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Abstract

We show that the minimal R-parity breaking model characterized by an effective

bilinear violation of R-parity in the superpotential is consistent with minimal N=1

supergravity unification with radiative breaking of the electroweak symmetry and

universal scalar and gaugino masses. This one-parameter extension of the MSSM-

SUGRA model provides therefore the simplest reference model for the breaking of

R-parity and constitutes a consistent truncation of the complete dynamical mod-

els with spontaneous R-parity breaking proposed previously. We comment on the

lowest-lying CP-even Higgs boson mass and discuss its minimal N=1 supergravity

limit, determine the ranges of tan β and bottom quark Yukawa couplings allowed in

the model, as well as the relation between the tau neutrino mass and the bilinear

R-parity violating parameter.
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1 Introduction

Supersymmetry apart from being attractive from the point of view of providing a solution

to the hierarchy problem and the unification of the gauge couplings, provides an elegant

mechanism for the breaking of the electroweak symmetry via radiative corrections [1]. So

far most attention to the study of supersymmetric phenomenology has been made in the

framework of the Minimal Supersymmetric Standard Model (MSSM) [2] with conserved

R-parity [3]. R-parity is a discrete symmetry assigned as Rp = (−1)(3B+L+2S), where L is

the lepton number, B is the baryon number and S is the spin of the state. If R-parity is

conserved all supersymmetric particles must always be pair-produced, while the lightest

of them must be stable. Whether or not supersymmetry is realized with a conserved

R-parity is an open dynamical question, sensitive to physics at a more fundamental scale.

The study of alternative supersymmetric scenarios where the effective low energy

theory violates R-parity [4] has received recently a lot of attention [5, 6, 7]. As is well-

known, the simplest supersymmetric extension of the Standard Model violates R-parity

through a set of cubic superpotential terms involving a very large number of arbitrary

Yukawa couplings. Although highly constrained by proton stability, one cannot exclude

that a large number of such scenarios could be viable. Nevertheless their systematic study

at a phenomenological level is hardly possible, due to the large number of parameters

(almost fifty) characterizing these models, in addition to those of the MSSM.

As other fundamental symmetries, it could well be that R-parity is a symmetry

at the Lagrangean level but is broken by the ground state. Such scenarios provide a

very systematic way to include R parity violating effects, automatically consistent with

low energy baryon number conservation. They have many added virtues, such as the

possibility of having a dynamical origin for the breaking of R-parity, through radiative

corrections, similar to the electroweak symmetry [8].

In this paper we focus on the simplest truncated version of such a model, in which the

violation of R-parity is effectively parametrized by a bilinear superpotential term ǫiL̂
a
i Ĥ

b
2.

In this effective truncated model the superfield content is exactly the standard one of the

MSSM. In this case there is no physical Goldstone boson, the Majoron, associated to the

spontaneous breaking of R-parity. Formulated at the weak scale, the model contains only

two new parameters in addition to those of the MSSM. Alternatively, the unified version

of the model, contains exactly a single additional parameter when compared to the unified

version of the MSSM, which we will from now on call MSSM-SUGRA. Therefore our model

is the simplest way to break R-parity and can thus be regarded as a reference model for

R-parity breaking. In contrast to models with trilinear R-parity breaking couplings, it

leads to a very restrictive and systematic pattern of R-parity violating interactions.

Here we show that this simplest truncated version of the R-parity breaking model

of ref. [8], characterized by a bilinear violation of R-parity in the superpotential, is
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consistent with minimal N=1 supergravity models with radiative electroweak symmetry

breaking and universal scalar and gaugino masses at the unification scale. In particular,

we perform a thorough study of the minimization of the scalar boson potential using the

tadpole method needed for an accurate determination of the Higgs boson mass spectrum.

We comment on the lowest-lying CP-even Higgs boson mass and discuss its minimal

N=1 supergravity limit, determining also the ranges of tanβ and bottom quark Yukawa

couplings allowed at unification, as well as the relation between the tau neutrino mass

and the effective bilinear R-parity violating parameter. Our results encourage further

theoretical work on this and on more complete versions of the model, like that of ref. [8],

as well as phenomenological studies of the related signals.

2 The Model

The supersymmetric Lagrangian is specified by the superpotential W given by ∗

W = εab

[
hij

U Q̂a
i ÛjĤ

b
2 + hij

DQ̂b
iD̂jĤ

a
1 + hij

EL̂b
iR̂jĤ

a
1 − µĤa

1 Ĥb
2 + ǫiL̂

a
i Ĥ

b
2

]
(1)

where i, j = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices, and ε is a com-

pletely antisymmetric 2 × 2 matrix, with ε12 = 1. The symbol “hat” over each letter

indicates a superfield, with Q̂i, L̂i, Ĥ1, and Ĥ2 being SU(2) doublets with hyper-charges
1
3
, −1, −1, and 1 respectively, and Û , D̂, and R̂ being SU(2) singlets with hyper-charges

−4
3
, 2

3
, and 2 respectively. The couplings hU , hD and hE are 3 × 3 Yukawa matrices, and

µ and ǫi are parameters with units of mass. The first four terms in the superpotential are

common to the MSSM, and the last one is the only R–parity violating term. From now

on, we work only with the third generation of quarks and leptons.

