotent.

We shall say that a group G is a Rose group if every non-normal maximal
subgroup of G is nilpotent.

In a recent paper [11], Li and Guo characterised Rose groups by means
of certain families of normal non-nilpotent subgroups, and obtained more
detailed information about the number of primes dividing the order of the
group. They also gave an alternative proof for solubility.

Theorem B. Let G be a Rose group. Then

1. G is soluble;

2. G is p-nilpotent for some prime p;

3. If G is non-nilpotent, then 2 ≤ |π(G)| ≤ k + 2, where k is the number
of normal maximal subgroups of G which are not nilpotent.

The present paper furnishes extensions of the main results of Rose, Li
and Guo, and was motivated by some ideas of the paper [11]. We consider
families of non-nilpotent subgroups covering the non-nilpotent part of the
group, and analyse how they determine the group structure.

It is abundantly clear that our results are not a mere exercise in general-
isation. In fact, Theorem A and Theorem B cannot be extended directly: the
alternating group of degree 5 is a fundamental obstruction to get solubility.
We must seek to discover how nearly a non-nilpotent group with some of our
coverings is soluble. With this purpose in view, we consider the solubility
question (Theorem C), and give more detailed structural information in the
soluble case.

Definition 1.1. Let G be a non-nilpotent group. A Schmidt covering of G
is a, possibly empty, family of non-nilpotent proper subgroups {K1, . . . , Kn}
of G satisfying the following two conditions:

1. If i, j ∈ {1, . . . , n} and i 6= j, then Ki is not contained in Kj.

2. If T is a proper subgroup of G such that T 6∈ {K1, . . . , Kn} and T is not
contained in Kt for some t ∈ {1, . . . , n}, then T is nilpotent provided
that T is a supplement in G of the nilpotent residual GN of G.

Recall that the nilpotent residual of a group is the smallest normal sub-
group with nilpotent quotient. We say that a group G is an NNC -group if G
has a Schmidt covering. If G is a Schmidt group, then G is an NNC -group
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with an empty Schmidt covering, and if G is a non-nilpotent Rose group, then
the empty set and the set of all non-nilpotent normal maximal subgroups of
G are both Schmidt coverings of G. Hence G is an NNC -group. However,
the symmetric group of degree 4 shows that the class of Rose groups is a
proper subclass of the class of all NNC -groups.

Our first main theorem is the following.

Theorem C. Let G be an NNC -group. If G has no section isomorphic to
A5, then G is soluble.

We note that the proof of the above result relays on the Classification of
Finite Simple Groups.

For G a nontrivial soluble group, we let F (G) denote the Fitting subgroup
of G. The subgroups Fi(G) are defined inductively by F0(G) = 1, and
Fi+1(G)/Fi(G) = F (G/Fi(G)). The smallest non-negative integer n such
that Fn(G) = G is the Fitting length l(G) of G. The trivial group has
Fitting length 0; a nontrivial nilpotent group has Fitting length 1; and if
G 6= 1, then l(G/F(G)) = l(G)− 1.

According to Theorem A, a Rose group has Fitting length at most 2. The
symmetric group of degree 4 is an NNC -group of Fitting length 3. Hence,
Theorem A does not hold for soluble NNC -groups. However, we have:

Theorem D. Let G be a soluble NNC -group. Then the Fitting length of G
is at most 3.

In view of the third assertion of Theorem B, it is of interest to inquire
whether there is a bound on the number of distinct prime factors of |G|, at
least when G is a soluble NNC -group. Note that every non-empty Schmidt
covering contains every conjugacy class of abnormal maximal subgroups, and
a bound for the number of distinct primes dividing the order of a group is
naturally related to the number of conjugacy classes of subgroups contained
in the maximal covering.

Let G be an NNC -group. We say that the Schmidt covering A is the
maximal covering of G if A contains every non-nilpotent maximal subgroup
of G.

