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Abstract

In this paper we use solar neutrino data to derive stringent bounds on Majorana

neutrino transition moments (TMs). Should such be present, they would contribute

to the neutrino–electron scattering cross section and hence alter the signal observed

in Super-Kamiokande. Motivated by the growing robustness of the LMA-MSW

solution of the solar neutrino problem indicated by recent data, and also by the

prospects of its possible confirmation at KamLAND, we assume the validity of this

solution, and we constrain neutrino TMs by using the latest global solar neutrino

data. We find that all elements of the TM matrix can be bounded at the same time.

Furthermore, we show how reactor data play a complementary role to the solar

neutrino data, and use the combination of both data sets to improve the current

bounds. Performing a simultaneous fit of LMA-MSW oscillation parameters and TMs

we find that 6.3 × 10−10µB and 2.0 × 10−10µB are the 90% C.L. bounds from solar

and combined solar + reactor data, respectively. Finally, we perform a simulation

of the upcoming Borexino experiment and show that it will improve the bounds

from today’s data by roughly one order of magnitude.
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1 Introduction

Present solar [1, 2, 3, 4, 5, 6] and atmospheric neutrino data [7, 8] provide the first robust

evidence for neutrino flavour conversion and, consequently, the first solid indication for

new physics. Neutrino oscillations constitute the most popular explanation for the data

(for recent analyses see Refs. [9, 10, 11]) and are a natural outcome of gauge theories

of neutrino mass [12, 13]. Non-zero neutrino masses manifest themselves through non-

standard neutrino electromagnetic properties. If the lepton sector in the Standard Model

(SM) were minimally extended in analogy with the quark sector, neutrinos get Dirac

masses (mν) and their magnetic moments (MMs) are tiny [14],

µν ≃ 3 × 10−19µB

(

mν

1 eV

)

, (1)

where µB is the Bohr magneton. Laboratory experiments give 90% C.L. bounds on the

neutrino MMs of 1.8 × 10−10µB [15, 16] and 1.3 × 10−10µB [17] for the electron neutrino,

6.8× 10−10µB for the muon neutrino [18] and 3.9× 10−7µB for the tau neutrino [19] (see

also Ref. [20]). On the other hand, astrophysics and cosmology provide limits of the order

of 10−12 to 10−11 Bohr magnetons [21]. Improved sensitivity for the electron neutrino MM

from reactor neutrino experiments is expected, while a tritium ν̄e source experiment [22]

aims to reach 3 × 10−12µB.

It has for a long time been noticed, on quite general “naturality” grounds, that Majo-

rana neutrinos constitute the typical outcome of gauge theories [12]. On the other hand,

precisely such neutrinos also emerge in specific classes of unified theories, in particular, in

those employing the seesaw mechanism [13]. If neutrinos are indeed Majorana particles

the structure of their electromagnetic properties differs crucially from that of Dirac neu-

trinos [23], being characterized by a 3× 3 complex antisymmetric matrix λ, the so-called

Majorana transition moment (TM) matrix. It contains MMs as well as electric dipole mo-

ments of the neutrinos. The existence of any electromagnetic neutrino moment well above

the expectation in Eq. (1) would signal that some special mechanism—which goes beyond

the SM—is at work. Therefore, neutrino electromagnetic properties are interesting probes

of new physics.

As noted in Ref. [23] the existence of Majorana transition moments leads to the phe-

nomenon of spin-flavour precession, when they move through a magnetic field, as might

happen in the Sun. This was subsequently shown to affect the propagation of solar neu-

trinos in an important way, due to the effects of matter [24], and this has recently been

shown to provide excellent fits to current data [25].

In the present paper we will take a different attitude. Motivated by the now ro-

bust status of the LMA-MSW solution of the solar neutrino problem indicated by recent

data [9, 10], and also by the prospects of its possible confirmation by the KamLAND ex-

periment [26], we take up this solution as the basis of our investigation. It has been shown

in Ref. [25] that in this case the effect of a solar magnetic field can be safely neglected.

Therefore, our present approach is justified and complementary to that in Ref. [25]: there

we were concerned with spin-flavour-conversions of solar neutrinos, sensitive to the prod-

uct of λ times a solar magnetic field, while here we are concerned with the effect of TMs

2



in the neutrino detection process. Sizable TMs would contribute to the elastic neutrino–

electron scattering in the Super-Kamiokande (SK) experiment [4], and hence, data from

this experiment can be used to constrain electromagnetic neutrino properties [27, 28].

Here we will tacitly employ the results of the latest analysis in Ref. [9] as well as the fit

strategies used there, to perform a fit to the global solar neutrino data in terms of LMA-

MSW oscillation parameters and neutrino TMs, in order to derive bounds on the latter. It

is important to clarify for which combinations of the three complex moments the bounds

are valid. We will show that all three moments can be bounded, however, not all at the

same level. In addition, we will show that data from reactor neutrino experiments [15,

16, 17] which use elastic neutrino–electron scattering for neutrino detection are to some

extent complementary to the solar neutrino data, so that by combining both data sets

one can improve the bounds. We also explore the potential of the upcoming Borexino

experiment [29, 30] in probing the TMs, showing that it is substantially more sensitive to

the TMs than present experiments.

The paper is organized as follows. In Section 2 we give our theoretical framework and

we discuss in detail which elements of the TM matrix are constrained. In Section 3 we

present the statistical method we apply to calculate bounds on the TMs, and in Section 4

we describe our analysis of solar and reactor neutrino data. The resulting bounds are dis-

cussed in Section 5 and the sensitivity of the upcoming Borexino experiment is considered

in Section 6. A brief discussion concludes the paper in Section 7.

2 The theoretical framework

In this paper, we adopt the following basic working assumptions:

• Only three light neutrinos exist, doublets under SU(2)⊗U(1) (no light sterile neu-

trinos); this is well-motivated by recent global fits of all available neutrino oscillation

data, including also those that follow from short baseline searches [31].

