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Resum

El text que es presenta a continuacié tracta d’establir un marc teoric al que poder
desenvolupar dos nous conceptes (extensié d’altres ja coneguts): els multiplicadors
per coeficients a través d’una aplicacié bilineal i el producte projectiu tensorial de
Hadamard. Ambdds espais es veuen sempre com espais de succesions a valors vectori-
als, és a dir, a un espai de Banach qualsevol. Posteriorment, s’estudia la relacié entre
ells i s’aporten alguns exemples.

El punt de partida del projecte sén les classes d’espais introduides per O. Blasco i
M. Pavlovié al treball “Coefficient multipliers on spaces of analytic functions” (Revista
Mat. Iberoamericana, 2011), on es formalitza el problema de multiplicadors i se’l rela-
ciona amb certs productes tensorials classics, definint les minimes propietats en espais
de Banach de funcions analitiques per a poder desenvolupar la teoria de multiplicadors,
tenint com a objectiu donar la versié vectorial dels mateixos.

Amb aquest objetiu en ment, s’ha decidit dividir el treball en quatre capitols difer-
enciats. Els tres primers fixen el context recalcant alguns dels aspectes que poden
donar al lector una idea més profona de I'tis i les aplicacions d’aquesta teoria. L’ultim
capitol és el colofé que uneix els tres anteriors, conferint un sentit tnic al text.

De manera més especifica, al primer capitol es donen els preliminars necessaris per
poder abordar el problema que ens ocupa. Es presenten les ferramentes precises per
comprendre 'escrit i els seus exemples: els espais de sucessions amb valors vectorials,
S(E), i els espais de funcions analitiques al disc, també amb valors vectorials, H (D, E).

Al segon capitol es determinen les condicions minimes que s’exigiran als espais de
treball, anomenats espais S(E)—admissibles seguint la notacié de [16]. Es dona el cas
concret dels multiplicadors amb valors a I’espai d’operadors, germe de 1’espai de mul-
tiplicadors mitjangant una aplicacié bilineal, B. Per posar de manifest I'importancia
d’aquests espais, per una banda es dona la relacié dels mateixos amb els espais solids
i per altra, es desenvolupa l’exemple dels espais de norma mixta generalitzats.

El tercer és un breu capitol on es donen condicions especifiques per al cas en que els
espais de successions siguen una forma de representacié d’espais de funcions analitiques
(a través dels seus coeficients de Taylor). De nou, seguint la notacié introduida per
[16], aquests espais seran notats com a H(FE)—admissibles. A més s’aporten nous
resultats que seran aplicats a espais de funcions amb valors vectorials.

Per dltim, al quart capitol es detallen les dos construccions dalt mentades: els
multiplicadors a través d’una aplicacié bilineal i el producte tensorial projectiu de
Hadamard. Es veu la relacié que existeix entre les dos i finalment es mostren casos
particulars del comput del producte tensorial projectiu de Hadamard i s’aplica al calcul
de multiplicadors.

Com a conclusié podriem dir que el cas vectorial es troba lluny de derivar-se
de manera directa de ’escalar. No obstant aixo, aconseguim trobar els mecanismes
per salvar les diferencies i relacionar els espais de multiplicadors a valors vectorials
amb el producte tensorial projectiu de Hadamard. Aixi, veiem com es pot resoldre un
problema complicat, dividint-lo en problemes més senzills o prenent camins alternatius,
sempre recolzats per un marc teoric que ens garantisca la veracitat de les nostres passes.



vi

La metodologia seguida durant la realitzacié del treball ha sigut la segiient: en
primer lloc es va procedir a I’estudi de distints espais i la seua teoria basica per mitja
de la lectura de bibliografia de referéncia ja siguen els texts classics de Duren ([24]),
Zhu ([40]), Axler ([6]) com alguns dels dltims anys ([27]).

Una vegada coneguts els espais classics, es va estudiar la teoria de funcions analitiques
vectorials desenvolupada al cas d’espais de Hardy i Bergman als treballs del director i
col-laboradors.

Finalment es va atacar ’estudi de les tecniques de ’article abans esmentat.

Universitat de Valencia



Resumen

El texto que se presenta a continuacion trata de establecer un marco tedrico en
el que poder manejar dos nuevos conceptos (extensiéon de conceptos ya conocidos):
los multiplicadores por coeficientes a través de una aplicacion bilineal y el producto
proyectivo tensorial de Hadamard. Ambos espacios se ven siempre como espacios de
sucesiones a valores vectoriales, esto es, en un espacio de Banach cualquiera. Posteri-
ormente, se estudia la relacion entre ellos y se aportan algunos ejemplos.

El punto de partida del proyecto son las clases de espacios introducidas por O.Blasco
y M. Pavlovi¢ en el trabajo “Coefficient multipliers on spaces of analytic functions”
(Revista Mat. Iberoamericana, 2011) donde se formaliza el problema de multipli-
cadores y se relaciona con ciertos productos tensoriales clasicos, definiendo las minimas
propiedades en espacios de Banach de funciones analiticas para poder desarrollar la
teoria de multiplicadores, teniendo como objetivo dar la versién vectorial de los mis-
mos.

Con este objetivo en mente, se ha decidido la division del trabajo en cuatro
capitulos diferenciados. Los tres primeros fijan el contexto haciendo hincapié en ciertos
aspectos que pueden dar al lector una idea mas profunda del uso y de las aplicaciones
de esta teoria. El dltimo capitulo es el colofén que une los tres anteriores, confiriéndole
un sentido dnico al texto.

De manera mas especifica, en el primer capitulo se dan los preliminares necesarios
para poder abordar el problema que nos ocupa. Se presentan las herramientas pre-
cisas para comprender el escrito y sus ejemplos: los espacios de sucesiones con valores
vectoriales, S(E) y los espacios de funciones analiticas en el disco, también con valores
vectoriales, H(D, E).

En el segunda capitulo se determinan las condiciones minimas que se van a exigir
a los espacios de trabajo, llamados espacios S(E)—admisibles siguiendo la notacién
de [16]. Se da el caso concreto de los multiplicadores con valores en el espacio de
operadores, germen del espacio de multiplicadores mediante una aplicacién bilineal,
B. Para poner de manifiesto la importancia de estos espacios, por un lado se da la
relacion de los mismos con los espacios sélidos y, por otro, se desarrolla el ejemplo de
los espacios de norma mixta generalizados.

El tercero es un breve capitulo donde se dan condiciones especificas para el caso
en el que los espacios de sucesiones sean una forma de representacién de espacios de
funciones analiticas (a través de sus coeficientes de Taylor). De nuevo, siguiendo la
notacién introducida por [16], estos espacios seran notados como H(FE)—admisibles.
Ademads se aportan nuevos resultados que seran aplicados a espacios de funciones con
valores vectoriales.

Por 1ultimo, en el cuarto capitulo se detallan las dos construcciones arriba men-
cionadas: los multiplicadores a través de una aplicacién bilineal y el producto tensorial
proyectivo de Hadamard. Se ve la relacién que existe entre ambas y finalmente se mues-
tran casos particulares del cémputo del producto tensorial proyectivo de Hadamard y
se aplica al calculo de multiplicadores.
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A modo de conclusién podriamos decir que el caso vectorial esta lejos de seguirse
de manera directa del escalar, sin embargo logramos encontrar los mecanismos para
salvar estas diferencias y relacionar los espacios de multiplicadores a valores vectoriales
con el producto tensorial proyectivo de Hadamard. Asi, vemos cémo se puede resolver
un problema complicado, partiéndolo en problemas m&s simples o tomando caminos
alternativos, siempre respaladados por un marco tedrico que nos asegure la veracidad
de nuestros pasos.

La metodologia seguida en la realizacién del trabajo ha sido la siguiente: en
primer lugar, se procedié al estudio de distintos espacios y su teoria bésica por medio
de la lectura de bibliograffa de referencia como los textos clasicos de Duren ([24]), Zhu
([40]), Axler ([6]) y alguno de los tltimos anos ([27]).

Una vez conocidos los espacios clédsicos, se estudié la teoria de funciones analiticas
vectoriales desarrollada en el caso de espacios de Hardy y Bergman en los trabajos del
director y colaboradores.

Finalmente se atacé el estudio de las técnicas del articulo arriba mencionado.

Universitat de Valencia



Introduction

From the beginning of the Fourier Analysis, mathematicians try to describe the
Fourier (or Taylor) coefficients of functions belonging to classical spaces of integrable
(or analytic) functions defined in the unit circle (or disc), and to determine conditions
on a sequence for the function with such a sequence of Fourier coefficients to belong
to a given space.