Theorem E. Let G be a soluble NNC -group. Let A be the maximal covering
of G. Then 2 ≤ |π(G)| ≤ l + 2, where l is the number of conjugacy classes
of subgroups contained in A .

Note that the order of a Schmidt group is divisible by two different primes,
and if A is a Schmidt group and p is a prime which does not divide its order,
then G = A×B, where B is a cyclic group of order p, is an NNC -group and
{A} is the maximal Schmidt covering of G. Hence the bounds of the above
theorem are best possible.
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2 Preliminaries
Before taking up the proofs of our main results, we shall give in this section
a few very useful results on NNC -groups.

Recall that a subgroup H of a group G is abnormal in G if g ∈< H,Hg >
for all g ∈ G. Our first result shows that every abnormal subgroup in a
Schmidt covering of G should be a maximal subgroup of G.

Proposition 2.1. Let {K1, . . . , Kn} be a Schmidt covering of an NNC -group
G. If, for some j ∈ {1, . . . , n}, Kj is not maximal in G, then there exists a
normal maximal subgroup L of G containing Kj such that {L}

⋃
{Kt : Kt �

L} is a Schmidt covering of G.

Proof. Suppose that Kj is not maximal in G, for some j ∈ {1, . . . , n}. Let L
be a maximal subgroup of G containing Kj. Clearly, L 6∈ {K1, . . . , Kn} and
L � Kj. If L were not normal in G, we would have G = GNL; and since
{K1, . . . , Kn} is a Schmidt covering of G, this would imply the nilpotency
of L. Hence L is normal in G. Clearly {L} ∪ {Kt : Kt � L} is a Schmidt
covering of G.

Corollary 2.2. Let G be an NNC -group which is not a Schmidt group. Then
G has a Schmidt covering composed of maximal subgroups of G, and every
Schmidt covering of G contains each non-nilpotent abnormal maximal sub-
group of G.

As we said in the introduction, the symmetric group of degree 4 is a
typical example of an NNC -group which is not a Rose group. However,
NNC -groups with small Schmidt coverings are Rose groups.

Proposition 2.3. Let A = {K1, . . . , Kn} be a Schmidt covering of an NNC -
group G. If the number of maximal subgroups of G in A is at most 2, then
G is a Rose group.

Proof. We may suppose that A is non-empty. Let k denote the number of
maximal subgroups of G in A .

Assume k = 1, and K1 is the unique maximal subgroup of G in A . Let
L 6= K1 be a maximal subgroup of G conjugate to K1 in G. Since L is not
nilpotent, it follows that L belongs to A . Hence K1 is normal in G and
then every abnormal maximal subgroup of G is nilpotent. Then G is a Rose
group.

Suppose k = 2, and that K1 is one of the maximal subgroups of G in
A . If K1 were not normal in G, then A would contain any conjugate of K1

in G. This would mean that |G : K1| = 2, and K1 E G, contrary to our
assumption. Hence the maximal subgroups of G in A are normal in G, and
G is a Rose group.
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Lemma 2.4. Let G be an NNC -group with a Schmidt covering {K1, . . . , Kn}.
Assume that, for some i ∈ {1, . . . , n}, Ki is not contained in any normal
maximal subgroup of G. Then n > 2, and Ki is a Rose group.

Proof. According to Proposition 2.1, Ki is an abnormal maximal subgroup
of G. Hence, G = GNKi. Since Ki is not nilpotent, it follows that n > 2.
Let T be a maximal subgroup of Ki such that Ki = KN

i T . Then G = GNT .
Since T 6∈ {K1, . . . , Kn}, we conclude that that T is nilpotent. Consequently,
Ki is a Rose group,

The next result is particularly useful when an inductive argument in-
volving quotient groups is applied.