• The solution of the solar neutrino puzzle is given by the LMA-MSW solution, as

indicated by recent global fits of solar data [10, 11].

• Neutrinos have Majorana nature as expected from theory [13, 23].

• Neutrinos are endowed with TMs arising from some unspecified electroweak gauge

theory.

Although the latter is probably the least motivated of our assumptions, there are some

models of the electroweak interaction where the possibility of enhanced TMs has been

discussed [13].

In experiments where the neutrino detection reaction is elastic neutrino–electron scat-

tering, like in SK, Borexino and some reactor experiments [15, 16, 17], the electromagnetic

cross section is [32]
dσem

dT
=

α2π

m2
eµ

2
B

(

1

T
−

1

Eν

)

µ2
eff , (2)
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where the effective MM square is given by [33]

µ2
eff = a†

−λ†λa− + a†
+λλ†a+ . (3)

The electromagnetic cross section adds to the weak cross section and allows to extract

information on the TM matrix λ. In this cross section, T denotes the kinetic energy of the

recoil electron, Eν is the energy of the incoming neutrino and the 3-vectors a− and a+

denote the neutrino amplitudes for negative and positive helicities, respectively, at the

detector. The square of the effective MM given in Eq. (3) is independent of the basis

chosen for the neutrino state [33]. In what follows we consider both the flavour basis and

the mass eigenstate basis. We will use the convention that a∓ and λ = (λαβ) denote the

quantities in the flavour basis, whereas in the mass basis we will use ã∓ and λ̃ = (λjk).

The two bases are connected via the neutrino mixing matrix U :

ã− = U †a− , ã+ = UT a+ , λ̃ = UT λU . (4)

One usually decomposes the transition moment matrix as

λ = µ − id , (5)

where µ and d are hermitian matrices. On general grounds these matrices are, in addition,

antisymmetric and imaginary for Majorana neutrinos [23] (see also Ref. [33] and references

cited therein). It is, furthermore, useful to define vectors Λ = (Λα) and Λ̃ = (Λj) in the

flavour and mass basis, respectively, by

λαβ = εαβγΛγ and λjk = εjklΛl . (6)

Thus, in the flavour basis we have λeµ = Λτ , λµτ = Λe and λτe = Λµ. Note also that

|Λ|2 =
1

2
Tr
(

λ†λ
)

⇒ |Λ| = |Λ̃| . (7)

This means if we are able to find a bound on |Λ|, we have not only constrained the TMs

in the flavour basis but also in the mass basis. In the numerical section of the paper, this

will be exactly our strategy.

Let us now discuss the detailed form that the effective MM square µ2
eff in Eq. (3) takes

when we assume the LMA-MSW solution of the solar neutrino problem, denoted by µ2
LMA.

Numerical integrations of the neutrino evolution equations performed in Ref. [25] showed

that for an effective MM of 10−11µB a solar magnetic field of the order of 80 KGauss has

practically no effect on the LMA-MSW solution. The results of Ref. [25] imply that it is

safe to neglect possible solar magnetic field effects on the evolution of the neutrino state in

the sun in case of LMA-MSW. This follows essentially from the fact that the terms in the

evolution Hamiltonian related to the LMA-MSW mass-squared difference and the matter

potential are much bigger than the electromagnetic terms. Hence, helicity is conserved

in solar neutrino propagation, so that we can set a+ = 0, thereby eliminating the second

term in Eq. (3). Another good approximation used in fitting solar data in a three-neutrino
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scenario [11] is to set ∆m2
atm

≫ ∆m2
sol

≡ ∆m2, i.e., oscillations with ∆m2
atm

are averaged

out. Using the parameterization (6) we obtain from Eq. (3)

µ2
LMA = |Λ|2 − P 3ν

e3 |Λ3|
2 −

2
∑

j,k=1

〈

(ãj
−)(ãk

−)∗
〉

Λ∗
jΛk . (8)

The brackets 〈...〉 in the last term in Eq. (8) denote the average over the production point,

earth-sun distance and zenith angle, and we have made use of the relation

P 3ν
ej ≡

〈

|ãj
−|

2
〉

(j = 1, 2, 3) (9)

for the probability that the neutrino produced in the core of the sun as a νe arrives at

the detector as a mass eigenstate νj. From Eq. (8) one learns that besides the absolute

values of the TMs |Λ1|, |Λ2|, |Λ3| only one complex phase δ = arg(Λ∗
1Λ2) enters into µ2

LMA.

Eq. (8) can be further simplified by making use of the large mass-squared difference

∆m2 ∼ 5 × 10−5 eV2 implied by the LMA-MSW solution. First, because of vacuum

oscillations on the way from the sun to the earth the neutrino state arriving at the earth

can be considered as an incoherent mixture of mass eigenstates [33, 34]. Note also that

for the LMA-MSW solution, earth matter effects are very small [35] so that we neglect

them in our expression for µ2
LMA.1 Then we find that only the diagonal elements of the

matrix
(

λ̃†λ̃
)

contribute, and as a result only the probabilities (9) appear in determining

the detected neutrino signal. Setting s13 ≡ sin θ13, c13 ≡ cos θ13 and Ue3 = s13 one has, to

a very good approximation [11],

P 3ν
e3 = s2

13 and P 3ν
ej = c2

13P
2ν
ej (j = 1, 2) with P 2ν

e1 + P 2ν
e2 = 1 . (10)

The probabilities P 2ν
ej (j = 1, 2) are the effective 2-neutrino probabilities for the solar

neutrino problem, where all the averages mentioned above have been taken into account.

