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D. Veberič71, A. Veiga10, A. Velarde18, T. Venters95, 33, V. Verzi50, M. Videla15,
L. Villaseñor61, S. Vorobiov71, L. Voyvodic86, H. Wahlberg10, O. Wainberg4, P. Walker78,
D. Warner83, A.A. Watson79, S. Westerhoff102, G. Wieczorek68, L. Wiencke82, B. Wilczyńska67,
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6 Departamento de Fı́sica, Centro Atómico Bariloche, Comisión Nacional de Energı́a
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Abstract

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-
skimming tau-neutrinosντ that interact in the Earth’s crust. Tau leptons fromντ

charged-current interactions can emerge and decay in the atmosphere to produce a
nearly horizontal shower with a significant electromagnetic component. The data
collected between 1 January 2004 and 31 August 2007 are used to place an upper
limit on the diffuse flux ofντ at EeV energies. Assuming anE−2

ν
differential

energy spectrum the limit set at 90% C.L. is E2

ν
dNντ

/dEν < 1.3 × 10
−7 GeV

cm−2 s−1 sr−1 in the energy range2× 10
17

eV < Eν < 2× 10
19 eV.

The detection of Ultra High Energy (UHE) cosmic neutrinos atEeV (1 EeV≡

1018 eV) energies and above is a long standing experimental challenge. Many ex-
periments are searching for such neutrinos, and there are several ongoing efforts to
construct dedicated experiments to detect them [Halzen et al.(2002), Halzen(2007),
Falcke et al.(2004)]. Their discovery would open a new window to the universe [Becker(2007)],
and provide an unique opportunity to test fundamental particle physics at energies
well beyond current or planned accelerators. The observation of UHE Cosmic Rays
(UHECRs) requires that there exist UHE cosmic neutrinos, even though the nature
of the UHECR particles and their production mechanisms are still uncertain. All
models of UHECR origin predict neutrino fluxes from the decayof charged pions
which are produced either in interactions of the cosmic raysin their sources, or in
their subsequent interactions with background radiation fields. For example, UHECR
protons interacting with the Cosmic Microwave Background (CMB) give rise to the
so-called ‘cosmogenic’ or GZK neutrinos [Berezinsky et al.(1969)]. The recently re-
ported suppression of the cosmic ray flux above∼ 4 × 1019 eV [Abbasi et al.(2007),
Yamamoto(2007), Pierre Auger Collaboration(2007a)] as well as the observed corre-
lation of the highest energy cosmic rays with relatively nearby extragalactic objects
[Pierre Auger Collaboration(2007b)] both point to UHECR interactions on the infrared
or microwave backgrounds during extragalactic propagation. These interactions must
result in UHE neutrinos although their flux is somewhat uncertain since this depends on
the primary UHECR composition and on the nature and cosmological evolution of the
sources as well as on their spatial distribution [Engel et al.(2001), Allard et al.(2006)].

Tau neutrinos are suppressed in such production processes relative toνe or νµ,
because they are not an end product of the charged pion decay chain and far fewer
are made through the production and decay of heavy flavours such as charm. Nev-
ertheless, because of neutrino flavour mixing, the usual 1:2ratio of νe to νµ at pro-
duction is altered to approximately equal fluxes for all flavours after travelling cos-
mological distances [Learned et al.(1995)]. Soon after thediscovery of neutrino os-
cillations [Fukuda et al.(1998)] it was shown thatντ entering the Earth just below the
horizon (Earth-skimming) [Fargion(2002), Letessier-Selvon(2001), Feng et al.(2002)]
can undergo charged-current interactions and produceτ leptons. Since aτ lepton can
travel tens of kilometers in the Earth at EeV energies, it canemerge into the atmosphere
and decay in flight producing an nearly horizontal extensiveair shower (EAS) above
the detector. In this way the effective target volume for neutrinos can be rather large.