Lemma 2.5. Let G be an NNC -group with a Schmidt covering S = {K1, . . . , Kn}.
If N is a normal subgroup of G, then one of the following statements holds:

1. G/N is nilpotent;

2. G = NKi for all i ∈ {1, . . . , n} and G/N is a Rose group;

3. {Ki/N : N ≤ Ki, Ki/N is non-nilpotent} is a Schmidt covering of
G/N .

In other words, G/N is either nilpotent or an NNC -group.

Proof. Suppose that G is a Schmidt group. If N is contained in the Frattini
subgroup of G, it follows that G/N is a Schmidt group, and if N is supple-
mented in G by a maximal subgroup of G, then G/N is nilpotent. Hence
lemma holds in this case. Therefore, by Corollary 2.2, we may assume that
S is a non-empty Schmidt covering of G composed of maximal subgroups.
Suppose, now, that G/N is not nilpotent. If N is not contained in any Ki,
then G = NKi for all i ∈ {1, . . . , n}. Let T/N be an arbitrary maximal
subgroup of G/N . Then T 6∈ {K1, . . . , Kn}, and so either T E G or T is
nilpotent. Consequently, G/N is a Rose group and Statement 2 holds.

Assume that A := {K1, . . . , Kr} is the non-empty set of subgroups
of {K1, . . . , Kn} containing N , 1 ≤ r ≤ n, and write C := {Ki/N :
Ki/N is non-nilpotent, 1 ≤ i ≤ r}. We show that C is a Schmidt covering of
G/N . If C is empty, then every abnormal maximal subgroup of G containing
N is nilpotent. Hence G/N is a Rose group and lemma holds in this case.
Suppose that C is non-empty. It is clear that C satisfies Condition 1 of
Definition 1.1. Let T/N be a proper subgroup of G/N such that T/N 6∈ C ,
T/N � Kt/N ∈ C , and G/N = (G/N)N · T/N . Then G = GNT . If T ≤ Kj

for some 1 ≤ j ≤ r such that Kj/N is nilpotent, then T/N is also nilpotent.
Otherwise, T 6∈ {K1, . . . , Kn}. Since S is a Schmidt covering of G, T is
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nilpotent. In both cases, we conclude that T/N is nilpotent. Therefore C is
a Schmidt covering of G/N and Statement 3 holds.

Proposition 2.6. Let A = {K1, . . . , Kn} be a family of non-nilpotent sub-
groups of a group G such that Ki is not contained in Kj, if i 6= j, i, j ∈
{1, . . . , n}. Then A is a Schmidt covering of G if and only if every proper
supplement of the nilpotent residual of G not belonging to A is nilpotent.

Proof. It is clear that only the necessity of the condition is in doubt. Assume
that A is a Schmidt covering of G and let 1 6= T be a proper subgroup of
G such that G = GNT and T does not belong to A . We prove that T is
nilpotent by induction on the order of G. If T is not contained in some Ki,
then T is nilpotent. Hence we may assume that T ≤ ∩{Ki : 1 ≤ i ≤ n} and
1 6= GN. In particular, A is non-empty and so A contains every abnormal
maximal subgroup of G. Let X be the intersection of the abnormal maximal
subgroups of G. Then, X is normal in G and, if G is non-soluble, X is
nilpotent by [14]. Hence T is nilpotent. Assume that G is soluble. Since X
is a proper normal subgroup of G, there exists a maximal normal subgroup
Y of G containing X. Then G/Y is nilpotent, and so GN is contained in Y .
Therefore G = Y , contradicting the maximality of Y .

3 Proofs of the main results
Proof of Theorem C. Suppose that the result is false, and let the group
G provide a counterexample of least possible order. Then, by Proposi-
tion 2.3 and Theorem A, the number of abnormal maximal subgroups in
every Schmidt covering of G is greater than 2. Since the properties of G, as
enunciated in the statement of the theorem, are inherited by non-nilpotent
quotients of G, the minimality of G implies that G has a unique minimal
normal subgroup, say N . N must be insoluble, CG(N) = 1, and N is a dir-
ect power of a simple non-abelian group. Assume that G/N is not nilpotent,
and let H/N be a non-normal maximal subgroup of G/N . Then H is a non-
normal maximal subgroup of G supplementing the nilpotent residual of G.
If H is not in any Schmidt covering of G, then H is nilpotent; otherwise, H
is a Rose group by Lemma 2.4. In both cases, H should be soluble, contrary
to assumption. Therefore G/N is nilpotent and N = GN is the nilpotent
residual of G.