Using now the probabilities in Eq. (10) and the approximations mentioned above, Eq. (8)

becomes

µ2
LMA = |Λ1|

2 + |Λ2|
2 + c2

13|Λ3|
2 − c2

13

∑

j=1,2

P 2ν
ej |Λj|

2 . (11)

It is well known from reactor neutrino data [36] that the mixing angle θ13 is rather

small. Fits to the CHOOZ data and atmospheric neutrino data [11] show that at 3σ one

has s2
13

<
∼ 0.05. This allows us to replace c2

13 in Eq. (11) by 1. Then we arrive at the final

formula

µ2
LMA = |Λ|2 − |Λ2|

2 + P 2ν
e1

(

|Λ2|
2 − |Λ1|

2
)

, (12)

which will be used in the numerical section evaluating solar neutrino data. The probability

P 2ν
e1 is a function of the ratio ∆m2/Eν and the solar mixing angle θ ≡ θ12. In the following

we will drop the super-script 2ν and Pe1 or Pee refers always to a 2-neutrino probability.

Eq. (12) naturally makes no distinction between MMs and electric dipole moments. Since

1Note, however, that the neglection of earth matter effects is not a very good approximation when

performing a combined fit of TMs and oscillation parameters. Therefore, in this case we do take into

account earth matter effects in the minimization of the χ2 with respect to the solar oscillation parameters.

5



we aim at constraining |Λ|, all elements of the TM matrix will be bounded at the same

time.

Now we move to the case of reactor neutrinos. There we have a pure ν̄e source.

Therefore, we have a− = 0 and a+ = (1, 0, 0)T since in these experiments the baseline

is much too short for any oscillations to develop. The resulting µ2
eff relevant in reactor

experiments is given as

µ2
R = |Λµ|

2 + |Λτ |
2 . (13)

From this relation it is clear that reactor data on its own cannot constrain all TMs con-

tained in λ, since Λe does not enter in Eq. (13). In order to combine reactor and solar

data it is useful to rewrite µ2
R in terms of the mass basis quantities. With Eq. (6) we

readily derive
(

λ̃λ̃†
)

jk
= |Λ|2δjk − ΛjΛ

∗
k . (14)

Then with Eq. (4) we obtain

µ2
R = |Λ|2 − c2|Λ1|

2 − s2|Λ2|
2 − 2sc|Λ1||Λ2| cos δ , (15)

where c = cos θ and s = sin θ, θ being the solar mixing angle. Further, we notice that

the relative phase δ = arg(Λ∗
1Λ2) between Λ1 and Λ2 appears in addition to |Λ|, |Λ1| and

|Λ2|.

3 Statistical method and qualitative discussion

In the following we will use data from solar and reactor neutrino experiments to constrain

neutrino TMs. The χ2-function obtained from the data depends on the solar oscillation

parameters tan2 θ and ∆m2 as well as on the elements of the TM matrix λ. Regarding the

dependence on the oscillation parameters we will take two different attitudes. One is to

assume that tan2 θ and ∆m2 will be determined with good accuracy at the KamLAND

experiment, and hence, we will consider the χ2 at fixed points in the tan2 θ−∆m2 plane

(method I). In the second approach we will derive a bound on the TMs by minimizing the

χ2 with respect to tan2 θ and ∆m2 (method II). This second procedure takes into account

the present uncertainty of our knowledge of the oscillation parameters.

Let us describe in detail how we calculate a bound on the TMs. Our aim is to con-

strain |Λ|, therefore it is convenient to consider the χ2 as a function of the independent

parameters |Λ|, |Λ1|, |Λ2| and δ. As discussed in the previous section, δ appears only if

reactor data are included. The χ2-functions which we are using for the individual data

sets (solar rates, SK recoil electron spectrum, reactor data) will be described in detail

in the following sections. When performing the fit to the data, we find that in general

the minimum of the χ2 occurs close or outside the physical boundary of the parameters

|Λ|, |Λ1|, |Λ2|. To take this into account we apply Bayesian techniques to calculate an

upper bound on |Λ|. We minimize the χ2 with respect to |Λ1|, |Λ2| and δ for each value

of |Λ|, taking into account the allowed region 0 ≤ |Λ1|2 + |Λ2|2 ≤ |Λ|2:

χ2(|Λ|) = Min
[

χ2(|Λ|, |Λ1|, |Λ2|, δ)
]

. (16)
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In method I we do this for fixed values of the oscillation parameters, scanning over the

LMA-MSW region, whereas in method II we minimize also with respect to tan2 θ and

∆m2 in Eq. (16). Then the χ2 is transformed into a likelihood function via

L ∝ exp
(

−
1

2
χ2
)

. (17)

Now we use Bayes’ theorem and a flat prior distribution p(|Λ|) in the physically allowed

region, p(|Λ|) = Θ(|Λ|), to obtain a probability distribution for |Λ|:

f(|Λ|) d|Λ| =
L(|Λ|) Θ(|Λ|) d|Λ|
∫∞
0 L(|Λ|′) d|Λ|′

. (18)

An upper bound bα on |Λ| at a C.L. α is given by the equation
∫ bα

0
f(|Λ|)d|Λ| = α . (19)

Let us consider in more detail the minimization with respect to |Λ1| and |Λ2| in Eq. (16)

in the case of solar data without reactor. As we will show later there is no evidence for a

non-zero µ2
LMA in the data. Therefore the minimum of the χ2 for a given |Λ| will occur if

µ2
LMA is minimal. Departing from Eq. (12) it is easy to show that

Min [µ2
LMA] =

{

|Λ|2 Pe1 for Pe1 ≤ 0.5 ,

|Λ|2 (1 − Pe1) for Pe1 > 0.5 .
(20)

The minimum occurs at

|Λ|2 =



















|Λ2|2 for Pe1 < 0.5 ,

|Λ1|2 + |Λ2|2 for Pe1 = 0.5 ,

|Λ1|2 for Pe1 > 0.5 .