The simplest example is Plancherel’s Theorem, where the fact that the coefficients
are square-sumable is equivalent to the fact that the function is square-integrable.
Nevertheless, this complete description only holds for Hilbert spaces. In particular,
when the space L? is replaced by LP for p # 2, the situation changes and even though
one can obtain partial results (for instance using interpolation), it is known that be-
longing to the space LP whenever p # 2 can not be described in terms of the size of the
coefficients. Other examples of interest, in which being an analytic function automat-
ically improves the conditions on the coefficients, are the so-called Hardy and Paley
inequalities, where it is stated that integrable functions in the torus whose Poisson in-
tegral on the disc is holomorphic (that is, in the current terminology, functions in the
Hardy space H') have Fourier coefficients not only converging to zero (as Riemann-

|f(n)]
n n+l

(Hardy’s inequality) or 32, | f(2¥)]? < oo (Paley’s inequality). These are two first ele-
mentary instances which nowadays are denoted as “multipliers” (sometimes “Fourier
multipliers”) acting on Hardy spaces. The first steps in this direction go back to the
work of Hardy, Littlewood, Paley and Flett among others.

From then on, describing the multiplier spaces between two function spaces has
become an interesting object of study for many researchers in Fourier Analysis and
Complex Variable. There are two different considerations in this kind of problems: On
one hand, given a sequence ();); of complex numbers and a function f with coefficients

Lebesgue’s Lemma says), but also verifying the stronger conditions < 00

f (j) (either the Fourier or the Taylor ones, in case f is analytic) belonging to a certain
space X, one can generate a new function g with coefficients \; f (j). The aim would be
to identify the space Y where this new function belongs to, using the known properties
of f and (A;);. On the other hand, given two concrete Banach spaces X and Y, one
can try to characterize the sequences (\;); that allow them to go from X to Y through
the Fourier multipliers.

On a more standard notation, given X and Y two Banach spaces contained con-

tinuously in the space S of all sequences, we want to describe the multipliers space

(X,Y) ={(N); € §: (N f(4); €Y, for any f~ (f(4)); € X}.

Taking a look at the previous examples from this perspective, we have
(L3(T), L*(T)) = ¢>. Also Hardy’s inequality, which states that (1), € (H'(T), (")
and Paley’s inequality, which says that the sequence ()\;);, defined as A; =1 for j = ok
for some k and \; = 0 otherwise, belongs to (H(T), ¢?).

In our work, we restrict ourselves to the case of holomorphic functions where we

shall identify the function with its Taylor coefficients. However our study will be done

1



for vector-valued holomorphic functions, meaning that we shall allow the abstract
situation of the coefficients belonging to another complex Banach space E.

The description of those spaces in the scalar context has been (and still is) an
object of desire of a large number of researchers. The historical situation on Hardy
spaces can be found in B. Osikiewicz” work (see [36]) and a collection of results and
techniques to use on Bergman and mixed-norm spaces is gathered up in the works of
M. Jetvié¢ and 1. Jovanovié (see [29]) and O. Blasco (see [11]).

One of the most important recent results in this area that is inspiration and mo-
tivation for our study, is the one obtained in Multipliers of HP and BMO, by M.
Mateljevic and M. Pavlovié¢ ([34]), where an identification between the multipliers
space (H', BMOA) and the Bloch space, Bloch, is given. That is to say

(H', BMOA) = Bloch.

This result was extended by O. Blasco in [11] and later an alternative proof for func-
tions taking values in a Banach space was also achieved in [12].

The interest on the study of the space of multipliers between spaces of vector-valued
sequences or functions appears closely related to the geometric properties of Banach
spaces. Several results on vector-valued multipliers and their connection with geometry
of Banach spaces and absolutely summing operators (see [21] for the definition) can
be found in [3, 4, 5, 15, 13, 14].

Let us formulate the general abstract situation we shall try to analyze. We use the
notation X for certain space of analytic functions with values in a given complex Ba-
nach space F, regarded (via Taylor coefficients) as a subspace of the space of sequences
with values in E, to be denoted S(F). Now, given complex Banach spaces E and F,
our purpose is to study the space of multipliers between Xy and X, understood as
a space of sequences with values in the space of bounded linear operators L(E, F')
defined by

(Xg, Xr) = {(\); € S(L(E,F)) : (\(f()); € Xp, for any f ~ (f()); € X&}.

Of course the vector-valued interpretation is far from being straightforward. To
realize the difference, it is enough to take a look at the results appearing in [7], where
the geometry of the underlying Banach space plays an important role for the classical
results to hold in the vector-valued setting, or to [12] where the expected extension of
the result (H!, BMOA) = Bloch, is shown not true in general. Actually the inclusion
(HY(E), BMOA(F)) C Bloch(L(E, F)) always holds but it is proved that only under
certain hypothesis over E and F' (complex Banach spaces) it holds that

(0.1) (HY(E), BMOA(F)) = Bloch(L(E, F)).

Recently O. Blasco and M.Pavlovié¢ (see [16]) have tried to systematize the study
of multipliers between spaces of analytic functions (in the scalar-valued case) in an
abstract context and have used some techniques based upon the Hadamard tensor
product, which can be used for a big family of spaces. They introduce some classes
of spaces of sequences and of analytic functions where some multiplier results can be
shown (and which of course inlcude all the classical spaces such as Hardy, Bergman
or mixed-norm spaces). We recall here the notion of Hadamard tensor product which
was the main tool in such research. Given X and Y Banach spaces of power series we
denote by X ® Y the space of functions f that can be represented as formal power
series of Hadamard products, that is f(z) = >0, zn *xyn(2) = 32, 22, zn(d)yn(4)?’,
where (z,), € X and (yn)n C Y, verifying >, ||zn| x||ynlly < co. This construction
is intimately connected to the multiplier space through the formula

(0.2) (X®Y,Z)=(X,(Y,2)).
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0. Introduction 3

In this monograph we shall study the vector-valued analogue of such result, giv-
ing even a more general approach, where the notion of vector-valued multiplier as
a sequence of operators is extended to a general case where the action of operator
and vector is replaced by a general bilinear map, and also the classical convolution
and Hadamard tensor product is generalized for bilinear maps. Namely, given E, F, G
complex Banach spaces and B : F x F' — G a bounded bilinear map, we consider a
new space

(Xr, Xa)p ={(\)); € S(E) : (B(\;, f(5))); € Xg, forall f~ (f(j)); € Xp}.

Notice that for £ = L(F,G) and B()\j,f(j)) = )\j(f(j)), we recover the case of
operator-valued multipliers. This study represents an original approach that includes
the already known results on multiplier spaces and provides with some new applica-
tions.

Similarly one can generalize X ® Y as follows: Given a bounded bilinear map
B: E x F — G, we define the B-convolution between f € Xg and g € X as

f59(z) = Y BUF(),90))7.
J

Now, what we call the Hadamard projective tensor product Xgp ®p Xp is defined
as the space of functions that can be represented as a formal sum of B- convolution
products, h(z) =Y, fn *B gn(z), where f, € Xg and g, € X for any n € N, verifying
Sl el galle < oo.

Our aim is to show the use of these constructions, getting new results for both
sequence spaces and spaces of analytic functions (identified with sequence spaces) as
well as to show the extension of the formula (0.2)

(Xep®p, Xr, Xa)B, = (XE, (XF, X@)Bs) B,
for bilinear maps B;, i = 1,2, 3,4 that satisfy certain conditions (see Theorem 4.26).

The monograph is divided into four chapters. We are going to give some detail on
what the reader is going to find in each one of them.

The first one is of preliminary character. We simply introduce the space of vector-
valued sequences S(E) and the space of analytic functions on the disc which take
values in a Banach space F, H(D, FE) and define the sequence spaces and function
spaces we are going to work with, both in their scalar and vector-valued version. As
particular cases to outline appear the mixed-norm sequence spaces considered with
values in a Banach space (a generalization of the mixed-norm spaces ¢(p, ¢) introduced
by Kellogg). We will give a first definition of these spaces that will be extended and
studied in the following chapter. We also consider the case of vector-valued functions
obtained from a sequence space with its own norm, that is

X[E] = {(2j)j20 € S(E) : [[(llzjll £);llx < oc}.

This space is specially interesting when we consider X a space of analytic functions
such as HP(D) (Hardy) or AP(D) (Bergman), with 1 < p < oo, and we compare it with
the more natural vector-valued version of the space HP(D, E) (resp. AP(D, E))(see
page 23). We will prove that HP(ID)[E] and AP(DD)[E] need not to coincide with them
(see Proposition 1.38).