Let A be a Schmidt covering of G composed of maximal subgroups.
Write N = S1 × · · · × Sm, where Sj are pairwise isomorphic non-abelian
simple groups, j ∈ {1, . . . ,m}. Let us denote C = CG(S1), M = NG(S1),
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and K = S2× · · · × Sm. Let H be a core-free maximal subgroup of G. Then
H is soluble. Write V = M ∩H.

Applying [1, 1.1.52] one of the following statements holds:

1. G is an almost simple group;

2. (G,H) is equivalent to a primitive pair with simple diagonal action; in
this case, H ∩N is a full diagonal subgroup of N ;

3. (G,H) is equivalent to a primitive pair with product action such that
H ∩ N ∼= D1 × · · · ×Dl, a direct product product of l > 1 subgroups
such that, for each j = 1, . . . , l, the subgroup Dj is a full diagonal
subgroup of a direct product

∏
i∈Ij Si.

4. (G,H) is equivalent to a primitive pair with product action such that
the projection R1 = (H ∩N)π1 is a non-trivial proper subgroup of S1;
in this case R1 = V C ∩ S1 and V C/C is a maximal subgroup of the
almost simple group M/C, where π1 is a projection from N to S1;

5. H ∩N = 1.

The solubility of H implies that H ∩ N cannot contain any copy of the
composition factor of N . If H ∩ N = 1, we know, by a result of Lafuente
(see [1, 1.1.51 (2)]), that H would be a primitive group with non-abelian
socle. Since H is soluble, it follows that G is an almost simple group or
(G,H) is equivalent to a primitive pair with product action such that the
projection R1 = (H ∩ N)π1 is a non-trivial proper subgroup of S1. Assume
that N is not simple. Since M/C is almost simple, we have that M/K
is neither nilpotent nor a Rose group. In addition, N/K is the nilpotent
residual of M/K. Let L/K a non-nilpotent maximal subgroup of M/K
supplementing N/K in M/K. Applying [1, 1.1.35], there exists a maximal
subgroup A of G = AN such that L = (A ∩ M)K. Then A belongs to
A . Since every supplement U/K of N/K in M/K is of the form U/K =
(B ∩M)K/K for some supplement B of N in G by [1, 1.1.35], we conclude
that the set of all non-nilpotent maximal subgroups of M/K supplementing
N/K is a Schmidt covering ofM/K. ThereforeM/K is an NNC-group with
no sections isomorphic to A5. The minimal choice of G implies that M/K
is soluble, contradicting the fact that N/K is non-abelian simple. Thus G
must be an almost simple group.

Let p ≥ 5 be a prime dividing |N |, and let P be a Sylow p-subgroup
of N . Then G = NNG(P ) = GNNG(P ), and so NG(P ) is either contained
in some maximal abnormal subgroup of A or NG(P ) is nilpotent. If the
latter were true, then we would have Op(N) < N by [6, X, 8.13], contrary to
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hypothesis. Therefore Z = NG(P ) is contained in some abnormal maximal
subgroup E belonging to A . By Lemma 2.4, E is a Rose group. Applying
Theorem A, ZN is a q-group for some prime q. Suppose that q 6= p, and let
Q be a Sylow q-subgroup of Z. Then Q is normal in Z and Z = QZq′ , where
Zq′ is a Hall q′-subgroup of Z. In particular, Zq′ is nilpotent. Moreover, Zq′
cannot be a normal subgroup of Z, otherwise, we should have Z nilpotent,
contradicting our hypothesis. Hence NZ(Zq′) is contained in a non-normal
maximal subgroup Y of Z. Let W be a maximal subgroup of E containing
Y . Then W is not normal in E and so W is nilpotent. Thus Y is nilpotent
and Zq′ centralises P . Since Q also centralises P , we have that Z/CG(P ) is
a p-group. Applying [6, X, 8.13], Op(N) < N , contradicting the prescribed
minimality of N . Consequently q = p. Then the nilpotent residual of E is
a p-group and so a Sylow p-subgroup of E is normal in E. It implies that
E = Z. In this case, P is a Sylow p-subgroup of G.