(21)

From Eq. (20) follows that the bound on |Λ| is strongest if Pe1 = 0.5 because in this

situation µ2
LMA is maximal. In Fig. 1 we show contours of constant Pe1 in the tan2 θ −

∆m2/Eν plane. For definiteness, the probabilities in the figure are obtained by performing

the averaging over the production distribution inside the sun for the 7Be flux most relevant

for Borexino. However, the probabilities for the 8B flux relevant for SK are very similar.

The shaded region in Fig. 1 is the region relevant for Borexino, assuming a mass-

squared difference in the range 10−5 eV2 < ∆m2 < 10−4 eV2, whereas for SK the region

below the dash-dotted line is most important, due to the higher energy of the 8B neutrinos.

We can read off from the figure that in most part of the SK region Pe1 is very small.

According to Eq. (21) this means that the sensitivity of SK for |Λ| is limited because of

the small Pe1. In contrast, we expect a much better sensitivity of Borexino, because, in

a large part of the relevant parameter space in this case, Pe1 is close to the optimal value

of 0.5.

The arguments presented here are valid as long as the χ2 depends only on the pa-

rameter combination given in Eq. (12). The data from reactor experiments depend on a

different combination of TM parameters (see Eq. (15)) implying that the combined analysis

of SK and reactor data will potentially lead to more stringent limits than the SK data

alone.
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Figure 1: Contours of constant Pe1. The shaded region is relevant for Borexino, whereas

the region below the dash-dotted line is relevant for SK.

4 Analysis of solar and reactor neutrino data

In this section we describe briefly our analysis of solar neutrino data and the data which we

are using from reactor neutrino experiments. Neglecting the electromagnetic contribution

to the small elastic scattering signal in SNO, one notices that the neutrino TMs contribute

directly to the observed signal only in SK. However, the uncertainty in the 8B flux leads to

correlations between SK and all other experiments. Therefore, even for fixed oscillation

parameters (method I), also other experiments give some information on TMs and it is

important to include them in the analysis [28].

We divide the solar neutrino data into the total rates observed in all experiments and

the SK recoil electron spectrum (with free overall normalization). Before combining rates

with SK spectra, we derive bounds on |Λ| for each of these cases separately. Subsequently

we consider the reactor data by themselves and in combination with the global sample of

solar data.
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Cl [1] 2.56 ± 0.16 ± 0.16 SNU

Sage [2] 70.8 +5.3
−5.2

+3.7
−3.2 SNU

GaGNO [3] 73.3 ± 4.7 ± 4.0 SNU

SK [4] 0.465 ± 0.005 +0.014
−0.012

SNO CC [5] 0.3485 ± 0.012 ± 0.018

SNO NC [5] 1.008 ± 0.087 ± 0.097

Table 1: Solar neutrino rates used in our analysis. For SK and SNO the given number is

the ratio of the observed flux and the 8B flux predicted by the BP00 SSM [37].

4.1 Solar rates

In this analysis we use the event rates measured in the Chlorine experiment Homestake

[1] (Cl), the Gallium experiments Sage [2], Gallex and GNO [3] (GaGNO), the total event

rate of SK [4] based on the 1496 days data sample and the recent result of the Sudbury

neutrino observatory [5] for the charged current (SNO CC) and neutral current (SNO

NC) solar neutrino rates. For the analysis we use the χ2-function

χ2
rates =

∑

j,k

(Rj − Dj)(V
rate
jk )−1(Rk − Dk) . (22)

Here the indices j, k run over the 6 solar neutrino rates (Cl, Sage, GaGNO, SK, SNO CC,

SNO NC), Dj are the experimental rates, Rj are the theoretical predictions and V rate
jk is

the covariance matrix.

The data we are using are given in Table 1. The rates of SK and SNO are the ratio of

the measured flux and the 8B flux predicted by the standard solar model (SSM) BP00 [37]

and no disappearance of solar νe (Φ0
B = 5.05 × 106 cm−2s−1). Note that the SNO CC

and NC fluxes as given in Ref. [5] have been obtained from a fit to the SNO spectral

data assuming no distortion of the neutrino energy spectrum, i.e., a survival probability

constant in energy, which in general is not realized in the case of neutrino oscillations.

However, in the case of the LMA-MSW solution it is a very good approximation to use

the fluxes given in Ref. [5].

The theoretical predictions Rj which appear in Eq. (22) are calculated as described

in Ref. [9]. However, the rate RSK of the SK experiment includes an extra contribution

from the electromagnetic scattering. This rate is given by

RSK =

∫∞
0 dEν φB(Eν)

{

Pee(Eν)σ
W
e (Eν) + [1 − Pee(Eν)]σ

W
µ (Eν) + µ2

LMA(Eν)σ
′
em(Eν)

}

∫∞
0 dEν φB(Eν) σW

e (Eν)
,

(23)

where φB(Eν) is the shape of the 8B flux normalized to 1, which we take from Ref. [38],

and

σ(Eν) =
∫ Tmax(Eν)

0
dT ′dσ(T ′, Eν)

dT ′

∫ T2

T1

dT R(T ′, T ) with σ = σW
e , σW

µ , σ′
em . (24)
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We use the SM weak cross sections σW
e,µ including radiative corrections [39], µ2

LMA is given

in Eq. (12), and
dσ′

em(T ′, Eν)

dT ′
=

α2π

m2
eµ

2
B

(

1

T ′
−

1

Eν

)

. (25)

Here Eν is the neutrino energy, while T ′ and T denote the true and the measured recoil

electron kinetic energies, respectively. The integration in T is from the SK threshold 5

MeV (total electron energy) up to 20 MeV. The maximum kinetic energy of the recoil

electrons is given by Tmax(Eν) = 2E2
ν/(2Eν + me). The resolution function R(T ′, T ) is

taken from Ref. [40].