The second chapter is devoted to the notion of S(E)-admissiblility following the
notation introduced in [16]. This notion establishes the minimum conditions we need
to provide on the abstract spaces to be able to work with them in the setting of
multipliers. We consider the classical operator-valued case of multipliers with values
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in the space of linear bounded mappings, as well as the notion of “solid” spaces in the
vector-valued setting, meaning Xgp = X g, where

X5 ={(z;); € S(E) : (ajx;); € Xp, for all (a;); € £°}.

Let us mention one nice connection discovered in Proposition 2.16, namely if X, Y are
solid spaces, then

(X[ELY[F]) = (X, Y)[L(E, F)].

In this chapter we also develop a new family of S(F)-admissible spaces: the gen-
eralized mixed-norm spaces, to be denoted ¢£ (p,q, E). These are spaces of sequences
(@i)ien;, where the entries are in a Banach space and such that they verify

1/p

> llajll €,
JjeEly
k
for 1 < p,q < oo and where 7 is a family of pairwise disjoint intervals contained in Ny
with the notation I}, = No N [ng,n}) for ny < nj, < gy and Az = Ugen, k. The weak
version ¢Z (p,q, E) of these spaces, consisting on the sequences of elements in E such

that
1/p

> la*sap)l” et

JEl
k

for any a* € E* is also considered.
We close the chapter with a detailed study of the space of multipliers between
generalized mixed-norm spaces

((p,q, E), 7 (1,5, F)),

whenever A7 = Ay for Z, J two families of intervals in No, 1 < p,q,r,s < oo and E, F
complex Banach spaces (Theorem 2.63) and an application of the resulting characteri-
zation to the space of multipliers between H(p, q, p) spaces, that is spaces of functions

such that
1/q
1—7")
HF”Hpqp (/ Mq 2 rdr) < 00

(see [8, Definition 2]).

The third one is a brief chapter where we focus on spaces of vector-valued analytic
functions. We introduce the notion of H(E)—admissibility, again following the notation
on [16]. A Banach space Xg of holomorphic functions from the unit disc into a Banach
space F is called H(F)—admissible whenever it is continuously contained into the space
H(D, E) and the inclusion H(RD, F) (where RD stands for the disc of radius R) into
Xpg is also continuous for all R > 1. Most of the classical spaces are shown to be
H(E)—admissible. Some extra properties are also cosidered: In particular Xp is said
to be “homogeneous” if it satisfies that

(i) if f € Xg and |z| =1, then || f.||x, = || fllx, and
(é4) if 0 <7 <1, then sup|,, || f:[xz < K|/ fllx,; where K is independent of f,r,
and fz(w) = f(zw)
A special class of homogeneous spaces are those which verify the Fatou property (F'P),
given by the condition that there exists A > 0 s.t. if (fp)n € Xg with sup,, || fnllx, <1
verifying f, — fin H(D, E), then f € X with || f| x, < A. A particularly interesting
construction consists in defining Xz as the space of functions in H(D, E) verifying
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0. Introduction 5

w— fu, € H>*(RD, Xg). This space turns out to be always homogeneous. We obtain
in Proposition 3.24

Xp = Xp with equivalent norms < Xp is homogeneous with (FP).

Finally, in the fourth chapter we deepen into the two constructions mentioned
above: multipliers through a bilinear map and Hadamard projective tensor prod-
uct. We will prove that, under certain conditions on the corresponding bilinear map,
both spaces keep the admissibility (either simply considered as spaces of sequences
-S(F)—admissibility- or as sequence spaces coming from a space of analytic functions
-H(E)—admissibility-). Furthermore, we analyze the relationship between the two of
them through the formula

(Xg ®p, Xr, Xc)B, = (XE, (XF, XG)B;s) By
where By : E X F — EQ,F, By : L(E®:F,G) x E&.F — G, B3 : L(F,G)x F — G
and By : L(E,L(F,G))x E — L(F,G) and see the particular cases that arise whenever
we consider one of the Banach spaces E, F, G a field. We finish showing particular cases
of the computation of the Hadamard projective tensor product, such as

Al(D) ®5, H' (D, E) = AY(D, E)
and
H'(D) ®p, H'(D, LP (1)) = B (D, LP (1))
for 1 < p < 2. If we consider p’ = p%l, that is, the conjugate exponent of p, then the
last computation together with Proposition 4.38, which says

(HN(T, LP(w)), H*(D))p = BMOA(T, L” ()
and
(D7'AYD, E), H*(D))p = Bloch(D, E*),
where the D indicates we are using the map Bp : E* x E — K| (z*,2) — (2%, x), lets
us recover results such as the one mentioned in (0.1).

The content related to the construction of new Kellogg’s type sequence spaces
(the scalar version) as well as the spaces of multipliers between them appear in the
published paper [17].

The results on Chapter 2 refering to solid spaces and K&the duals as well as the first
section of Chapter 3 and almost the totality of Chapter 4 are submitted and accepted
for its publication in [18].
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CHAPTER 1

Preliminaries

1. Basic results on functional analysis

In order to make this text as self-contained as possible, this section is devoted to
some of the basic definitions and concepts needed in our work as well as to fix the
notation we will be using in the following.

For Z a locally convex space, we have that a collection A of zero neighbourhoods,
e(0), is a fundamental system of zero neighbourhoods if YU € £(0) 3V € A and € > 0
such that eV C U.

A family of seminorms, (p;);en,, is called a fundamental system of seminorms if sets
Uj :={f € Z:pj(f) <1} form a fundamental system of zero neighbourhoods.

We denote by S the space of sequences f = (o) ;en,, where o; € K, endowed with
the locally convex topology given by means of the seminorms p;(f) = |aj|, j € Ny,
where we use the notation Ng = NU{0}. We shall think of f as a formal power series,
that is f(2) = > jen, ajz) and most of the time we will write f(j) instead of a; and
then consider S as the space of all formal power series.

Any locally convex space with a countable fundamental system of zero neighbourhoods
is metrizable. In particular S is a complete metrizable space.

A sequence (f,)n, C S converges to f € S if and only if p;(f — fn) = 0Vj >0 as
n — oo, if and only if | f(j) — fn(j)| = 0 as n — oo for all j > 0. That is, convergence
in § is coordinatewise convergence.

Given X C S, we will write X° for the closure of the polynomials in the X —norm.

Another interesting locally convex space to consider is H (D), the space of analytic
functions on the unit disc D C C, that is, functions f : D — C, f = ZjeNo f(j)ej,

where e;(z) = 27, such that lim sup; /1£(j)] < 1. It can be regarded as a vector
subspace of S via the Taylor coefficients. Naturally, every sequence (o;); € S which
satisfies the condition limsup; {/|a;| <1 can also be identified with an analytic func-
tion in D.

Let RD denote the open disc of radius R > 0 centered at zero (we put 1D =
D). We write H(RD) for the space of all functions analytic in RD endowed with the
“H—topology’, i.e., the topology of uniform convergence on compact subsets of RD.
This topology can be described by the family of seminorms

Meo(r, f) = sup |f(2)];
|2|=r
0 < r < R. Therefore a Banach space X is continuously contained in H(RD), X —
H(RD) if for any 0 < r < R there exists a constant A, > 0 such that

Moo(ru f) < Ar”fHXa f €X.

Conversely, we will write H(RD) < X if there exists s < R and Bs > 0 such that
H(RD) is continuously contained in X, that is

Ifllx < BsMoo(s, f)
for any f € H(RD).
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Since H(rRD) C S, we see that, formally, there are two topologies on H(RD), H—
and S—topology. However it is well known and easy to see that they coincide on
H(RD).

Recall that for X a normed space, the dual space X* is the set of all linear contin-
uous functionals from X into the base field K. It is a normed vector space by means
of

2% = sup [{z*,x)],
=]l x <1
where (z*, ) = x*(z). This norm gives rise to a new topology on X* under which the
space becomes a Banach space.

Also recall that on each Banach space X there exists a weak topology usually

denoted by w. For each point xg € X its basis of neighbourhoods is defined as

Ulzo;e, a1, ,xp) = {2" € X*: [(z}, 2 —xo)| <efor j=1,--- ,n}

where z7,- -+, x;, is an arbitrary finite set in X* and € is an arbitrary positive number.
Obviously this defines a locally convex topology on X. It is the coarsest topology that
makes a linear map from X into K remain continuous and it is characterized by the
condition that a sequence (x,), converges to x € X in the w—topology iff (z*,x,)
converges to (z*,x) for every z* € X*.

The dual space X* can as well be endowed with the so-called weak-star topology,
to be denoted w*, that is the topology induced by the embedding X C X**. For each
point xj € X* its basis of neighbourhoods is defined as

Ulzgse, a1, ,xn) ={z e X [(z" —zj,2zj)| <efor j=1,--- ,n}

where 1, -+ ,x, is an arbitrary finite set in X and € is an arbitrary positive number.
Clearly this also defines a locally convex topology on X*. This topology is characterized
by the condition that a sequence (x},), converges to * € X* in the w*—topology iff
(x},x) converges to (z*,z) for every x € X.