Assume that G is not simple. Applying [8, 1.1], there exists a normal
subgroup G0 of G which is minimal such that E0 := E∩G0 is maximal in G0,
and E is isomorphic to E0.G/G0. Moreover, with the exceptions for which the
numbers c of conjugacy classes of such subgroups E0 are listed in [8, Table 1],
all of such subgroups E0 are conjugate. Note that the subgroups E0 contain a
Sylow subgroup of G for a prime p ≥ 5. Therefore N cannot be isomorphic to
any simple group in [8, Table 1]. Hence all of such subgroups E0 are conjugate
and they are the normalisers of a Sylow p-subgroup of G for fixed prime
p ≥ 5 dividing the order of N . This implies that |N | is divisible by exactly
three different primes. According to [7, Table 1], N is isomorphic to A5, A6,
PSU(4, 2), PSL(2, 7), PSL(2, 8), PSU(3, 3), PSL(3, 3) or PSL(2, 17). Clearly
N cannot be isomorphic to A5, A6 or PSU(4, 2) since G is A5-free. Since the
nilpotent residual of G is isomorphic to N , G ∼= Aut(N) and G is an almost
simple group, it follows by Atlas [4] that |G : N | = 2 if N ∈ {PSL(2, 7),
PSU(3, 3), PSL(3, 3),PSL(2, 17)} and |G : N | = 3 if N = PSL(2, 8). Let p
be the largest prime divisor of |N | and P a Sylow p-subgroup of N . Then
|P | = p and NG(P ) belongs to A . By [4], NG(P ) is isomorphic to 7 : 6
if N is isomorphic to one of the groups PSL(2, 7), PSL(2, 8), or PSU(3, 3);
it is isomorphic to 13 : 6 if N ∼= PSL(3, 3), or isomorphic to 17 : 16 if
N ∼= PSL(2, 17). Hence NG(P ) has a subgroup K isomorphic to 7 : 2, 7 : 3,
7 : 2, 13 : 2, 17 : 8, if N is isomorphic to PSL(2, 7), PSL(2, 8), PSU(3, 3),
PSL(3, 3), or PSL(2, 17) respectively. Since NG(P ) is a Rose group, we have
K is nilpotent. This contradiction implies that G cannot be an almost simple
group.

Consequently, G is a simple group. Then every maximal subgroup of G
either is nilpotent or belongs to A . Therefore every maximal subgroup is
either nilpotent or a Schmidt group. By [5, II, 7.5], G is isomorphic to one
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of the following groups:

1. PSL(2, p), where p is a prime, p > 3, and p2 − 1 6≡ 0 (mod 5);

2. PSL(2, 2q), where q is a prime,

3. PSL(2, 3q), where q is an odd prime,

4. PSL(3, 3), or

5. Sz(2q), where q is an odd prime.

In the following, we analyse each one of these cases and derive a contra-
diction.