The covariance matrix V rate
jk in the χ2 of Eq. (22) takes into account the experimental

errors and theoretical uncertainties from detection cross sections V CS
jk and SSM predictions

V flux
jk added in quadrature [41],

V rate
jk = V exp

jk + V CS
jk + V flux

jk . (26)

The experimental errors for different experiments are uncorrelated. For j, k = Cl, Sage,

GaGNO, SK we have V exp
jk = δjkσ

2
j , where the σ2

j are the experimental uncertainties,

calculated by adding in quadrature the statistical and systematic uncertainties given in

Table 1. However, the statistical and systematic errors for the SNO CC and NC rates are

strongly correlated, with ρstat = −0.518 (the same as the correlation for the CC and NC

day-night asymmetry, given in Ref. [6]) and ρsys = −0.508 (which we derive from Table II

of Ref. [5]). The second and third terms in Eq. (26) take into account the uncertainties in

the detection cross sections and in the SSM predictions of the neutrino fluxes, respectively.

For details see Refs. [9, 41] and references therein.

4.2 The Super-Kamiokande recoil electron spectrum

In this section we consider the shape of the SK recoil electron spectrum. The electromag-

netic contribution to the neutrino–electron scattering cross section leads to a substantially

different spectrum of the scattered electrons than expected from the SM weak interaction.

Therefore, the SK spectral data provide a useful tool to constrain neutrino TMs [27].

We perform a fit to the latest 1496 days SK data presented in Ref. [4]. There the

event rates are given in 8 energy bins ranging from 5 to 20 MeV. The energy bins 2 to 7

are further divided into 7 bins of zenith angle, which makes up a total of 44 data points

Di. We define the χ2-function

χ2
spect =

44
∑

i,j=1

(αRi − Di)(V
spect
ij )−1(αRj − Dj) . (27)

The theoretical prediction Ri(tan2 θ, ∆m2, µ2
LMA) for the i-th bin is calculated as in

Eq. (23) with the integration interval [T1, T2] in Eq. (24) chosen according to the energy

interval of the given bin. The covariance matrix V spect
ij in Eq. (27) contains statistical and

systematic experimental errors. These are obtained from Ref. [4] taking into account the

correct correlations of systematic errors. The χ2 of Eq. (27) is minimized with respect to

the normalization factor α in order to isolate only the shape of the spectrum.
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Figure 2: ∆χ2 of the reactor experiments Rovno [15] and Bugey [17] and the total ∆χ2
reactor

as a function of the effective MM.

4.3 Reactor data

Data from neutrino electron scattering at nuclear reactor experiments [15, 16, 17] can

be used to constrain the combination of TMs given in Eq. (15). Here we use data from

the Rovno nuclear power plant [15] and from the Bugey reactor [17]. To include this

information in our analysis we make the following ansatz for the χ2-function:

χ2
reactor(µR) =

∑

i

(

N i
weak + N i

em(µR) − N i
obs

σi

)2

. (28)

The sum is over the two experiments Rovno and Bugey, N i
obs is the observed number of

events with the one standard deviation error σi, N i
weak is the number of events expected

in the case of no neutrino TMs (only the standard weak interaction) and N i
em(µR) is the

number of events due to the electromagnetic scattering of neutrinos with an effective MM

µR. We can write the latter as

N i
em(µR) = Ci

(

µR

10−10µB

)2

. (29)

For the Rovno reactor we obtain from Table I of Ref. [15] the values NRovno
obs = 41,

σRovno = 20 and NRovno
weak = 32. Furthermore, in this table the number of events due to the

electromagnetic scattering of neutrinos with an effective MM µR = 2 × 10−10µB is given:

NRovno
em (2 × 10−10µB) = 54. Using this last information the constant in Eq. (29) can be
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Figure 3: Contours of the 90% C.L. bound on |Λ| in units of 10−10µB from solar data.

The shaded region is the 3σ LMA-MSW region from Ref. [9], the best fit point is marked

with a star. The crosses labeled A, B, C, D are the test points considered in Table 2.

determined as CRovno = 54/4. Results of the MUNU experiment performed at the Bugey

reactor have been presented recently at the Neutrino 2002 conference [17]. These lead to

the bound µR < 1.3×10−10µB at 90 % C.L., if an energy cut of Ee > 1 MeV is used. From

Ref. [17] we get (in events per day) NBugey
obs = 0.37, σBugey = 0.25 and NBugey

weak = 0.45. The

constant in Eq. (29) can be calculated by making use of the 90% C.L. bound cited above:

we solve the equation χ2
Bugey(µR = 1.3 × 10−10µB) = 2.7. This leads to CBugey = 0.196.

In Fig. 2 we show the ∆χ2 of the two experiments and also the sum. Note that with

our ansatz Eqs. (28) and (29) we can reproduce to good accuracy the 1 σ upper bound

µR < 1.5 × 10−10µB from the Rovno data [15].

12



5 Bounds on |Λ| from solar and reactor data

First we discuss the bounds on |Λ| from solar data alone. Fixing the oscillation parameters

at the current best fit point tan2 θ = 0.44, ∆m2 = 6.6 × 10−5 eV2 [9] we obtain with the

Bayesian methods described in Section 3 the 90% C.L. bound

|Λ| < 4.0 × 10−10µB (best fit point, solar data). (30)

However, such a bound substantially depends on the values of the neutrino oscillation

parameters. In Fig. 3 we show contours of the 90% C.L. bound on |Λ| in the tan2 θ−∆m2

plane. We find that the bound gets weaker for small values of ∆m2, whereas in the upper

left part of the LMA-MSW region a bound of the order 2 × 10−10µB is obtained.

By combining solar and reactor data we obtain considerably stronger bounds. At the

best fit point we get at 90% C.L.

|Λ| < 2.0 × 10−10µB (best fit point, solar + reactor data). (31)

In Fig. 4 we show the contours of the bound in the tan2 θ−∆m2 plane for the combination

of solar and reactor data. By comparing Fig. 4 with Fig. 3 we find that reactor data

drastically improve the bound for low ∆m2 values.