Of course w-convergence implies w*-convergence and, in case X is reflexive (X =
X**), the converse direction holds.

We now list some other classical results of functional analysis to be used in our
work. Most of them have many different (and sometimes more general) versions, but
for our purposes it is enough to consider them as below.

THEOREM. A (Alaoglu) (see [37])
The closed unit ball Bx~ of X* is compact in the w*—topology.

The following theorems can be found in [23].

THEOREM. B (Open Mapping Theorem)
Let X,Y be Banach spaces and T : X — Y a linear bounded operator such that
T(X)=Y. Then T is an open map, i.e. the image of an open set is an open set.

As a consequence we have

THEOREM. C (Closed Graph Theorem)
GivenT : X =Y a linear map between Banach spaces, the set

Graph(T) .= {(z,T(z)) : z € X}
is closed in the product topology of X XY if and only if T is continuous.

THEOREM. D (Banach-Steinhaus)
Consider (Ty,)nen @ family of linear operators between Banach spaces, T,, : X — Y.
Assume that for every x € X sup,, ||Tn(x)|ly < oo. Then sup,, ||T,| < oc.
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In particular we get that the pointwise limit of a sequence of linear operators (if it
exists everywhere) is a linear operator.

THEOREM. E (Hahn-Banach)
Let X be a Banach space and Y C X. Consider y* € Y*. Then there exists x* € X*
such that ||x*|| = ||y*]| and x*(y) = y*(y) for every y € Y. In particular we get

2] = sup [{z", z)]
le=ll<1

forx e X.

2. Multipliers and tensors: the scalar-valued case

The aim of this section is to motivate the results presented in the foregoing chapters
and to provide further on some additional information.

A theory requires and feeds on its examples. Thus, let’s start bringing back to our
memory the most well-known sequence spaces and spaces of analytic functions. It is
convenient to define them right here so as to have sufficiently many examples which
will be considered in abstract terms in the following chapters. Some definitions and
basic properties will be reviewed later in the appropiate sections.

Consider 0 < p < co. The most famous sequence space might be the /P space,
consisting on those sequences a = (an)nen, € S verifying

1/p
lallp = (Z Ian\p> < o0

n
if p < o0, and
|anlloco = sup |an.
n

This is nothing but a generalization of the Euclidean norm. Indeed, it defines a norm
for 1 < p < oo and the space /P becomes a Banach space. For 0 < p < 1 it doesn’t
define a norm, but rather a metric, d(z,y) = ||z — y||b.

The following inequality, called Holder’s inequality, is of fundamental impor-
tance in our work.

For 1 < p < oo define p’ to be the so-called conjugate exponent of p, that is, let p’

be such that it verifies % + 2% = 1, with the convention 1’ = co and oo’ = 1. Then for

(an)n, (bn)n € S it is verified

1/p 1/p’
Z |anbn| < (Z ’an|p> (Z ‘bn|p,> )

with the natural modifications for p = co or p’ = oc.
Let us introduce some notation before going on.

REMARK 1.1. Given 0 < u,v < oo we denote

uv s .
it v <u < oo;

UV =< v, if u = oo;
0, if u <w.

This notation was introduced in [20].

The inequality can be generalized by taking 1 < p,r < oo, % + ﬁ <1

1/r 1/p 1/poTr
o) (o) (o)
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10 2. Multipliers and tensors: the scalar-valued case

It can be proved that (¢F)* = "' for 1 < p < oo. Moreover, the space /P is reflexive,
ie., ((P)** =/(P.

Another natural sequence space to consider is ¢y, defined as the space of all se-
quences converging to zero, with norm identical to || - ||«. It is a closed subspace of
£, hence a Banach space. The dual of ¢ is ¢! and the dual of ¢ is £,

The space cqg is the space of all sequences finitely non-zero, that is, a € £*° such that
an = 0 for almost every n € N. It is a dense space in ¢y with respect to ||.||s. Then,
of course, its dual is ¢1.

The following order relationship is verified

coo Cl C P C - CeoC ™.
We can go one step further and consider the following spaces, defined by Kellogg.

DEFINITION 1.2. (Mixed-norm sequence spaces) The space of mixed-norm
sequences consists of the space of sequences (a,)nen verifying

1/p
> gl et
Jely
k
under the norm
- a/p\ V4
lallp,q = Z Z |a;|”
k=0 \jel,

with the obvious modifications for p = oo or ¢ = co. We will write ¢(p, q) for this
space, where 1 < p,q < oo and Z is a collection of disjoint intervals in Ny, say I =
[2k,2k+1) U Ny. Of course £(p,p) = £P.

As expected
(Up,q))" = L(pr',q)
for 1 < p,q < oo (see [32]).

As for the spaces of analytic functions, recall that if ¥ is a oc—algebra over a set €2,
then a function p : ¥ — R is called a finite measure if it satisfies that 0 < u(A) < oo for
A € ¥ non-empty, 1(0) = 0 and is countable additive,that is pu(UjenAi) = > 1(Ai)
for a collection of pairwise disjoint sets (A4;)ien C X. The triple (2,3, u) is called a
measure space.

Given a measure space (€2, X, 1) we define LP(2,du) , (0 < p < o0), as the space of
(equivalent classes of ) p-integrable functions over the set Q with respect to the measure

i, i.e., such that
1/p
I = ([ ppdn) " <o
Q

In case p = oo, L*(£2,du) is the space of functions such that
[flloe = sup | f(w)].
we

We are mostly going to work with Lebesgue spaces on the unit disc, noted LP(D, dA)
or simply LP(D), consisting on the p—integrable functions with respect to the normal-
ized area function (dA(z) = rdr%, z = re’ € D), and with the spaces LP(T,do) =
LP(T), where T stands for the unit circle and do(6) = df/2x for the normalized arc-
length measure.

Since the following properties hold for every LP(€2, 1), we will simply write LP and ||- |,
and we will specify LP(D) or LP(T) whenever is necessary. It is known that LP C L4

for p > gq.
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For 1 < p < oo they are Banach spaces. If 0 < p < 1, the triangle inequality is not
satisfied, although it can be replaced by ||f + g|lb < [|fI|5 + |lg||> and the space is
complete considering the metric given by d(f,g) = ||f — gl/5-

Holder’s inequality also holds for integrable functions. Given any two functions
f,9,1<p<ooand p its conjugate exponent,

£ gl < 11 fllpllglly-

This result helps us to prove that (LP)* = L¥ for 1 < p < co.
Again, taking 1 < p,r < 0o, one gets a generalized version

1£gllr < [ fllpllgllper-

Many problems of analysis center upon analytic functions with restricted growth
near the boundary. Thus, given a function f analytic in the unit disc D, it is natural
to consider the integral means defined as

o 1/p
My )= (g [ Iepas)

Moo(r’ f) = sup |f(Z)|

jzl=r

for 0 < p < 00, and

in case p = oo. It is known that the integral means are no decreasing functions of r
(see [24]).
We will say that f € H® if f is in H(D) and
sup | f(z)| < oo,
|z]<1
that is to say H is the space of all bounded analytic functions in D. If among those

functions, we consider those that are continuous in the torus, we will be talking of the
disc algebra, A(D). Obviously A(D) C H*.

In the case 0 < p < oo, if M, (r, f) stays bounded as r — 1, then f is said to belong
to the Hardy space HP(D), shortly HP.
Each H? class is a linear space, preserved under addition and scalar multiplication.
The quantity
1l = limm My, )

is called the norm of f and it is a true norm if 1 < p < oo under which H?P becomes a
Banach space.
If we consider the boundary function f(e?) = lim,_,; f(re?), the norm of f in HP
can be identified with the norm of the boundary function in LP(T). Thus, H? can be
identified with the closed subspace of LP(T), consisting of those functions that verify
f(n) =0, n <0, where f(n = Jp f(em)em0dg.
Each functlon in HP can be approx1mated in norm by polynomials. Thus H? is char-
acterized as the closure of polynomials in the space LP(T). An equivalent statement is
that the dilations f.(z) = f(rz) tend to f in HP—norm as r increases to 1.
Of course H? C HP for 0 < p < q < 0.