Experimental evidence indicate that supersymmetry must be broken. The actual

supergravity mechanism is unknown, but can be parametrized with a set of soft supersym-

metry breaking terms which do not introduce quadratic divergences to the unrenormalized

theory [10]

Vsoft = M2
QQ̃a∗

3 Q̃a
3 + M2

U Ũ∗
3 Ũ3 + M2

DD̃∗
3D̃3 + M2

LL̃a∗
3 L̃a

3 + M2
RR̃∗

3R̃3

+m2
H1

Ha∗
1 Ha

1 + m2
H2

Ha∗
2 Ha

2 −
[

1
2
M3λ3λ3 + 1

2
M2λ2λ2 + 1

2
M1λ1λ1 + h.c.

]
(2)

+εab

[
AthtQ̃

a
3Ũ3H

b
2 + AbhbQ̃

b
3D̃3H

a
1 + Aτhτ L̃

b
3R̃3H

a
1 − BµHa

1Hb
2 + B2ǫ3L̃

a
3H

b
2

]
.

where we are already using a one–generation notation.

Note that in the effective low-energy supergravity model the bilinear R-parity vio-

lating term cannot be eliminated by superfield redefinition even though it appears to be

so at high scales, before electroweak and supersymmetry breaking take place [4]. The rea-

son is that the bottom Yukawa coupling, usually neglected in the renormalization group

∗ We are using here the notation of refs. [2] and [9].
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evolution, plays a crucial role in splitting the soft-breaking parameters B and B2 as well

as the scalar masses m2
H1

and M2
L, assumed to be equal at the unification scale. This can

be seen explicitly from eq. (56) and eq. (57) as well as eq. (49) and eq. (52) in Appendix

A. This ensures that R-parity violating effects can not be rotated away by going to a new

basis † [11, 12], even if the starting RGE boundary conditions for the soft-breaking terms

are universal.

It goes without saying that, in a supergravity model where soft-breaking terms are

not universal at the GUT scale, such as string models, the bilinear violation of R-parity

is also not removable. However, in this case its effects are not calculable, in contrast to

our case. The same is true for the case of the most general low-energy supersymmetric

model [13].

The electroweak symmetry is broken when the two Higgs doublets H1 and H2, and

the tau–sneutrino acquire vacuum expectation values (VEVS):

H1 =

( 1√
2
[χ0

1 + v1 + iϕ0
1]

H−
1

)
, H2 =

(
H+

2
1√
2
[χ0

2 + v2 + iϕ0
2]

)
,

L̃3 =

(
1√
2
[ν̃R

τ + v3 + iν̃I
τ ]

τ̃−

)
. (3)

Note that the gauge bosons W and Z acquire masses given by m2
W = 1

4
g2v2 and m2

Z =
1
4
(g2 + g′2)v2, where v2 ≡ v2

1 + v2
2 + v2

3 = (246 GeV)2. We introduce the following notation

in spherical coordinates:

v1 = v sin θ cos β

v2 = v sin θ sin β

v3 = v cos θ (4)

which preserves the MSSM definition tan β = v2/v1. The angle θ equal to π/2 in the

MSSM limit.

The full scalar potential may be written as

Vtotal =
∑

i

∣∣∣∣∣
∂W

∂zi

∣∣∣∣∣

2

+ VD + Vsoft + VRC (5)

where zi denotes any one of the scalar fields in the theory, VD are the usual D-terms,

Vsoft the SUSY soft breaking terms given in eq. (2), and VRC are the one-loop radiative

corrections. It is popular to treat radiative corrections with the effective potential. In this

case, VRC corresponds to the one–loop contributions to the effective potential. Here we

prefer to use the diagrammatic method and find the minimization conditions by correcting

to one–loop the tadpole equations. At the level of finding the minima, the two methods

†Obviously physics does not depend on the choice of basis [11]. In this paper we choose to work with

the unrotated fields.
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are equivalent [14]. Nevertheless, the diagrammatic (tadpole) method has advantages

with respect to the effective potential when we calculate the one–loop corrected scalar

masses [15].

The scalar potential contains linear terms

Vlinear = t01χ
0
1 + t02χ

0
2 + t03ν̃

R
τ , (6)

where

t01 = (m2
H1

+ µ2)v1 − Bµv2 − µǫ3v3 + 1
8
(g2 + g′2)v1(v

2
1 − v2

2 + v2
3) ,

t02 = (m2
H2

+ µ2 + ǫ2
3)v2 − Bµv1 + B2ǫ3v3 − 1

8
(g2 + g′2)v2(v

2
1 − v2

2 + v2
3) , (7)

t03 = (m2
L3

+ ǫ2
3)v3 − µǫ3v1 + B2ǫ3v2 + 1

8
(g2 + g′2)v3(v

2
1 − v2

2 + v2
3) .