In order to better understand these results we give in Tab. 2 bounds on |Λ| for five

characteristic points in the tan2 θ−∆m2 plane, including the current best fit point, which

is labeled with a star. The other points are marked in Figs. 3 and 4 by crosses and are

labeled A, B, C, D, and the corresponding values of the oscillation parameters are given in

Tab. 2. Besides the bound on |Λ| we give also bounds on the individual |Λi| (i = 1, 2, 3).

These bounds are obtained by setting the other two Λi to zero. We show the bounds for

the different data samples: solar rates, the shape of the SK spectrum with free overall

normalization (SK spect), solar rates combined with the SK spectrum (solar global),

reactor data only, solar data combined with reactor data (sol + react).

Notice that, in contrast with the bound on |Λ| which, thanks to Eq. (7), is valid in

any basis, the bounds on individual |Λi| do not have a basis-independent meaning. The

bounds on |Λi| given in Tab. 2 refer to the mass-eigenstate basis, also used in Ref. [23].

By comparing the first and the second column of Tab. 2 we notice that both solar

rates and SK spectrum are important: although the bound from the SK spectrum is

slightly stronger, the one which follows from solar rates is in general of the same order.

The bound we obtain by combining rates and SK spectrum is displayed in the third

column. Concerning the reactor data, clearly these bounds do not depend on ∆m2, and

the bound on |Λ3| is even completely independent of the neutrino oscillation parameters

(see Eq. (15)). As mentioned above, reactor data on their own cannot be used to constrain

|Λ|.

In the upper parts of the LMA-MSW region, the solar data alone give already a strong

bound on |Λ|. From the bounds given in Tab. 2 at point A we see that for such high

values of ∆m2 all |Λi| are strongly constrained by solar data. This is due to the fact that

there the probability Pe1 relevant in SK is close to the optimal value of 0.5 (see Fig. 1).
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solar and reactor data. The shaded region is the 3σ LMA-MSW region from Ref. [9], the

best fit point is marked with a star. The crosses labeled A, B, C, D are the test points

considered in Table 2.

In this parameter region the combination with reactor data does not improve the bound

significantly. This is also true for the region of small tan2 θ around point C.

The behavior of the bounds for low ∆m2 values can be understood by looking at point

B. In this ∆m2 region the probability Pe1 is very small for the neutrino energies relevant

for SK, as seen in Fig. 1. Therefore, solar data give only a very weak constraint on |Λ2| as

can be seen from Tab. 2, and the bound on |Λ| is dominated by this weak bound on |Λ2|

(see Eq. (21)) leading to the rather poor bound of 11.6×10−10µB from solar data. In this

case the combination with reactor data improves the bound drastically to 2.3× 10−10µB.

Up to now we have calculated bounds on neutrino TMs for fixed values of the oscillation

parameters tan2 θ and ∆m2 (method I described in Section 3). These results will be

especially useful after KamLAND will have determined the oscillation parameters with

good accuracy. In the following we change our strategy and minimize the χ2 for each

14



solar rates SK spect solar global reactor sol + react

⋆ tan2 θ = 0.44 , ∆m2 = 6.6 × 10−5 eV2

|Λ1| 1.8 1.4 1.4 2.0 1.3

|Λ2| 5.8 4.0 4.0 1.3 1.3

|Λ3| 1.7 1.4 1.3 1.1 1.0

|Λ| 5.8 4.0 4.0 − 2.0

A tan2 θ = 0.44 , ∆m2 = 4.0 × 10−4 eV2

|Λ1| 3.3 2.6 2.6 2.0 2.0

|Λ2| 3.1 2.3 2.3 1.3 1.4

|Λ3| 2.2 1.7 1.7 1.1 1.1

|Λ| 3.3 2.6 2.6 − 2.5

B tan2 θ = 0.44 , ∆m2 = 2.4 × 10−5 eV2

|Λ1| 1.7 1.5 1.4 2.0 1.4

|Λ2| 15.5 12.1 11.9 1.3 1.3

|Λ3| 1.7 1.5 1.4 1.1 1.1

|Λ| 15.4 12.0 11.6 − 2.3

C tan2 θ = 0.23 , ∆m2 = 1.7 × 10−4 eV2

|Λ1| 2.3 1.6 1.5 2.6 1.4

|Λ2| 2.6 1.6 1.5 1.2 1.1

|Λ3| 1.7 1.1 1.1 1.1 0.9

|Λ| 2.6 1.6 1.5 − 1.5

D tan2 θ = 0.90 , ∆m2 = 6.6 × 10−5 eV2

|Λ1| 2.2 1.9 1.9 1.6 1.6

|Λ2| 8.3 6.3 6.4 1.5 1.6

|Λ3| 2.2 1.9 1.8 1.1 1.2

|Λ| 8.2 6.2 6.2 − 3.0

Table 2: 90% C.L. bounds on |Λi| (i = 1, 2, 3) and on |Λ| in units of 10−10µB at fixed

points in the tan2 θ −∆m2 plane from different data samples. The hyphen indicates that

|Λ| cannot be bounded from reactor data alone.

value of |Λ| with respect to tan2 θ and ∆m2 (method II). This will lead to a bound on

|Λ| taking into account the current knowledge concerning the oscillation parameters. To

this end we make use of the global solar neutrino data (including earth matter effects)

as described in Ref. [9] in order to obtain the correct χ2 behavior as a function of tan2 θ

and ∆m2. Only in the expression for µ2
LMA we neglect earth matter effects as described

in Section 2, since they are known to be small in the LMA-MSW region [35]. Performing

this analysis we obtain the following bounds at 90% C.L.:

|Λ| <

{

6.3 × 10−10µB (unconstrained, solar data)

2.0 × 10−10µB (unconstrained, solar + reactor data).
(32)
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Together with Figs. 3 and 4 the bounds given in Eq. (32) constitute an important

result of this paper. They show that, assuming the solar LMA-MSW solution, current

solar neutrino data can be used to constrain all elements of the Majorana neutrino TM

matrix. A combination with data from reactor experiments significantly strengthens the

bound on |Λ|.