The Bergman space AP(D) (shortly, AP) consists of all functions f analytic on the

unit disc for which 1
p
|mw=(4uwmmw> < o0,

0 < p < oo. The quantity || f|| a» is called the norm of f although it is a true norm only
for 1 < p. As in the Lebesgue spaces, for 0 < p < 1 the triangle inequality is replaced
by [l f+9l%» < 1£1%e +lg]%s» and the space is complete considering d(f,g) = ||/ —gl[%»
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12 2. Multipliers and tensors: the scalar-valued case

For p > 1, the space AP is a closed subspace of LP and therefore a Banach space.
Notice that functions in these spaces cannot grow too rapidly near the boundary. It
is also a remarkable fact that, in Bergman spaces, norm convergence implies locally
uniform convergence. In other words, AP C H(D), so if f,, f are in AP and | f, —
fllar — 0 as n — oo, then f,(z) — f(z) on each compact subset of D.

Considering the limiting cases as p — oo on Bergman and Hardy spaces, we come
to Bloch and BMOA spaces, respectively. An analytic function in D, f, is said to
belong to the Bloch space, to be denoted Bloch, if

I £1l5 = sup (1 — |2|*)| £ (2)] < oc.
z€D

Equivalently, f € Bloch if

sup (1 — [2])|f'(2)] < oo.

z€eD
This quantity however is not a true norm, since it identifies functions that differ by a
constant. Hence we define the norm on this space to be || f||giocr = || f1l5 + |£(0)]. The

Bloch space becomes a Banach space under this norm.
The condition ||f||g < oo (or its equivalent) can be replaced by

sup (1 —[2])| D f(z)] < oo,
z€D

where Df(2) = 2f'(2) + f(2) = 3, (n + 1) f(n)2", for f(z) =3, f(n)z". Indeed, if f

verifies that || f||z < oo, taking into account that

)= 10) = [ 1ty
with the change t = zs we obtain the inequality

Moo (r, f) < |f(O)] + rMoo(r, f)
and thus

Moo (r,Df) = Moo (r, 2f'(2) + f(2)) < 7Moo (r, f') + Moo (r, ) < 2rMoo(r, ) + | £(0)].

On the other hand, if f is such that sup,cp (1 — |2])|Df(2)| < oo, considering the fact
that Df(z) = (2f(z))" we obtain

1= [ Dt

therefore
Moo(r, f) < Moo(r, Df)
and 1 0
Moo(ra f/) = ;Moo(ra Df - f) < ;MOO(T7Df)

For each m € N it is easy to see that f € Bloch iff 2 f € Bloch and the fact that we can
work with f(™) instead of f/, namely f € Bloch iff supy.,.1 (1 — 7)™ Mu (1, f™)) < 0.
Now define

(1.1) D"f(z) =Y (n+m) .- (n+1)f(n)z" = (2" f(2))"™.
Therefore f € Bloch iff supyc,q (1 — 7)Mo (r, D™ f) < 0.

The Bloch space is the dual space of A', which can be identified as well with
the dual of the little Bloch space, Blochg, (in the usual notation, (A')* = Bloch and
Al = (Blochg)*) defined as the subspace of Bloch consisting of functions with the
property that

lim (11— [2)|f'(2)] = 0.

|z]—1—
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In our notation we have that that Blochg = Bloch®, i.e., it is the closure of the
polynomials in the Bloch norm. It is a closed subspace, thus a Banach space.

The BMOA space, is the space consisting of analytic functions of bounded mean
oscillation. The mean oscillation is defined to be

1 0 do
7 e - nig

where [ is an interval I C [0,27), |I| is its normalized Lebesgue measure and f; =
ﬁ J i f (ew)%. The space BMOA is the space of integrable functions in the torus, with

Fourier coefficients f(n) = 0 for n < 0 and such that

o =1F0) + swp T [ 156 - 5] <o
rciozn) 1 Jr 27

As in the Bloch space, we have added a constant to obtain a true norm so that it

becomes a Banach space. It is known, by Fefferman’s duality result, that (H!)* =

BMOA.

Finally, the space of analytic functions of vanishing mean oscillation VMOA is a
separable subspace of BMOA, which is the closure in BM OA of the set of polynomials,
VMOA = (BMOA)®. We say that a function f € L!(T) is in the space VMOA if it
is analytic and "

- 1 i0
Jim 2 7 1 = i =0
The dual space of VM OA can be identified with H'. Thus, BMOA can be identified
with the second dual of VMOA.

The reader is referred to [24, 25, 28] for more information on these spaces.

As we said, all of them can be regarded as subspaces of S (in the case of function
spaces, via their Fourier or Taylor coefficients).

To develop a general theory of analytic functions, several authors have formulated
some natural conditions which hold in most classical spaces, but are too restrictive to
include many other interesting spaces. That is the reason why we will focus on the
conditions proposed by O. Blasco and M. Pavlovi¢ in [16].

DEFINITION 1.3. (S—admissibility)(see [16])A Banach space X C S is said to
be S-admissible if P C X, for P the space of all polynomials, and X — S, i.e., Vj 3C}

st. [£(7)] < Cillfllx Vf € X.

REMARK 1.4. Of course if X is a S—admissible space, then the closure of polyno-
mials in the X-norm, X°, and its dual ,(X")*, are also admissible ([16]).

ExXaAMPLE 1.5. Some examples of S-admissible spaces are P for 1 < p < 00, ¢y and
the space £(p,q), 1 < p,q < oc.

The spaces of holomorphic functions considered as sequence spaces such as Hardy
spaces, Bergman spaces, Bloch function spaces and so on, are S-admissible as well.

DEFINITION 1.6. (H—admissibility)(see [16])A Banach space X C S will be
called H-admissible if X C H(ID) with continuous inclusion, #(RD) C X for all R > 1
and the map f — f|p is continuous from H(RD) to X.

Clearly H—admissible spaces are also S—admissible.
This class of Banach spaces not only covers many of the classical function spaces, but
is also well-adapted to the study of multipliers.

There are several common interpretations of the coefficient multipliers. One can
see them as diagonal operators, relate them to a convolution product or to a Hadamard
product. We will consider the third option.
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14 2. Multipliers and tensors: the scalar-valued case

DEFINITION 1.7. (Hadamard product) Let f, g be in H (D). Then
Frg(z):=>_ f()aG)?
J

is called the Hadamard product of f and g.

DEFINITION 1.8. (Multipliers) Given two S—admissible spaces, X and Y, A € §
is said to be a (coefficient) multiplier from X to Y if

Ax fi= Zx\jf(j)ej €Y for each f € X.
J
We denote the set of all multipliers from X to Y by (X,Y) and define

Ml xyy = sup{lIA* flly = [[fllx < 1}

This space considered with the operator norm is an S—admissible Banach space
(see [16]).

ExaAMPLE 1.9. For 1 < p,r < oo we have

(1.2) (P 0") = ¢ror,

This idea can be generalized for mixed-norm sequence spaces. Given 1 < p,q,r,s <
OO’
(1.3) (£(p,q), £(r,5)) = tlpe 1,0 S 8).

The proof of (1.3) is based on the proof of (1.2) and it can be found in [32].
In Chapter 2 we will deepen into the study of multipliers between a generalized
version of mixed-norm sequence spaces, considered with values in a Banach space.
Other well-known examples of multiplier spaces are multipliers related to Hardy
spaces such as

(H?, H®) = H”',
where 1/p+1/p' =1, 1 < p < oo(see [36, 31]) or
(HP, H") = ¢~
for 0 <u <2<p<oo (see [31]).
Also, multipliers related to Bloch spaces
(H', BMOA) = (H', Bloch) = Bloch

(134, 31)).

It is still an open problem to characterize the space (HP, H") for some values of
u, p, for example 0 < u < p < 1 or (HP,HP) for 1 < p < 2. A great survey on this
topic can be found in [31].

EXAMPLE 1.10. The Kothe dual of X C S is defined to be
XK = {(y]’)j €S: Z |ijj\ < OO,V($j)j (S X}
J

Thus, it can be regarded as the multiplier space (X, ¢').

The concept of solid space was introduced and studied by Anderson and Shields
([2]). Let us mention some trivial facts about it related to multipliers and Hadamard
tensor products.

DEFINITION 1.11. (Solid space) A set A C S is said to be solid if for any f € A
and g € S with [§(j)| < |f(y)|, 7 > 0 implies that g € A.
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Note that, in terms of multipliers, an S—admissible space X is said to be solid iff
> C (X, X).
The spaces ¢ and £(p, q) spaces (1 < p,q < o0) are solid.

PROPOSITION 1.12. (See [16]) If X orY are solid S—admissible Banach spaces,
then so it is (X,Y).

PROPOSITION 1.13. (See [2],[16]) If X is an S—admissible space, then there is a
largest solid admissible space s(X) C X. Moreover, s(X) is the largest solid subset of
X and we have

s(X) = (0°°, X).