These t0i , i = 1, 2, 3 are the tree level tadpoles, and are equal to zero at the minimum of

the potential.

3 Squark Sector and Radiative Corrections

To find the correct electroweak symmetry breaking radiatively, we need to relate param-

eters at the GUT scale with parameters at the weak scale. This means we are promoting

the parameters in the tree level tadpoles in eq. (7) to running parameters. Therefore,

in order to find the correct minima of the scalar potential it is essential to include the

one–loop contributions to the tadpoles, otherwise our tadpoles would be extremely scale

dependent, i.e., unphysical.

The main one–loop contributions to the tadpoles come from loops involving top and

bottom quarks and squarks. Therefore, we need to study the scalar quark sector, and in

particular, the spectrum and couplings to CP–even neutral scalars.

The term ǫ3L̂
a
3Ĥ

b
2 in the superpotential induce F–terms in the scalar potential, lead-

ing to squark mass terms of the form t̃Lt̃∗R proportional to ǫ3. In addition, the non–zero

value of the vacuum expectation value of the tau–sneutrino generates, from the D–terms,

squark mass terms of the form t̃it̃
∗
i and b̃ib̃

∗
i , i = L, R. The new squark mass matrices are:

MMM 2
t̃ =

[
M2

Q + m2
t + 1

8
(g2 − 1

3
g′2)(v2

1 − v2
2 + v2

3) mt(At − µv1/v2 + ǫ3v3/v2)

mt(At − µv1/v2 + ǫ3v3/v2) M2
U + m2

t + 1
6
g′2(v2

1 − v2
2 + v2

3)

]
(8)

for the top squarks, and

MMM 2
b̃ =

[
M2

Q + m2
b − 1

8
(g2 + 1

3
g′2)(v2

1 − v2
2 + v2

3) mb(Ab − µv2/v1)

mb(Ab − µv2/v1) M2
D + m2

b − 1
12

g′2(v2
1 − v2

2 + v2
3)

]
(9)

for the bottom squarks. The reader can recover the MSSM squark mass matrices by

taking ǫ3 = v3 = 0 in the above two equations. The quark masses are related to the quark
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Yukawa couplings in the same way as in the MSSM: mt = htv2/
√

2 and mb = hbv1/
√

2.

Nevertheless, the numerical value of the quark Yukawas is higher in comparison with the

MSSM to compensate with smaller vacuum expectation values

ht =
gmt√

2mWsβsθ

, hb =
gmb√

2mW cβsθ

, (10)

and this is represented by the term sin θ ≡ sθ in the denominators in the above equations.

Squark mass matrices MMM 2
t̃ and MMM 2

b̃ are diagonalized by two rotation matrices such

that:

RRRt̃MMM
2
t̃RRR

T
t̃ =

[
mt̃1 0

0 mt̃2

]
, RRRb̃MMM

2
b̃RRR

T
b̃ =

[
mb̃1

0

0 mb̃2

]
, (11)

where mq̃1
< mq̃2

by convention. These rotation matrices play an important role in the

determination of the scalar couplings to a pair of squarks.

We introduce the notation for the CP–even neutral scalars S0
i = χ0

1, χ
0
2, ν̃

R
τ for i =

1, 2, 3 respectively. In this way, the Feynman rules of the type S0
i qq are

χ0
1bb −→ −i

1√
2
hb , χ0

2tt −→ −i
1√
2
ht . (12)

as in the MSSM, but with the quark Yukawa couplings given by eq. (10). Feynman rules

of the type S0
i qq not listed in eq. (12) are zero.

In a similar way, we find Feynman rules of the type S0
i q̃q̃

∗, i.e., CP–even neutral

scalars couplings to a pair of squarks. We start with χ0
1 couplings to top squarks:

χ0
1t̃t̃

∗ −→ iMMMχ0

1
t̃t̃ , MMMχ0

1
t̃t̃ = RRRt̃MMM

′
χ0

1
t̃t̃RRR

T
t̃ ,

MMM ′
χ0

1
t̃t̃ =

[
−1

4
(g2 − 1

3
g′2)v1

1√
2
htµ

1√
2
htµ −1

3
g′2v1

]
(13)

and to bottom squarks:

χ0
1b̃b̃

∗ −→ iMMMχ0

1
b̃b̃ , MMMχ0

1
b̃b̃ = RRRb̃MMM

′
χ0

1
b̃b̃RRR

T
b̃ ,

MMM ′
χ0

1
b̃b̃ =

[
−h2

bv1 + 1
4
(g2 + 1

3
g′2)v1 − 1√

2
hbAb

− 1√
2
hbAb −h2

bv1 + 1
6
g′2v1

]
(14)

These couplings have the same form in the MSSM but, as it was said before, the Yukawa

couplings are different and given by eq. (10). In addition, vacuum expectation values

v1 and v2 are different with respect to the MSSM and given by v1 = 2mW cβsθ/g and

v2 = 2mW sβsθ/g and again, the deviation from the MSSM is parametrized by the angle

θ.