6 Simulation of the Borexino experiment

Here we investigate the sensitivity of the Borexino experiment [29, 30] to neutrino TMs.

This experiment is mainly sensitive to the solar 7Be neutrino flux, which will be measured

by elastic neutrino–electron scattering. Therefore, Borexino is similar to SK, the main

difference is the mono-energetic line of the 7Be neutrinos, with an energy of 0.862 MeV,

which is roughly one order of magnitude smaller than the energies of the 8B neutrino flux

relevant in SK.

6.1 The Borexino χ2-function

To estimate the sensitivity of Borexino we consider the following χ2-function:

χ2
borexino =

Nbins
∑

i,j=1

(N th
i − Di)(V

borex
ij )−1(N th

j − Dj) . (33)

Here N th
i is the theoretical prediction for the number of events in the electron recoil

energy bin i, and Di is the (hypothetical) observed number of events. Borexino will

observe recoil electrons with kinetic energy in the range 0.25 to 0.8 MeV. As a realistic

example we adopt Nbins = 8 bins in electron recoil energy and an energy resolution of

0.058 MeV [29, 30, 42]. We have checked that our results are essentially independent of

the exact value of the energy resolution.

The theoretical prediction for the number of events in the bin i after Nyears years of

Borexino data taking is given by

N th
i = Nweak

i + N em
i (µLMA) + Nbg

i , Nx
i = 365 Nyears nx

i (34)

with x = th, weak, em, bg, and nweak,em,bg
i is the number of events per day from weak

scattering, electromagnetic scattering and the background, respectively. If not stated

otherwise we consider a running time of Nyears = 3 years. In order to estimate the

sensitivity of Borexino for neutrino TMs we assume that the data are generated by neutrinos

without TMs:

Di = Nweak
i + Nbg

i . (35)

Hence, we obtain

χ2
borexino =

Nbins
∑

i,j=1

N em
i (V borex

ij )−1 N em
j . (36)

The minimum of this χ2 occurs for µLMA = 0 and is always zero. With the χ2 of Eq. (36)

we calculate a bound on |Λ| at a given C.L. This bound corresponds to the maximum
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flux 7Be pep 13N 15O background

events/day 43.3 2.0 4.0 5.5 19

Table 3: Expected number of events per day in Borexino for the kinetic energy of the

recoil electrons in the range 0.25 to 0.8 MeV resulting from different components of the

SSM solar neutrino flux without neutrino conversion (taken from Table 4 of Ref. [30]).

Also shown is the expected number of background events per day.

allowed value of |Λ| which cannot be distinguished from |Λ| = 0, and is therefore a

measure for the obtainable sensitivity to |Λ| at Borexino.

The numbers of events due to the weak and electromagnetic scattering are calculated

by

nweak
i = N

∑

f

Φ0
f

∫ ∞

0
dEν φf

{

P f
ee [σW

e ]i + (1 − P f
ee)[σ

W
µ ]i

}

,

nem
i = N

∑

f

Φ0
f

∫ ∞

0
dEν φf µ2

LMA [σ′
em]i , (37)

respectively. The effective cross sections in the bin i are calculated like in Eqs. (24) and

(25), by choosing the lower and upper bounds of the recoil energy interval T1 and T2

according to the given bin i. We sum over the four most important neutrino fluxes (f =

Be, pep, N, O) in Borexino (see Ref. [30]). For the mono-energetic lines we have φBe(Eν) =

δ(Eν −0.862 MeV) and φpep(Eν) = δ(Eν −1.442 MeV), and we use the normalized spectra

φN(Eν) and φO(Eν) given in Ref. [38]. The absolute values of the neutrino fluxes Φ0
f from

Ref. [37] are given by Φ0
Be = 0.429, Φ0

pep = 0.014, Φ0
N = 0.055, Φ0

O = 0.048 in units of 1010

cm−2s−1. Note that from the two 7Be lines the line at 0.38 MeV, which constitutes 10%

of the total 7Be flux, does not contribute to the signal in Borexino. Therefore the value

for Φ0
Be given above has been obtained by multiplying the value given in Ref. [37] with

0.9.

In Table 3 we show the expected number of events per day in Borexino for the kinetic

energy of the recoil electrons in the range 0.25 to 0.8 MeV, resulting from different solar

neutrino fluxes, for the standard solar model without neutrino oscillations. We do not

consider other neutrino fluxes, because they contribute to the signal with less than 0.2

events per day. We fix the normalization constant N in Eq. (37) in such a way that the

number of events per day from the 7Be line for Pee = 1 and µLMA = 0 is 43.3. Then we

can reproduce the number of events arising from the other fluxes as given in Table 3 to

good accuracy.

The number of background events nbg
i is obtained in the following way. We read off

the shape of the background as a function of the electron energy from Fig. 15 of Ref. [30]

and normalize this function to 19 background events per day in the energy range 0.25 to

0.8 MeV [29]. Then we can calculate nbg
i by integrating over the corresponding energy

interval for each bin.
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Figure 5: Contours of the 90% C.L. bound on |Λ| after 3 years of Borexino data-taking in

units of 10−10µB. The current best fit point is shown by the star, and the shaded region

is the allowed LMA-MSW region at 3σ, from Ref. [9]. The dotted line corresponds to

Pe1 = 0.5 for 7Be neutrinos.

We use the following covariance matrix in Eq. (36):

V borex
ij = δijN

th
i +

∑

f1,f2

Nif1
Njf2

12
∑

β=1

αf1βαf2β (∆lnXβ)2 + Nbg
i Nbg

j (∆ ln Nbg)2 . (38)

The first term is the statistical uncertainty, taken as the square-root of the predicted

number of events. The second term describes the uncertainty in the solar neutrino fluxes.