The Pierre Auger Observatory [Abraham et al.(2004)] has been designed to mea-
sure UHECRs with unprecedented precision. Detection of UHECRs is being achieved
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exploiting the two available techniques to detect EAS, namely, arrays of surface particle
detectors and telescopes that detect fluorescence radiation. UHE particles such as pro-
tons or heavier nuclei interact high in the atmosphere, producing showers that contain
muons and an electromagnetic component of electrons, positrons and photons. This
latter component reaches a maximum at an atmospheric depth of order 800g cm−2,
after which it is gradually attenuated. Inclined showers that reach the ground after
travelling through 2000g cm−2 or more of the atmosphere are dominated by muons
arriving at the detector in a thin and flat shower front.

The surface detector (SD) array of the Pierre Auger Observatory can be used to
identify neutrino-inducedshowers [Capelle et al.(1998),Bertou et al.(2002), Zas(2005)].
The fluorescence detectors can also be used for neutrino searches [Aramo et al.(2005),
Miele et al.(2006)] but the nominal10% duty cycle of the fluorescence technique re-
duces the sensitivity. The electromagnetic component of neutrino-induced showers
might reach the ground if the shower develops close enough tothe detector, produc-
ing a signal which has a longer time duration than for an inclined shower initiated
by a nucleonic primary. Thus close examination of inclined showers enables showers
developing near to the ground and those produced early in theatmosphere to be distin-
guished. This allows the clean identification of showers induced by neutrinos, and in
particular those induced byντ , with the SD [Billoir et al.(2007), Blanch Bigas(2007),
Alvarez-Muñiz(2007)].

Here we present the result of a search for deep, inclined, showers in the data col-
lected with the SD of the Pierre Auger Observatory. Identification criteria have been
developed to find EAS that are generated byτ leptons emerging from the Earth. No
candidates have been found in the data collected between 1 January 2004 and 31 Au-
gust 2007 — equivalent to roughly one year of operation of theplanned full array.

The construction of the Southern Pierre Auger Observatory in Mendoza, Argentina,
is currently close to being completed. It consists of an array of water Cherenkov tanks
arranged in a hexagonal grid of 1.5 km covering an area of 3000km2 that is overlooked
by 24 fluorescence telescopes located at four sites around the perimeter. The array com-
prises 1600 cylindrical tanks of 10 m2 surface containing purified water, 1.2 m deep,
each instrumented with3×9′′ photomultiplier tubes sampled by 40 MHz Flash Analog
Digital Converters (FADCs)[Abraham et al.(2004)]. Each tank is regularly monitored
and calibrated in units of Vertical Equivalent Muon (VEM) corresponding to the signal
produced by aµ traversing the tank vertically [Bertou et al.(2006)].

The procedure devised to identify neutrino candidate events within the data set is
based on an end-to-end simulation of the whole process, fromthe interaction of the
ντ inside the Earth to the detection of the signals in the tanks.The first step is the
calculation of theτ flux emerging from the Earth. This is done using a simulation of
the coupled interplay between theτ and theντ fluxes through charged-current weak-
interactions andτ decay, taking into account also the energy losses due to neutral
current interactions for both particles, and bremsstrahlung, pair production and nuclear
interactions for theτ lepton. The emergingτ flux can be folded with theτ decay
probability to give the differential probability ofτ decaying in the atmosphere as a
function of its energy and decay altitude,d2pτ/dEτdhc.

Modelling of the showers fromτ decays in the atmosphere is performed using
the AIRES code [Sciutto(2002)]. The TAUOLA package [Jadachet al.(1993)] is used
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Figure 1: FADC traces of stations at 1 km from the shower core for two real showers
of 5 EeV. Top panel: electromagnetic component (θ ∼ 22 ◦); bottom: muonic signal
(θ ∼ 80 ◦).

to simulateτ decay and obtain the secondary particles and their energies. Showers
induced by the products of decayingτs with energies between1017 to 3× 1020 eV are
simulated at zenith angles ranging between90.1◦ and95.9◦ and at an altitude of the
decay point above the Pierre Auger Observatory in the range0 − 2500 m. Finally, to
evaluate the response of the SD to such events, the particlesreaching the ground in the
simulation are stored and injected into a detailed simulation of the SD [Ghia(2007)].