Now we turn to the neutral CP-even Higgs χ0
2 that comes from the second Higgs

doublet. Its couplings to top squarks are:

χ0
2t̃t̃

∗ −→ iMMMχ0

2
t̃t̃ , MMMχ0

2
t̃t̃ = RRRt̃MMM

′
χ0

2
t̃t̃RRR

T
t̃ ,

MMM ′
χ0

2
t̃t̃ =

[
−h2

t v2 + 1
4
(g2 − 1

3
g′2)v2 − 1√

2
htAt

− 1√
2
htAt −h2

t v2 + 1
3
g′2v2

]
(15)
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and to bottom squarks:

χ0
2b̃b̃

∗ −→ iMMMχ0

2
b̃b̃ , MMMχ0

2
b̃b̃ = RRRb̃MMM

′
χ0

2
b̃b̃RRR

T
b̃ ,

MMM ′
χ0

2
b̃b̃ =

[
−1

4
(g2 + 1

3
g′2)v2

1√
2
hbµ

1√
2
hbµ −1

6
g′2v2

]
(16)

Finally, we turn to the real part of the tau–sneutrino field, which mixes with χ0
1 and

χ0
2. Its couplings to top squarks are:

ν̃R
τ t̃t̃∗ −→ iMMM ν̃R

τ t̃t̃ , MMM ν̃R
τ t̃t̃ = RRRt̃MMM

′
ν̃R

τ t̃t̃RRR
T
t̃ ,

MMM ′
ν̃R

τ
t̃t̃ =

[
−1

4
(g2 − 1

3
g′2)v3 − 1√

2
htǫ3

− 1√
2
htǫ3 −1

3
g′2v3

]
(17)

and to bottom squarks:

ν̃R
τ b̃b̃∗ −→ iMMM ν̃R

τ b̃b̃ , MMM ν̃R
τ b̃b̃ = RRRb̃MMM

′
ν̃R

τ b̃b̃RRR
T
b̃ ,

MMM ′
ν̃R

τ b̃b̃ =

[
1
4
(g2 + 1

3
g′2)v3 0

0 1
6
g′2v3

]
(18)

These couplings ν̃R
τ q̃q̃∗ vanish in the MSSM limit v3 = ǫ3 = 0, as it should.

We are now ready to include the effect of the one–loop tadpoles in eq. (7). The

first step towards the calculation of radiative corrections is the introduction of counter-

terms. All parameters in the Lagrangian are shifted from bare parameters to renormalized

parameters minus a counter-term:

λ −→ λ − δλ λ = g, g′, ht, hb, hτ ,

m2 −→ m2 − δm2 m2 = m2
H1

, m2
H2

, m2
L3

, m2
R3

, µ, ǫ3,

vi −→ vi − δvi i = 1, 2, 3, (19)

A −→ A − δA A = At, Ab, Aτ ,

B −→ B − δB B = B, B2, (20)

for couplings, masses, vacuum expectation values, trilinear soft parameters, and bilinear

soft parameters respectively. If we make this shift in the tadpole equations given in

eq. (7), the tadpole themselves get a counter-term δti for i = 1, 2, 3. Therefore, the

one–loop tadpole equations are

ti = t0i − δti + Ti(Q) , i = 1, 2, 3, (21)

where ti are the one-loop renormalized tadpoles and Ti(Q) are the one–loop contribu-

tions to the tadpoles, with Q being the arbitrary mass scale introduced by Dimensional

Reduction.

The renormalization scheme we choose to work with is the MS scheme, where by

definition the tadpole counter-terms are taken such that they cancel the divergent pieces

of Ti(Q) proportional to ∆:

∆ =
2

4 − n
+ ln 4π − γE, (22)
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where ∆ is the regulator of dimensional regularization, n is the number of space–time

dimensions, and γE is the Euler’s constant. The MS–counter-terms chosen in this way

make the tadpoles finite. We introduce the notation

T̃MS
i (Q) = −δtMS

i + Ti(Q), (23)

for the finite one–loop contribution to the tadpoles. These finite one–loop tadpoles depend

explicitly on the arbitrary scale Q.

The one–loop tadpoles ti must be scale independent (at least in the one–loop approx-

imation), therefore, the renormalized parameters are promoted to running parameters,

i.e., they evolve with the scale Q according to their Renormalization Group Equations

(RGE). The explicit Q dependence on T̃MS
i (Q) is cancelled at one–loop by the implicit

Q dependence on the parameters of the tree level tadpoles. Renormalized tadpoles must

be zero at the minimum of the potential ti = 0, thus the generalization of the tadpole

equations is

[
(m2

H1
+ µ2)v1 − Bµv2 − µǫ3v3 + 1

8
(g2 + g′2)v1(v

2
1 − v2

2 + v2
3)
]
(Q) + T̃MS

1 (Q) = 0 ,
[
(m2

H2
+ µ2 + ǫ2

3)v2 − Bµv1 + B2ǫ3v3 − 1
8
(g2 + g′2)v2(v

2
1 − v2

2 + v2
3)
]
(Q) + T̃MS

2 (Q) = 0 ,
[
(m2

L3
+ ǫ2

3)v3 − µǫ3v1 + B2ǫ3v2 + 1
8
(g2 + g′2)v3(v

2
1 − v2

2 + v2
3)
]
(Q) + T̃MS

3 (Q) = 0 . (24)

and these are the minimization condition we impose ‡. We choose to work at the scale

Q = mZ . The RGE’s for each parameter are given in the Appendix A, and the boundary

condition at the GUT scale are described later.