DEFINITION 1.14. (Hadamard tensor product) The Hadamard tensor product
is defined to be the space of linear combinations of Hadamard products, i.e.

X®Y={heS:h(z)=2 furgn(z) with Y| fallxllgally < oo},

where f, € X, g, € Y and the convergence is considered in S.

This space considered with the norm given by

2]l = f Y fallxllgnlly,

where the infimum is taken over all possible representations, is an admissible Banach
space.

EXAMPLE 1.15. For 1 < p,r < oo we have /P ® (P°" = (",
For 1 < p < 2 one has (see [16], Corollary 8.1) H'@/P = {(p, 1) and H'® HP = BP!
where B! stands for the space of functions f € H(ID) such that

1
| fllet = [ £(0)] + / My (r, Df)rdr < oc.

PROPOSITION 1.16. (See [16]) If X or Y are solid S—admissible Banach spaces,
then so it is X ® Y.

PROPOSITION 1.17. (See [2], [20], [16]) If X C S, then there is a smallest solid
superset S(X) D X. Furthermore
S(X)=0xX:={axf:ael>® feX}
and R
S(X)={9€S:3f € X such that |f(j)| > 19(4)| for all j}.
Denote SB(X) = ¢>° ® X. Then of course S(X) C SB(X).

PROPOSITION 1.18. (See [16], Theorem 6.1) Let X be an S—admissible Banach
space. Then SB(X) is the smallest solid Banach space containing X. More precisely,
if Y is a solid Banach space containing X, then SB(X) C Y with continuity.

A basic formula connecting tensors and multipliers is given in [16] (Theorem 2.3)
and states that, given X, Y, Z three S—admissible Banach spaces,

(1.4) (X®Y,2)=(X,(Y,2)).

The previous equality is used to characterize new multiplier spaces, such as (H?, BMOA)
for 1 < p < 2, identified with certain class of Bloch spaces (see [16, 35, 39]) or
(P, BMOA) = £(p',00) again with 1 < p < 2.

We include in this section a result regarding this topic that we have not found in
the literature.
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16 2. Multipliers and tensors: the scalar-valued case

Consider the differential operator

(1.5) D"g=> (n+1)"j(n)ey

n

for g =), G(n)en, en(z) = 2" . Of course considering the operator defined in (1.1)
it is clear that D' = D'. In this case we will write simply D. Denote by D~ the
preimage of this differential operator, that is

DY — {f: (f(n)) eS:Dmer}
_ {f () €8 Y+ 1) Fmgen € Y} |

Notice that D71 f(2) =Y, i(—fl)z” =17 f(w)dw.
LEMMA 1.19. (Theorem 2.1, [9], with p(t) = t) Given a Banach space X, T : A —
X is continuous iff D*(Tw) is an X -valued function satisfying
1
DT =0 (1= ) (e D,
where Tu =), T(un)en for a basis of X, u = (un)n.

REMARK 1.20. Note that

Mao(r, D2f) = O <11r> & Mo (r,D2f) :o< ! )

1—r

asr — 1.

Indeed, from the definition of D? and D? one gets D> = DD — D = D> — D.

Consider M (r,D?*f) = O(:2:). Then My (r,D?f) = Ms(r,D*f — Df) <
Mao(r, D2f) + Moo (r, Df) = O (15 ) + 0 (1og ().

For the reverse direction, assume My, (r, D?f) = O (l%r) Then My (r, D%f) =
Muo(r,D%f + Df) < Myo(r,D?f) + My (r, Df). Now notice that 22D f = zD?f — 22 f,
thus

12 Muo(r, Df) < 7Moo (1, D*f) + Moo (1, 22 f)
< rMoo(r, D) + 1Moo (r, (%)),

which, together with the fact that (22f)’ € Bloch by hypothesis, gives
1 oo 1 1
Moo (r,Df) < =Moo (r,D2f) + -0 (log [ —— ) ) .
T T 1—r

LEMMA 1.21. Let X,Y be H-admissible spaces. Then
(X, D7) =D}X,Y).
PROOF. Let A = (\j); € (X,D7'Y). Then A sz = dojAjTje; € DY for all
z = (z;); € X. Thus DA *x) =3, (j + 1)Ajzje; € Y for all € X, which implies
DX e (X,)Y).
Conversely, if A € D™1(X,Y), apply the same argument to prove that DA%z € Y for
all z € X is equivalent to A xx € D7'Y for all z € X. O

LEMMA 1.22. Let f € H(D). Then

feBloch< sup (1—7)(1—s)Ms(rs,D*f) < 0o
0<r,s<1
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ProoFr. Consider f an analytic function such that

sup (1 —7)(1 = 8)My(rs, D*f) < .
0<r,s<1

In particular, for r = s

sup (1 —1)2My(r?, D*f) < .
0<r<1

That is saying that My (r, D?f) = O(ﬁ) Integrating using D!, that is D! f(2) =
fol f(zs)ds, we obtain My (r, Df) = O(tX-). Thus, f € Bloch.

Now let f € Bloch. Then My (r, Df) = O(7%=) and derivating using D, and the

1—r

known fact that M (r, f') < C w, one concludes that
Moo (r?
Moo(rv Df) - Moo(Tv (Zf)/) S Cl(_T?:f)

Thus Moo (rs, D*f) = O(ﬁ) and as for 0 < r,s < 1 one has that rs < r and
rs < s,
1 1

1—rs)2 ~(I=r){1—s
and the result follows. O

Let us now present the following new result.

PRroroOSITION 1.23.
(A'® A, H®) = D™?Bloch

PROOF. The formula (1.4) gives (A! ® Al, H®) = (A, (A!, H*®)). We will prove
then (A, (A, H®)) = D~2Bloch

Let us first prove that (A', H*®) = D~'Bloch. By Lemma 1.19, given g an analytic
function, g € (A!, H*) is equivalent to

15 2+ gzl =0 (121 ) (1l D,

1
1=

SUp,ep | D?g(rw)| = O( L ) This is also equivalent to My (r, D?g) = O( ! )

1-r 1—r
iff Dg € Bloch, i.e., if and only if g € D~ Bloch.

Then we have reduced the problem to prove (A, D=!Bloch) = D~2Bloch. Lemma
1.21 gives (Al, D™1Bloch) = D~'(A!, Bloch), thus what we actually need to prove is
(AY, Bloch) = D~'Bloch.

Again let g be an analytic function. Then applying Lemma 1.19, g € (A%, Bloch)
if and only if

That is to say, using Remark 1.20 sup,ep |D?g.(w)| = O( or equivalently

1
D)t = 0 (=) (1 = .

Using Remark 1.20, sup,,cp |D3g.(w)|(1 — |w|) = O (%M) if and only if

My (rs, D3g) < % for 0 < r,s < 1. By Lemma 1.22, this inequality holds if
and only if Dg € Bloch, that is, if and only if g € D~!'Bloch, and the proposition is
proved. O
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18 3. Spaces of vector-valued sequences

3. Spaces of vector-valued sequences

In this section we develop some necessary background material in order to make
the text accessible to anyone interested in the topic and give examples of spaces of
vector-valued sequences to be used later on. From now on, the letter E will be used
for Banach spaces.

Following the notation introduced in the scalar case, S(F) will be used to denote
the space of sequences f = (z);>0, ; € E, endowed with the locally convex topology
given by the seminorms p;(f) = ||z;||g, j > 0. As in the scalar case, we shall think of
f as a formal power series with coefficients in F, that is f(z) = >3, z;2 and most
of the time we will write f(j) instead of xj.

A sequence (fy,)n C S(F) converges to f € S(F) if and only if p;(f—f,) = 0Vj >0
if and only if || f(j) — fu(j)||lz — 0 as n — oo for all j > 0. That is, convergence in
S(F) is coordinatewise convergence.

S(E) is a metrizable and complete space. For the completeness, take (f,), € S(E)
a Cauchy sequence. Then ( fn( J))n is Cauchy for any j € N and since E is Banach, it
converges to some f(]) Defining f = (f(j))J we have f, = f € S(E).

Recall the notation e;j(z) = 27 for each j > 0 and write P(E) for the vector space
of the analytic polynomials with coefficients in F/, that is Z;V xjej, where x; € F.

Tensor product will play an important role in the exposition. We recall the defi-
nition and some properties before going on. For basic information concerning tensor
products one can take a look at [38, 22, 21].

DEFINITION 1.24. (Tensor product.) The algebraic tensor product between two
vector spaces U,V can be seen as a linear form space over the bilinear continuous
mappings from U x V into K, B(U,V). Given u € U, v € V,

u®v(F) = (F,u®v) = F(u,v).