A set of conditions has been designed and optimized to selectshowers induced by
Earth-skimmingντ , rejecting those induced by UHECR. The 25 ns time resolutionof
the FADC traces allows unambiguous distinction between thenarrow signals induced
by muons and the broad signals induced by the electromagnetic component (Figure 1).
For this purpose we tag the tanks for which the main segment ofthe FADC trace has
13 or more neighbouring bins over a threshold of 0.2 VEM, and for which the ratio of
the integrated signal over the peak height exceeds 1.4. A neutrino candidate is required
to have over60% of the triggered tanks satisfying these “young shower” conditions as
well as fulfilling the central trigger condition [Abraham etal.(2004)] with these tanks.
In addition the triggered tanks are required to have elongated patterns on the ground
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Figure 2: Distribution of discriminating variables for showers initiated byτs decay-
ing in the atmosphere, generated byντ s with energies sampled from anE−2

ν flux
(histogram), and for real events passing the “young shower”selection (points). Left:
length/width ratio of the footprint of the shower on the ground; middle: average speed
between pairs of stations; right: r.m.s. scatter of the speeds. See text for details.

defining the azimuthal arrival direction (as expected for inclined events) by assigning a
length and a width to the pattern and restricting its ratio (length/width>5). Finally, we
calculate the apparent speed of the signal moving across theground along the azimuthal
direction, using the arrival times of the signals at ground and the projected distances
between tanks. The average speed, as measured between pairsof triggered stations, is
required to be compatible with that expected for an event traveling close to the hori-
zontal direction by requiring it to be very close to the speedof light, in the range (0.29,
0.31) m ns−1 with an r.m.s. scatter below0.08 m ns−1. These conditions are found
to retain about 80% of the simulatedτ showers triggering the SD. The final sample
is expected to be free of background from UHECR-induced showers. In Figure 2, we
show the distributions of these discriminating variables for real events and simulatedτ
showers.

Over the period analyzed, no candidate events were found that fulfilled the selection
criteria. Based on this, the Pierre Auger Observatory data can be used to place a limit
on the diffuse flux of UHEντ . For this purpose the exposure of the detector must be
evaluated. The total exposure is the time integral of the instantaneous aperture which
has changed as the detector has grown while it was being constructed and set into
operation.

Calculation of the effective aperture for a fixed neutrino energyEν involves folding
the aperture with the conversion probability and the identification efficiency. The iden-
tification efficiencyǫff depends on theτ energyEτ , the altitude above ground of the
central part of the showerhc (defined at 10 km after the decay point [Bertou et al.(2002)]),
the position(x, y) of the shower in the surfaceS covered by the array, and the timet
through the instantaneous configuration of the array. The expression for the exposure
can be written as:

Exp =

∫
Ω

dΩ

∫ Eν

0

dEτ

∫
∞

0

dhc

d2pτ

dEτdhc

Bτ , (1)

where
Bτ (Eτ , hc) =

∫
T

dt

∫
S

dxdy cos θ ǫff [Eτ , hc, x, y, t] (2)

whereθ andΩ are the zenith and solid angles.
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The exposure is calculated using standard Monte Carlo techniques (MC) in two
steps. The first integral deals with the detector-dependentpart, including the time evo-
lution of the array over the periodT considered (eq.2). The integral inEτ andhc

involves only the differential conversion probability andBτ (eq.1). The estimated sta-
tistical uncertainty for the exposure is below 3%.