Now we find the one–loop contributions to the tadpoles. Quarks contribute to χ0
1

and χ0
2 one–loop tadpoles only. On the contrary, squarks contribute to all three tadpoles.

Using the notation for the Feynman rules introduced in the previous section, the quark

and squark one–loop contribution to the tadpoles can be written as:

[
Tχ0

1

]tbt̃b̃
=

Nc

16π2

2∑

i=1

[
M ii

χ0

1
t̃t̃A0(m

2
t̃i
) + M ii

χ0

1
b̃b̃
A0(m

2
b̃i

)
]
+

Ncgm2
b

8π2mW cβsθ

A0(m
2
b)

[
Tχ0

2

]tbt̃b̃
=

Nc

16π2

2∑

i=1

[
M ii

χ0

2
t̃t̃A0(m

2
t̃i
) + M ii

χ0

2
b̃b̃
A0(m

2
b̃i

)
]
+

Ncgm2
t

8π2mW sβsθ
A0(m

2
t )

[
Tν̃R

τ

]tbt̃b̃
=

Nc

16π2

2∑

i=1

[
M ii

ν̃R
τ t̃t̃A0(m

2
t̃i
) + M ii

ν̃R
τ b̃b̃

A0(m
2
b̃i

)
]

(25)

where A0 is the first Veltman’s function defined by

A0(m
2) = m2(∆ − ln

m2

Q2
+ 1) (26)

The finite tadpoles T̃MS
i (Q) are found simply by setting ∆ = 0 in the previous expressions.

‡ To see the effect one–loop tadpoles have on the determination of MSSM–SUGRA parameters, see

ref. [16]
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4 Unification

We now discuss the corresponding boundary conditions at unification. We assume that

at the unification scale the model is characterized by one universal soft supersymmetry-

breaking mass m0 for all the scalars (the gravitino mass), and a universal gaugino mass

M1/2. Moreover we assume that there is a single trilinear soft breaking scalar mass

parameter A and that the bilinear soft breaking parameter B is related to A through

B = A − 1. In other words we make the standard minimal supergravity assumptions:

At = Ab = Aτ ≡ A , (27)

B = B2 = A − 1 , (28)

m2
H1

= m2
H2

= M2
L = M2

R = m2
0 , (29)

M2
Q = M2

U = M2
D = m2

0 , (30)

M3 = M2 = M1 = M1/2 (31)

at Q = MGUT . At energies below MGUT these conditions do not hold, due to the renor-

malization group evolution from the unification scale down to the relevant scale.

In order to determine the values of the Yukawa couplings and of the soft breaking

scalar masses at low energies we first run the RGE’s from the unification scale MGUT ∼
1016 GeV down to the weak scale. In doing this we randomly give values at the unification

scale for the parameters of the theory. The range of variation of the MSSM-SUGRA

parameters at the unification scale is as follows

10−2 ≤ h2
t GUT /4π ≤ 1

10−5 ≤ h2
bGUT /4π ≤ 1

−3 ≤ A/m0 ≤ 3

0 ≤ µ2
GUT /m2

0 ≤ 10

0 ≤ M1/2/m0 ≤ 5

(32)

while the range of variation of ǫ3 is

10−2 ≤ ǫ2
3GUT /m2

0 ≤ 10 (33)

and the value of h2
τ GUT /4π is defined in such a way that we get the τ mass correctly.

After running the RGE we have a complete set of parameters, Yukawa couplings and

soft-breaking masses m2
i (RGE) to study the minimization.

Similar to what happens in the MSSM-SUGRA (see Appendix B) the number of

independent parameters of this model is actually less than given above, as one must take

into account the W mass constraint as well as the minimization conditions. In the end

there is a single new parameter characterizing our model, namely ǫ3.
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5 Results and Phenomenology

The main parameters characterizing electroweak breaking are the SU(2) doublet VEVs

v1, v2 and v3. In our model these are obtained as explained in the Appendix B. Basically

we assign random values for the top and bottom quark Yukawa couplings ht and hb at the

GUT scale and evolve them down to the weak scale through the Renormalization Group