Here Nif are the contributions of the individual solar neutrino fluxes to the total event

numbers in each bin: N th
i =

∑

f Nif +Nbg
i , and the sum is over the four fluxes relevant in

Borexino (for definition and values of the quantities αfβ and Xβ see Ref. [41]). The last

term takes into account a systematic uncertainty in the number of background events.

We assume full correlation between the bins and that the relative uncertainty is the same

for all bins: ∆Nbg
i /Nbg

i = ∆ ln Nbg. We adopt a standard value for our calculations of

∆ ln Nbg = 10%.
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Figure 6: The left panel shows the 90% C.L. bound on |Λ| after 3 years of Borexino data-

taking as a function of the number of recoil electron energy bins for two values of the

error on the background. The right panel gives the 90% C.L. bound on |Λ| as a function

of Borexino running time for ∆ lnNbg = 10%.

6.2 Sensitivity on |Λ| of Borexino

Using the statistical method described in Sections 3 and 6.1 we obtain for the current

best fit point ∆m2 = 6.6 × 10−5 eV2, tan2 θ = 0.44 the upper bound (sensitivity)

|Λ| ≤ 0.28 × 10−10µB at 90% C.L. (39)

after three years of Borexino data taking. This bound is about one order of magnitude

stronger than the bound from existing data. We have checked that a combined analysis

of Borexino with existing data (solar as well as reactor data) does not improve the bound

of Eq. (39). The bound depends on the actual value of the oscillation parameters; in

Fig. 5 we show contours of the 90% C.L. bound in the tan2 θ−∆m2 plane. The strongest

attainable limit is roughly 0.24 × 10−10µB. In agreement with the discussion we gave in

connection with Eq. (21) we find that the strongest bound is obtained when Pe1 = 0.5, as

shown by the dotted line in Fig. 5.

We have performed several tests concerning our assumptions for Borexino. Fig. 6 (left

panel) shows the dependence of the bound on the number of bins in the recoil electron

energy. We can see from this figure that a measurement of the total rate alone (Nbins = 1)

gives a rather weak bound. However a few bins are already enough for a considerable

improvement of the bound on |Λ|. It is interesting to see that the error on the background

is only important for few bins, and becomes completely unimportant for more than 3 or

4 bins, because the main information comes from the spectral shape.

In the right panel in Fig. 6 we show the bound as a function of the Borexino running

time. Here we adopt again our nominal value of 8 energy bins. After one year a sensitivity

of 0.4 × 10−10µB can be obtained with Borexino, which is already about one order of

magnitude stronger than the current bound. After three years of data-taking only a
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minor improvement of the bound is possible, mainly due to the uncertainty in the solar

neutrino fluxes.2

7 Conclusions

In this paper we have presented stringent bounds on electromagnetic Majorana transition

moments (TMs). Such TMs—if present—would contribute to the elastic neutrino–electron

scattering signal in solar neutrino experiments like Super-Kamiokande or the upcoming

Borexino experiment, as well as in reactor neutrino experiments. Motivated by the robust

status of the LMA-MSW solution of the solar neutrino problem indicated by recent data,

and also by the prospects of its possible confirmation by the KamLAND experiment, we

have taken this solution as basis for our investigation. In this context we have clari-

fied which effective magnetic moments are probed in solar and reactor experiments—see

Eqs. (12) and (13), respectively. Using most recent global solar neutrino data we have

performed a fit in terms of the oscillation parameters and the elements of the complex TM

matrix λ of three active Majorana neutrinos. Taking into account the antisymmetry of

the TM matrix by the parameterization λjk = εjklΛl, we have shown that solar neutrino

data allow to constrain |Λ|, i.e., all elements of the TM matrix are bounded at the same

time. We want to stress that the bounds on |Λ| hold in any basis, because |Λ| is an

intrinsic neutrino property; in terms of TMs it is given by

|Λ|2 = |λeµ|
2 + |λµτ |

2 + |λτe|
2 = |λ12|

2 + |λ23|
2 + |λ31|

2 (40)

in the flavour and mass-eigenstate bases, respectively. On the other hand, the bounds on

the individual |Λi| (i = 1, 2, 3) in Tab. 2 refer only to the mass-eigenstate basis.

A fit to the global solar neutrino data leads to the bound |Λ| < 6.3 × 10−10µB at

90% C.L. We have also considered the role of reactor neutrino data on neutrino TMs,

shown to be complementary to solar neutrino data. A combined fit of reactor and solar

data leads to significantly improved bounds: at 90% C.L. we get |Λ| < 2.0 × 10−10µB.

In the very near future the KamLAND experiment will crucially test the LMA-MSW

solution. If KamLAND confirms the LMA-MSW solution then a precise determination

of the parameters tan2 θ and ∆m2 might be possible. This motivated us to scan the

tan2 θ−∆m2 plane and to calculate the corresponding bound on |Λ| in each point. These

results are shown in Figs. 3 and 4 for solar data and solar + reactor data, respectively.

We have also investigated the potential of the upcoming neutrino–electron scattering

solar neutrino experiment Borexino to constrain neutrino TMs. Performing a detailed

simulation of the experiment we find that it will improve the bound on |Λ| by about one

order of magnitude with respect to present bounds.

Last, but not least, let us mention that alternative solutions to the solar neutrino

problem based on non-standard neutrino matter interactions [43], which may arise in

models of neutrino masses [44], can also be constrained in an analogous way [42]. If, as

seems likely, the LMA-MSW solution is finally borne out, the improved determination of

2Note that we do not include any experimental systematic uncertainties in our Borexino analysis.
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the oscillation parameters expected, say at KamLAND, will provide an extremely useful

stepping stone for probing other features of neutrino physics beyond the Standard Model.
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