The MC simulations require some physical quantities that have not been experi-
mentally measured in the relevant energy range, namely theν interaction cross-section,
theτ energy loss, and theτ polarisation. The main uncertainty in these comes from the
QCD structure functions in the relevant kinematic range. Weestimate the uncertainty in
the exposure due to theν cross-section to be 15% based on the allowed range explored
in [Anchordoqui et al.(2006)]. The uncertainties in theτ energy losses are dominated
by theτ photonuclear cross section. The 40% difference among existing calculations
for the τ energy losses [Bugaev et al.(2004), Dutta et al.(2005), Aramo et al.(2005)],
which use different structure functions, is used as the systematic uncertainty. The two
extreme cases of polarization give 30% difference in exposure and we take this as
the corresponding uncertainty. The relevant range of the structure functions includes
regions of Bjorken-x and squared 4-momentum transfer,Q2, where no experimental
data exist. Only extrapolations that follow the behaviour observed in the regions with
experimental data have been considered.

We also take into account uncertainties coming from neglecting the topography
around the site of the Pierre Auger Observatory [Gora et al.(2007)] (18%). We adopt
a 25% systematic uncertainty due to MC simulations of the EAS and the detector,
dominated by differences between hadronic models (QGSJET [Kalmykov et al.(1997)]
and SIBYLL [Engel et al.(1999)]).

Assuming af(Eν) ∝ E−2
ν differential flux of ντ we have obtained a 90% C.L.

limit on the diffuse flux of UHEντ , whose level at 1018 eV is representative for any
smooth spectral shape:

E2
νf(Eν) < 1.0+0.3

−0.5 × 10−7 GeV cm−2 s−1 sr−1 (3)

The central value is computed using theν cross-section from Ref. [Anchordoqui et al.(2006)],
the parametrisation of the energy losses from Ref. [Dutta etal.(2005)] and an uni-
form random distribution for theτ polarisation. The uncertainties correspond to the
combinations of systematic uncertainties in the exposure as given above that lead to
the highest/lowest neutrino event rate. The limit is applicable in the energy range
2 × 1017

− 2 × 1019 eV, with a systematic uncertainty of about 15%, over which
90% of the events are expected forf(Eν) ∝ E−2

ν . In Figure 3, we show our limit
adopting the most pessimistic scenario for systematic uncertainties. It improves by a
factor∼ 3 for the most optimistic one. For energies above1020 eV, limits are usually
quoted as2.3/Exp×Eν for different energy values (differential format), while at lower
energies they are usually given assuming anE−2 flux (integrated format). We plot the
differential format to demonstrate explicitly that the sensitivity of the Pierre Auger Ob-
servatory to Earth-skimmingντ peaks in a narrow energy range close to where the
GZK neutrinos are expected.

The Earth-skimming technique used with data collected at the surface detector ar-
ray of the Southern Pierre Auger Observatory, provide at present the most sensitive
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Figure 3: Limits at 90% C.L. for a diffuse flux ofντ from the Pierre Auger Observa-
tory. Limits from other experiments [Achterberg(2007), Ackermann et al.(2007),
Martens(2007), Aynutdinov et al.(2006), Kravchenko et al.(2006),
Barwick et al.(2006), Gorham et al.(2004), Lehtinen et al.(2004)] are converted
to a single flavour assuming a1 : 1 : 1 ratio of the 3 neutrino flavours and scaled
to 90% C.L. where needed. Two different formats are used: differential (squares)
and integrated (constant lines). The shaded curve shows therange of expected
fluxes of GZK neutrinos from Ref. [Engel et al.(2001), Allardet al.(2006)], although
predictions almost 1 order of magnitude lower and higher exist.

bound on neutrinos at EeV energies. This is the most relevantenergy to explore the
predicted fluxes of GZK neutrinos. The Pierre Auger Observatory will continue to take
data for about 20 years over which time the limit should improve by over an order of
magnitude if no neutrino candidate is found.

Acknowledgments

The successful installation and commissioning of the Pierre Auger Observatory would
not have been possible without the strong commitment and effort from the technical
and administrative staff in Malargüe.
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