Equations, given in Appendix A. Using the measured top and bottom quark masses we

determine the corresponding running masses at the weak-scale. Combining this with the

values of ht and hb at the weak-scale, obtained through the use of the RGE’s, we calculate

the standard MSSM VEVS v1 and v2. The third VEV v3, which breaks R-parity, is

determined through the W mass formula. The resulting VEVs may not be consistent

with the minimization conditions. In Appendix B we present a procedure to ensure a

consistent solution. Note that due to the contribution of v3 to the intermediate gauge

boson masses, v2
1 + v2

2 is smaller than in the MSSM. The first check of we can do to

verify the consistency of the model is to study the allowed values of the lightest CP-even

Higgs boson mass mh as a function of the third VEV v3. This is displayed in Fig. (1)

The unrotated neutral CP-even Higgs bosons χ0
1 and χ0

2 mix with the real part of the tau

sneutrino ν̃R
τ . These are the CP–even scalars S0

i , i = 1, 2, 3, introduced in section 3. The

mass matrix can be written as

M2
S0 = M2

S0,MSSM + M2
S0,ǫ3

+ M2
S0,RC (34)

where M2
S0,MSSM is the MSSM mass matrix given by

MMM 2
S0,MSSM =




Bµ v2

v1

+ 1
4
g2

Zv2
1 −Bµ − 1

4
g2

Zv1v2 0

−Bµ − 1
4
g2

Zv1v2 Bµ v1

v2

+ 1
4
g2

Zv2
2 0

0 0 m2
L3

+ 1
8
g2

Z(v2
1 − v2

2)


 (35)

where we have defined g2
Z ≡ g2+g′2. As expected, this mass matrix has no mixing between

the Higgs and stau sectors. The extra terms that appear in our ǫ3–model are

MMM 2
S0,ǫ3 =




µǫ3
v3

v1

0 −µǫ3 + 1
4
g2

Zv1v3

0 −B2ǫ3
v3

v2

B2ǫ3 − 1
4
g2

Zv2v3

−µǫ3 + 1
4
g2

Zv1v3 B2ǫ3 − 1
4
g2

Zv2v3 ǫ2
3 + 3

8
g2

Zv2
3


 (36)

which introduce a Higgs–Stau mixing. Finally, in M2
S0,RC we introduce the largest term

in the one–loop radiative corrections, i.e., the term proportional to m4
t :

MMM2
S0,RC =




0 0 0

0 ∆t 0

0 0 0


 , ∆t =

3g2m4
t

16π2m2
Ws2

βs2
θ

ln
m2

t̃1
m2

t̃2

m4
t

; (37)

This formula gives results good in first approximation, nevertheless, already in the MSSM

can give wrong results in certain regions of parameter space [17], and should be improved.
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Figure 1: Lightest CP-even Higgs boson mass mh as a function of v3 in our model

10



60

80

100

120

140

1 10 10
2

tan β

m
h 

 (
G

eV
)

Figure 2: Lightest CP-even Higgs boson mass mh versus tan β

As one can see in Fig. (1), in the limit v3 → 0 our model reproduces exactly the

expected minimal SUGRA limit for the lightest CP-even Higgs boson mass. Another

view of the Higgs boson mass spectrum allowed in our model is obtained by plotting

mh as a function of tan β, as illustrated in Fig. (2). One sees that all values of tanβ

in the range 2 to 60 or so are possible in our model. As in the MSSM–SUGRA, tan β

smaller than 2 are not possible because the top Yukawa coupling diverges as we approach

the unification scale. This is related to the fact that in that region we are close to the

infrared quasi–fixed point. Note that the range of tanβ values obtained in our model is

consistent with the unification hypothesis for a large range of the bottom quark Yukawa

coupling at unification, as illustrated in Fig. (3).

Another important feature of our broken R-parity model is that the tau neutrino

ντ acquires a mass, due to the fact that ǫ3 and v3 are nonzero. Consider the basis

(Ψ0)T = (−iλ1,−iλ3
2, H̃

1
1 , H̃

2
2 , ντ ), where λ1 is the U(1) gaugino introduced in eq. (2), λ3

2

is the neutral SU(2) gaugino, H̃ i
i , i = 1, 2 are the neutral Higgsinos, and ντ is the SM

tau neutrino. In this base, the mass terms in the Lagrangian for the neutralino–neutrino

11
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sector are

Lm = −1
2
(Ψ0)TMNΨ0 + h.c. (38)

where the mass matrix is §

MN =




M1 0 −1
2
g′v1

1
2
g′v2 −1

2
g′v3

0 M2
1
2
gv1 −1

2
gv2

1
2
gv3

−1
2
g′v1

1
2
gv1 0 −µ 0

1
2
g′v2 −1

2
gv2 −µ 0 ǫ3

−1
2
g′v3

1
2
gv3 0 ǫ3 0




(39)

The only new terms appear in the mixing between neutralinos and tau–neutrino. This

mixing is proportional to ǫ3 and v3. They lead to a non-zero Majorana ντ mass, which

depends quadratically on the lepton-number-violating parameters ǫ3 and v3. Thus R-

parity violation in this model is the origin of neutrino mass. In Fig. (4) we display

the allowed values of mντ
(in the tree level approximation) as a function of an effective

parameter ξ defined as ξ ≡ (ǫ3v1 + µv3)
2 ¶ Notice that mντ

values can cover a very wide

range, from eV to values in the MeV range, comparable to the present LEP limit [19].