The tensor product U @ V is the subspace of the algebraic dual of B(U, V) generated
by these elements. Hence, an element of U ® V' can be written as

n
T = E ;U X v;
i=1

wheren € N, o; €K, u; € U, v; € V.

The representation of the element x is not necessarily unique, though. In fact,
a(u®v) = (au) ® v =u® (av). This allows us to write

n
T = E U; & Vj.
i=1

Therefore we can define the following norm.

DEFINITION 1.25. (Projective norm.) Given x € U ® V, we define its projective
norm by

m(z) = inf Y Juillvlvillv,
7

where the infimum is taken over all possible representations and the series converges
in the sense of bilinear forms. The notation for the space U ® V endowed with this
norm will be U ®, V.

The space U®V equipped with the projective norm might not be a complete space.
Its completion is the so-called projective tensor product. We will write U®,V .
The following theorem may be helpful to identify the elements of these spaces.
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THEOREM 1.26. Let X, Y, Z be Banach spaces and B : X XY — Z a continuous
bilinear form. There exists a unique operator B : X&,Y — Z satisfying
B(z ®y) = B(z,y),
reX, yev.
This correspondence gives us an isometric isomorphism between the Banach spaces
B(X xY,Z)=L(X®,Y,Z)=L(X,L(Y,Z)).

Recall that for two given Banach spaces, X and Y, the space of continuous linear
operators L£(X,Y) endowed with the norm
1T = sup [T(x)]y
Izl x <1

is a Banach space. Unless otherwise indicated, the convergence of operators will be
understood in this norm.

We are now in conditions to list some ways of generating different vector-valued
sequence spaces.

DEFINITION 1.27. Given X C S and E a Banach space, we denote
X®.E
the tensor space previously described,
X[E] =A{(z))jz0 € S(E) : [|(llz5]| )5l x < oo}
and
Xucat(E) = {520 € S M@l xumirr = s Gyl < oo}
E*—
ExaAaMPLE 1.28. For 1 < p < 0o, we consider
P& E

the projective tensor product space between ¢ and F and

18] = {@auzo : l@)lloe) (Z fenl) " < o0}

which is usually denoted P(E).

Then, in connection with Theorem 1.26, the space E® ¢! may be seen as sequences
with values in E via the identification x ® a — (xa,),, where a = (a,),. Since
Yoallzanlle < Jlzl|g )2, |an|, the series is absolutely convergent. Therefore z ® a €
(1(E), the space of E-absolutely convergent series where the norm is defined to be
lylli =2, lynllE. If we extend the map

J: E@0' — (Y(E)
r®@a = (zap)
to an isometric isomorphism, we have an identification between both spaces (for the
complete proof see [22]).
Following with the list of examples, we consider

£ (B) = {@aso 1@l imy = s (S loma ) < oo,

with the obvious modifications for p = co.
In particular, co(E) = (£°(E))" and

UC(E) = (£L ...)°(E) = {(ZEn)nzo € Ezlueak(E);an converges unconditionally }

n
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20 3. Spaces of vector-valued sequences

We also have a vector-valued version for Kellogg’s spaces £(p, q).

DEFINITION 1.29. (Vector-valued mixed-norm sequence spaces) We denote
by £(p,q, E), 1 < p,q < 0o, the vector-valued mixed-norm space of sequences (a;);en
in S(F) verifying

1/p
> laslh e,
JEIy
keNp
under the norm
- a/p\ V4
lallpgz=| Y| D lasl%
k=0 \je€l

where Z = {I, = [2F,2¥"1) N Ny, k € No} and with the obvious modifications for
p =00 or g =o0. Of course {(p,p, E) = ¢P(E) and {(p,q, E)* = L(p', ¢, E*).

In Chapter 2 we will extend this version to more general families of intervals in Ng.

Another space not coming from the above constructions is the vector-valued version
of the Rad space, which hangs on the remarkable Rademacher functions. We will now
give the basic notions to get an understanding of this space. More information on this
topic can be found in [21].

DEFINITION 1.30. (Rademacher function) The Rademacher functions r, : [0,1] —
R, n € N are defined by setting

rn(t) := sign(sin(2"nt)).

It will be convenient to refer to the constant one function as the zero’th Rademacher
function, rg.

To grasp how Rademacher functions work, we have pictured the graphs of three of
them.

| nw ) 20

‘‘‘‘‘‘‘‘‘‘
\\\\\\\
\\\\\\\
\\\\\\\
““““
\\\\\\\
\\\\\\\

FIGURE 1. 71(t),r2(t), r3(t)

The most important feature of the Rademacher functions is that they have nice
orthogonality properties. If 0 < n; < ne < ... < ng and p1,...,pr > 0 are integers,
then it can be easily seen from the pictures that

Yo mg {1 ifeach p; s even;
o M Tk 0 otherwise.

An immediate consequence is that the Rademacher functions form an orthonormal
sequence in L?([0,1]) and so

1
/0 S a2t = 3 Janf?
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for all (a,), € £?. Be aware they do not form an orthonormal basis. For example,
cos(2mt) is orthogonal to all the r,’s.
The main result about the Rademacher functions is a powerful inequality.

THEOREM. F (Kitchin’s inequality) (see [21]) For any 0 < p < oo, there are
positive constants Ay, By such that regardless of the scalar sequence (ap)n € 2? we have

Ap | 2 lanl? R I aur(np "<, > lanf’ B
n 0 n

Notice that the statement can be rephrased to say that on the span of the Rademacher
functions all the L” metrics are equivalent. The Rad,, space is defined to be this closed
linear span. We will focus our attention only on Rads, which will be noted simply by

Rad.
Then the vector-valued version will be

1/2

1 N
Rad(E) = 3 @0 sup | [ 1 arlpar] <o
=0

It is well known (see [21]) that
0 (F) C Rad(E) C 2, .(E)

weak weak

with continuous embeddings. Let us mention the interplay with the geometry of Ba-
nach spaces when comparing the space Rad(E) and Rad[E]. We need a “Kitchin’s-
type” inequality for the vector valued case.

REMARK 1.31. (Kahane’s inequality) (see [21])
Let 0 < p,q < co. Then there is a constant K (p,q) > 0 for which
) 1/q . 1/p
[ IS nwalri)  <kma | [ 15 oo
0 k<n 0 k<n
regardless of the choice of the Banach space X and the vectors z; € X.
Unlinke the situation with Kitchin’s Inequality, in general infinite dimensional Ba-

nach spaces none of these quantities can be compared with (3, ., ||lzx[/?)"/? in a uni-
form way.

DEFINITION 1.32. (Type) A Banach space X has type p if there is a constant C
such that, however we choose finitely many vectors zp € X, k=1,--- ,n,

1 n 1/2 n 1/p
( / u Zrm)kadt) <c (Z ||xk||pdt>
0 k=1 k=1

DEFINITION 1.33. (Cotype) A Banach space X has cotype ¢ if there is a constant
K > 0 such that no matter how we select finitely many vectors z, € X, k=1,--- ,n,

n 1/q - 12
(St < ([ 13
k=1 0 r=1

To cover the case ¢ = oo, the left hand side should be replaced by maxy<, ||zl
An interesting corollary following from Kwapien’s theorem (every operator from X to
Y factors through a Hilbert space, [21]) tells us that the only Banach spaces which
simultaneously have type and cotype 2 are the isomorphic copies of Hilbert spaces.
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22 4. Spaces of vector-valued integrable and analytic functions

Notice that the notions of type 2 and cotype 2 correspond to ¢(?(E) C Rad(E) and
Rad(E) C (?(E), respectively.

PROPOSITION 1.34. Let E be a Banach space.
(i) Rad(E) = Rad[E] if and only if E is isomorphic to a Hilbert space.
(ii) Radyear(E) = Rad[E] if and only if E is finite dimensional.

PRrROOF. Note that, using the orthonormality of r,,, Plancherel’s theorem gives that
Rad[E] = (*(E) and Radyeq(E) = 2. (E) . Of course if E is a Hilbert space then
Rad(E) = (*(E) and for finite dimensional spaces Radyear(E) = (2,,,.(E) = (*(E).

On the other hand, clearly Rad[E| C Rad(E) if and only if E has type 2 and
Rad(E) C Rad[E] if and only if E has cotype 2 . Now use the mentioned corollary
from Kwapien’s theorem (see [21], 12.20, p.246) to conclude (i).

To see the direct implication in (ii), simply use that if dim(FE) = oo then (2(E)

c
(E) (see [21] 2.18, p.50). O

52

weak

4. Spaces of vector-valued integrable and analytic functions

This section is devoted to gather the vector-valued version of some of the function
spaces mentioned above and to take a look at its most basic properties. The defini-
tions and basic properties of integrals of vector-valued functions with respect to scalar
measures will be given.