1. G ∼= PSL(2, p), where p > 3 is a prime and p2 − 1 6≡ 0(5).

Applying [5, II, 8.27], G has subgroups G1
∼= Dr and G2

∼= Ds, where
r = 2 · p+1

(2,p−1) = p+ 1 and s = 2 · p−1
(2,p−1) = p− 1. Since G1 and G2 are either

nilpotent or Schmidt groups, it follows that r
2

= p+1
2

and s
2

= p−1
2

are either a
power of 2 or a prime, Note that p−1, p, p−1 are consecutive integers, and so
3 must divide one of them. As p > 3 is a prime, we have that 3 - p. Assume
that 3 | p + 1. Then 6 | p + 1, which implies 3 | p+1

2
and thus p+1

2
= 3 since

p+1
2

is a prime. Hence p = 5. In this case, G ∼= PSL(2, 5) ∼= A5, contradicting
our assumption. Analogously, 3 | p− 1 yields p = 7. Then G has a maximal
subgroup isomorphic to S4 which is neither nilpotent nor a Schmidt group.
This is a contradiction.

2. G ∼= PSL(2, 2q), where q is a prime.

With similar arguments to those used above, we have that 3 | 2q − 1 and
q = 2. Then G ∼= PSL(2, 4) ∼= A5, a contradiction.

3. G ∼= PSL(2, 3q), where q is an odd prime.

We again argue as in the above cases. Since p is odd and 3q+1
2
, 3

q−1
2

are
consecutive integers, it implies only one of them is a power of 2.

Assume first 3q+1
2

= 2α1 for some integer α1. Then

3q + 1 = 2α (1)

where α = α1 + 1. Write q = 2k + 1. If α ≥ 3, we can take classes module
8 to conclude that 3

2k+1
+ 1 = 0, and so 4 = 0. This contradiction yields

α = 1 or 2. As a result, q = 0 or 1. This is impossible.

9



Hence
3q − 1 = 2β1 (2)

for some integer β1. We can argue as above to get a contradiction.

4. G ∼= PSL(3, 3).

In this case, G has a subgroup isomorphic to GL(2, 3) which is neither
nilpotent nor a Schmidt group.

5. G ∼= Sz(2q), where q is an odd prime.

It is known that G has a subgroup isomorphic to Sz(2), which is neither
nilpotent nor a Schmidt group.

Consequently, G cannot be a non-abelian simple group, and this contra-
diction establishes the theorem.

Proof of Theorem D. We use induction on the order of G. We may assume
that G is not a Rose group by Theorem A. Then, by Lemma 2.5, quotient
groups of G which are non-nilpotent also are NNC -groups. Let A be a
Schmidt covering of G, and let N be a minimal normal subgroup of G con-
tained in GN. Then G/N is either nilpotent or an NNC -group. Therefore
the Fitting length of G/N is at most three. If N ≤ Φ(G), then G has length
at most three since the class of groups of Fitting length at most three is a
saturated formation. Assume that N � Φ(G). Let M be a maximal sub-
group of G such that G = NM . If M does not belong to A , then M is
nilpotent and hence the Fitting length of G is two. Suppose that M ∈ A .
Since G = GNM , we conclude that M is abnormal in G. Then M is a Rose
group by Proposition 2.4. Applying Theorem A, M has Fitting length at
most two, and so the Fitting length of G is at most three. The proof of the
theorem is now complete.

Proof of Theorem E. Assume that the result is false, and let the NNC -group
G provide a counterexample of minimal order. Put A = {K1, . . . , Kn}.

Let N be a minimal normal subgroup of G contained in GN. Then
Lemma 2.5 implies that G/N is either nilpotent or an NNC -group.

Assume that G/N is an NNC -group. There are two possibilities:

1. There exists j ∈ {1, . . . , n} such that CoreG(Kj) = 1. In this case, G
is a primitive group and G = NKj. Write A = Kj. Then A is a Rose
group and AN is a q-group for some prime q 6= p ∈ π(N). Moreover, all
core-free maximal subgroups of G are conjugate (see [1, 1.1.10]). Let
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C be a Carter subgroup of A. Then A = ANC and NC is a proper
subgroup of G supplementing the nilpotent residual of G.