The latter places a limit on the value of ǫ3. Note that the values of v3 and ǫ3 can be

rather large [see, for example, Fig. (1)].

6 Discussion and Conclusions

Here we have shown that this simplest truncated version of the R-parity breaking model of

ref. [5], characterized by a bilinear violation of R-parity in the superpotential, is consistent

with minimal N=1 supergravity models with radiative electroweak symmetry breaking

and universal scalar and gaugino masses at the unification scale. We have performed

a thorough study of the minimization of the scalar boson potential of the model, using

the tadpole method. We have determined the lowest-lying CP-even Higgs boson mass

spectrum. We have discussed how the minimal N=1 supergravity limit of this theory is

obtained and verified that it works as expected. We have determined also the ranges of

tan β and bottom quark Yukawa couplings allowed at unification, as well as the relation

between the tau neutrino mass and the effective bilinear R-parity violating parameter.

Our results should encourage further theoretical work on this model, as well as more

complete versions of the model, like that of ref. [8]. Phenomenological studies of the

related signals should also be desirable, given the fact that the production and decay

patterns of Higgs bosons and supersymmetric particles in this model are substantially

different that expected in the MSSM or MSSM-SUGRA. For example, Higgs bosons may

have sizeable R-parity violating decays [13]. Similarly, sneutrinos and staus can be the

§More complete forms of this matrix have been given in many places. See, e.g. ref. [18]
¶This combination appears in treating the neutral fermion mass matrix in the seesaw approximation.
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LSP and can have unsuppressed decays into standard model states, thus violating R-

parity. Finally, chargino and neutralino production can lead to totally different signals

as, for example, the lightest neutralino can decay [20]. These features could play an

important role in designing strategies for searching for supersymmetric particles at future

accelerators. For example, R-Parity will give rise to enhanced lepton multiplicities in

Gluino Cascade Decays at LHC [21].
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Appendix A: The Renormalization Group Equations

Here we will give the renormalization group equations for the model described by the

superpotential in eq. (1), but including only the third generation, and by the soft super-

symmetry breaking terms given in eq. (2). First we write the equations for the yukawa

couplings of the trilinear terms:

16π2dhU

dt
= hU

(
6h2

U + h2
D − 16

3
g2
3 − 3g2

2 −
13

9
g2
1

)
(40)

16π2dhD

dt
= hD

(
6h2

D + h2
U + h2

τ −
16

3
g2
3 − 3g2

2 −
7

9
g2
1

)
(41)

16π2dhτ

dt
= hτ

(
4h2

τ + 3h2
D − 3g2

2 − 3g2
1

)
(42)

now the corresponding cubic soft supersymmetry breaking parameters

8π2dAU

dt
= 6h2

UAU + h2
DAD +

16

3
g2
3M3 + 3g2

2M2 +
13

9
g2
1M1 (43)

8π2dAD

dt
= 6h2

DAD + h2
UAU + h2

τAτ +
16

3
g2
3M3 + 3g2

2M2 +
7

9
g2
1M1 (44)

8π2 dAτ

dt
= 4h2

τAτ + 3h2
DAD + 3g2

2M2 + 3g2
1M1 (45)

For the soft supersymmetry breaking mass parameters we have

8π2dM2
Q

dt
= h2

U(m2
H2

+ M2
Q + M2

U + A2
U) + h2

D(m2
H1

+ M2
Q + M2

D + A2
D)

−16

3
g2
3M

2
3 − 3g2

2M
2
2 − 1

9
g2
1M

2
1 +

1

6
g2
1S (46)

8π2dM2
U

dt
= 2h2

U(m2
H2

+ M2
Q + M2

U + A2
U) − 16

3
g2
3M

2
3 − 16

9
g2
1M

2
1 − 2

3
g2
1S (47)

8π2 dM2
D

dt
= 2h2

D(m2
H1

+ M2
Q + M2

D + A2
D) − 16

3
g2
3M

2
3 − 4

9
g2
1M

2
1 +

1

3
g2
1S (48)

8π2 dM2
L

dt
= h2

τ (m
2
H1

+ M2
L + M2

R + A2
τ ) − 3g2

2M
2
2 − g2

1M
2
1 − 1

2
g2
1S (49)

8π2dM2
R

dt
= 2h2

τ (m
2
H1

+ M2
L + M2

R + A2
τ ) − 4g2

1M
2
1 + g2

1S (50)

8π2dm2
H2

dt
= 3h2

U(m2
H2

+ M2
Q + M2

U + A2
U) − 3g2

2M
2
2 − g2

1M
2
1 +

1

2
g2
1S (51)

8π2dm2
H1

dt
= 3h2

D(m2
H1

+ M2
Q + M2

D + A2
D) + h2

τ (m
2
H1

+ M2
L + M2

R + A2
τ )

−3g2
2M

2
2 − g2

1M
2
1 − 1

2
g2
1S (52)

where

S = m2
H2

− m2
H1

+ M2
Q − 2M2

U + M2
D − M2

L + M2
R (53)
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For the bilinear terms in the superpotential we get

16π2dµ

dt
= µ

(
3h2

U + 3h2
D + h2

τ − 3g2
2 − g2

1

)
(54)

16π2dǫ3

dt
= ǫ3

(
3h2

U + h2
τ − 3g2

2 − g2
1

)
(55)

and for the corresponding soft breaking terms

8π2dB

dt
= 3h2

UAU + 3h2
DAD + h2

τAτ + 3g2
2M2 + g2

1M1 (56)

8π2dB2

dt
= 3h2

UAU + h2
τAτ + 3g2

2M2 + g2
1M1 (57)

The gi are the SU(3) × SU(2) × U(1) gauge couplings and the Mi are the corresponding

the soft breaking gaugino masses.

Appendix B: Minimization Procedure

To minimize the scalar potential we use the procedure developed in refs. [8, 22]. We

solve the tadpole equations, eq. (24), for the soft mass-squared parameters in terms of the

VEVS and of the other parameters at the weak scale. This is particularly simple because

those equations are linear in the soft masses squared. To do this we need to know the

values for the VEVS. These are obtained in the following way:

1. We start with random values for ht and hb at MGUT in the range given in eq. (32).

The value of hτ at MGUT is fixed in order to get the correct τ mass.

2. The value of v1 is determined from mb = hbv1/
√

2 for mb = 3 GeV (running b mass

at mZ).

3. The value of v2 is determined from mt = htv2/
√

2 for mt = 176 ± 5 GeV. If

v2
1 + v2

2 > v2 =
4

g2
m2

W = (246 GeV)2 (58)

we go back and choose another starting point.

4. The value of v3 is then obtained from v3 = ±
√

4

g2
m2

W − v2
1 − v2

2.

We see that the freedom in ht and hb at MGUT can be translated into the freedom in

the mixing angles β and θ. Comparing, at this point, with the MSSM we have one extra

parameter θ. We will discuss this in more detail below. In the MSSM we would have

θ = π/2.
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After doing this, for each point in parameter space, we solve the extremum equations,

eq. (24), for the soft breaking masses, which we now call m2
i (i = H1, H2, L). Then we

calculate numerically the eigenvalues for the real and imaginary part of the neutral scalar

mass-squared matrix. If they are all positive, except for the Goldstone boson, the point

is a good one. If not, we go back to the next random value. After doing this we end up

with a set of solutions for which:

1. The Yukawa couplings are determined by the procedure described above.

2. The other parameters are given by the RGE evolution once the values at MGUT are

fixed. Notice, however, that these parameters may not satisfy the tadpole equations.

We will come back to this later.

3. For a given set of m2
i (i = H1, H2, L) each point is also a solution of the minimization

of the potential.

4. However, the m2
i obtained from the minimization of the potential differ from those

obtained from the RGE, which we call m2
i (RGE).

Our next goal is to find which solutions, for the m2
i that minimize the effective low-

energy potential, have the property that they coincide with the m2
i (RGE) obtained, for

a given unified theory, from the RGE, namely

m2
i = m2

i (RGE) ; i = H1, H2, L (59)

Following ref. [8] we define a function

η = max

(
m2

i

m2
i (RGE)

,
m2

i (RGE)

m2
i

)
; ∀i (60)

Defined in this way it is easy to see that we always have η ≥ 1, the equality being what

we are looking for.

We are then all set for a minimization procedure. We want, by varying the parame-

ters at the GUT scale, to get η as close to 1 as possible. With these conditions we used the

MINUIT package in order to find the minimum of η. We considered a point in parameter

space to be a good solution if η < 1.001.

Before we end this Appendix, let us discuss the counting of free parameters in this

model and in the minimal N=1 supergravity unified version of the MSSM. As we explained

above after requiring the correct masses for the W , t, b and τ we get one free parameter

in the MSSM, tanβ, and two in our model, tan β and cos θ or, equivalently, v3. As for

the other parameters we have at the GUT scale one extra parameter, ǫ3. But we also

have an extra equation for the tadpoles. So in the end our model has just one more free

parameter. This can be summarized in the following tables:
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Parameters Conditions Free Parameters

ht, hb, hτ , v1, v2 mW , mt, mb, mτ tanβ

A, m0, M1/2, µ ti = 0, i = 1, 2 2 Extra free parameters

Total = 9 Total = 6 Total = 3

Table 1: Counting of free parameters in minimal N=1 supergravity

Parameters Conditions Free Parameters

ht, hb, hτ , v1, v2, v3 mW , mt, mb, mτ tan β, cos θ

A, m0, M1/2, µ, ǫ3 ti = 0, i = 1, 2, 3 2 Extra free parameters

Total = 11 Total = 7 Total = 4

Table 2: Counting of free parameters in our model

Finally, we note that in either case, the sign of the mixing parameter µ is physical

and has to be taken into account.
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