Assume that NC does not belong to A . Since A is a Schmidt covering
of G, NC is nilpotent. Suppose that we have two distinct primes
dividing the order of the Hall q′-subgroup of A. Then there exists a
Sylow subgroup of NC centralising N . This contradicts the fact that
CG(N) = N ([1, 1.1.7]). This contradiction implies |π(G)| ≤ 3 ≤ l+ 2,
against our choice of G.

Consequently, we may assume that NC is a maximal subgroup of G be-
longing to A . All these maximal subgroups are conjugate in G because
C is a Carter subgoup of G and all Carter subgroups are conjugate (see
[1, 2.3.2]). Put π(C) = {p1, . . . , pt}. Then |π(G)| ≤ t+2. If t = 1, then
|π(G)| ≤ 3 ≤ l+2. Hence we may assume that t > 1. Let Ci be a max-
imal subgroup of C such that |C : Ci| = pi for all i ∈ {1, . . . , t}. We
have that Si = NANCi is a non-nilpotent maximal normal subgroup of
G for all i ∈ {1, . . . , t}, and hence {S1, . . . , St} is contained in A . This
means that l ≥ t+ 2. This contradicts our supposition.

2. CoreG(Kj) 6= 1 for all j ∈ {1, . . . , n}. Assume there exists i ∈ {1, . . . , n}
such that C = Ki is an abnormal maximal subgroup of G. Let L
be a minimal normal subgroup of G contained in C. Then G/L is
not nilpotent, and by Lemma 2.5, C={Kj/L : L ≤ Kj, Kj/L is non-
nilpotent} is a Schmidt covering of G/L. Assume that C is empty.
Then every maximal subgroup of G/L is nilpotent and so G/L is a
Schmidt group. In this case |π(G/L)| = 2 and so |π(G)| ≤ 3, contrary
to supposition. Assume that C is non-empty. If L is not contained in
some Kt for some t ∈ {1, . . . , n}, then the minimal choice of G forces
2 ≤ |π(G/L)| ≤ (l − 1) + 2. Therefore 2 ≤ |π(G)| ≤ l + 2. Hence we
can assume that L is contained in every element of A . If G/L were
a Rose group, then C/L would be nilpotent and the number of con-
jugacy classes of maximal subgroups in C is less or equal than l − 1.
The minimal choice of G would imply 2 ≤ |π(G/L)| ≤ (l − 1) + 2 and
then 2 ≤ |π(G)| ≤ l + 2. This would be a contradiction. Therefore
we may assume that C/L is not nilpotent. Since C is a Rose group
by Lemma 2.4, it follows that L is not a Sylow subgroup of C. This
means that |π(G/L)| = |π(G)|. The minimality of G and Lemma 2.5
lead 2 ≤ |π(G)| ≤ l + 2, contrary to assumption.

Then we may assume that every maximal subgroup of G belonging to
A is normal in G and so N ≤ ∩{Ki : 1 ≤ i ≤ n}. If N were not a
Sylow subgroup of G, then theorem would be applied to the the group
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G/N , and we would get 2 ≤ |π(G)| ≤ n + 2. Thus we may assume
that N is a Sylow subgroup of G and so N is a complement of an
abnormal maximal subgroup of G. This means that N = GN, and
G/N is nilpotent. This impossibility clearly shows that G/N must not
be an NNC -group.

If G/N is nilpotent, then N = GN, and N ≤ ∩{Ki : 1 ≤ i ≤ n} because
otherwise some of the subgroups in A would be nilpotent, and G is a Rose
group. The minimal choice of G implies that N is a Sylow subgroup of G,
and so N is complemented by a nilpotent Hall subgroup C of G. Write
π(C) = {p1, . . . , pt}. Again we may assume that t > 2. Let Ci be a maximal
subgroup of C such that |C : Ci| = pi for all i ∈ {1, . . . , t}. Then Si = NCi
belongs to A for all i. We conclude that t ≤ n and so |π(G)| = t+1 ≤ n+2.
This final contradiction proves the result.
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