Consider (€2, %, p1)a finite measure space.

DEFINITION 1.35. (Simple and p—measurable function) A function f: Q — E
is called simple if there exist x1,...,z, € E and Ay,---, A, € ¥ such that

n
f = Z xiXAm
=1

where x4, (w) =1 in case w € A; and equals to zero otherwise.
A function f : ) — FE is called u—measurable if there exists a sequence of simple
functions (f,,), with lim, ||f, — f|| = 0 p—almost everywhere.

DEFINITION 1.36. (Bochner integral) A y—measurable function is called Bochner
integrable if there exists a sequence of simple functions (fy), such that

i [ 1 = Fldp =0
noJq
In this case, fA fdu is defined for each A € 3 by

/A fdp = lim /A jm

If 1 <p < oo, then LP(u, E) stands for the space of all (equivalence classes of)
FE—valued Bochner integrable functions f defined on €2 with

/ 1Py < .
Q

The norm is defined by

1/p
T ( / ||f<w>\|%du<w>)  feIP(uE).

Routine computations show that LP(u, E) is a Banach space under || - ||,. In addi-
tion, simple functions are dense in LP(u, F) for 1 < p < co. For p = oo the symbol
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L*>°(u, E) stands for the space of all (equivalence classes of) E—valued Bochner inte-
grable functions defined on 2 that are essentially bounded, i.e., such that

[flloc = esssup {[[f(w)]| : w € Q} < oo.

The space is also a Banach space under the norm || - || and the countably valued
functions in L*°(u, E) are dense in it. It is known that LP(u, F) C L%(u, F') whenever
p>q.

For 1 < p < oo it is not difficult to recognize Lp/(,u, E*) isometrically as a subspace
of (LP(u, E))*. The equality holds if and only if E* has the Radon-Nikodym property
with respect to u, that is to say that for each y—continuous vector measure G : 3 — F
of bounded variation there exists g € L' (u1, E) such that G(A) = [, gdp for all A € .

EXAMPLE 1.37. In a similar way we did in the Example 1.28, we can identify
isometrically the spaces E®,L'(u) and L'(u, E) for any measure space (£, ¥, u). The
proof can be found in [24].

Running parallel to the scalar-valued case, consider H(RD, E) to be the space of
FE-valued analytic functions on RD C C for R > 0. That is, functions f : RD — FE,

f(2) =X ien, f(j)2? such that lim sup; 11FG)le < R. It can be regarded as a vec-

tor subspace of S(E) via the Taylor coefficients f(j) € E. Of course every sequence
(z;); € S(E) which satisfies the condition limsup; {/||z;[|z < R can also be identified
with an F—valued analytic function in rRD.

We endow this space with the ‘“H(E)—topology’, i.e., the topology of uniform conver-
gence on compact subsets of RID. This topology can be described by the family of
seminorms

Moo(ﬁ f) = sup ”f(z)HEv

|z[=r
0 < r < R. Therefore, we will say a Banach space X is continuously contained in
H(RD, E) if for any 0 < r < R there exists a constant A, > 0 such that

Moo (r, f) < Acllfllx, f€X.
Conversely, we will write H(RD, E) C X if there exists s < R and Bs > 0 such that
HfHX < BsMo(s, f)
for any f € H(rRD, E).Notice that H(RD, E) C S(F).
The vector-valued disc algebra and the bounded analytic functions will be denoted
AD,E)={f e H(D,E), feC(D,E)}

and
H*(D, E) = {f € H(D, E), sup ||£(2)|5 < oo}

|z|<1
respectively, where we define

1flla@,z) = sup 1fG)lle, N la=me = sup 1f ) e-
zZ|= z|I<

It is easy to see that (H*®(D, E))? = A(D, E).
The E—valued Hardy space HP(D, F) is defined as the space of E—valued analytic
functions on the unit disc such that

HfHHP(]D),E) = sup My(r, f) < oo,
0<r<1

27 1/p
My(r, ) = (2177/0 Hf(reie)H%cw) )
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24 4. Spaces of vector-valued integrable and analytic functions

Also in the vector-valued case the integral means are increasing functions of r.
Therefore HP(D, E) C HY(D, E) whenever p > q.
We also have the space defined at the boundary

H?(T,E) = {f € LP(T,E) : f(n) = " f(e”)e”'”esj =0,n < 0} :
0 ™

It is not difficult to see that HP(T,E) = (HP(D, E))°. Although we do not en-
ter into this, the property ARNP is the one needed for the coincidence HP(T, E) =
HP(D, E) (see [7]).

Given 1 < p < oo, the E-valued Bergman space AP(D, E) is defined as the space
of E- valued analytic functions on the unit disc such that

nmmmm:(Aﬁmm%mw>w=<ﬂﬁgmmwmf”<m.

It is also well-known that, for 1 < p < oo,
AD,E)c H*(D,FE) Cc H?(D,E) Cc A’(D,FE) C Al(]D),E)

with continuous inclusions.

We define the E—valued Bloch space, Bloch(D, E), to be the set of E-valued holo-
morphic functions on the disc that verify

sup (1 — [2[*) |1/ (2)ll & < o0
z€D

or, equivalently,
sup (1 — [2[)[[ /()| < oo,
zeD

or
sup (1 —[2])[[Df(2)]| e < oc.
z€D

It is a Banach space under the norm

1f | Bioch(m,E) = 1 (0)]| 2 + Sup (=D (2)e-

The little Bloch space Blocho(D, E) is defined to be the subset of f € Bloch(D, E)
such that

fim_sup L= zPIf )E=0

|z]=17 ze

and turns out to be the closure of the EF—valued polynomials in the Bloch norm.
We will denote by BMOA(T, E) the space of functions in L'(T, E) with Fourier
coefficients f(n) =0 for n < 0 and such that

1 y do
sup o [ 176" = filge < o0

where the supremum is taken over all intervals I C [0,27), |I| is normalized I’s
Lebesgue measure and f; = ﬁ I f (e’e)%. It becomes a Banach space under the
norm

1 ) df
HﬂmmmMrWﬂwm+wp/WW%—Mm-
1] J; 2m

Finally, the space of E-valued analytic functions of vanishing mean oscillation
VMOA(T, E) is the closure in BMOA(T, E) of the set of polynomials in the
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BMOA(T, E) norm. We say that a function f € LY(T, E) is in the space VMOA(T, E)
if it is analytic and

_ 1 i dé
fm s o ) = sileg =0
We have the inclusions
H*>(D,FE) C BMOA(T, E) C Bloch(D, E),
AD,E) Cc VMOA(T, E) C Blocho(D, E)
and trivially the identification Bloch(D, E) = Blochyear(D, E).
Let us finish this section with a new result that shows that the spaces AP(D, E),

HP(D, E) and the vector-valued version X [E] for X = AP(D), HP(D) are different for
the particular case E = ¢g (see [18]).

PROPOSITION 1.38. The spaces AP(D, ¢g), HP(D, co) and the vector-valued version
Xco] for X = AP(D), HP(D) don’t coincide.

PROOF. Let (e,), be the canonical basis in ¢y. Consider the functions fy(z) =
Zgzo en2".
Let us analyze its norm in H?(D, E) and HP(D)[E]. We have
I Nl ErD,c0) S NfNTHo D) =1, P> 1.

However

Il oo @)jeo] = N + 1,

AN e )eo) = NN 2y = (N + 1)M2, 2 < p < oo,

and, using Hardy’s inequality for functions in H! (see [24]),

N
1
Iin @) = 18l @) = €D 7 = Clog(N +1), 1<p<2.
n=0
Similarly
[e%¢] N2
A2(D)[E] = N, €S(E) : ||333”<
(D)[E] (x5); (E) jgoj—i_l 0

and then for p > 2

1Nl ar(,co) S 1o 1Nl ar(yges) = Cllog(N +1))1/2,

which exhibits the difference between the spaces above and the vector-valued interpre-
tation X[E]. O
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CHAPTER 2

New results on vector-valued sequence spaces.

We recall the reader that, during the whole text, the letter E will denote a Banach
space (also when written with some natural subindex) and X g will denote a subspace

of S(E).

1. S(E)—admissibility
We introduce now the basic notion which plays a fundamental role in what follows.

DEFINITION 2.1. (S(F)-admissibility) Let E be a Banach space and let X be a
subspace of S(E). We will say that X is S(E)—admissible (or simply admissible) if
(i) (Xg,| - |lxy) is a Banach space,
(#) the projection 7; : Xg — E, f — f(j), is continuous and
(¢4i) the inclusion i; : E — Xpg, © — xe; is continuous.

Here the notation e; is used to denote a sequence where e;(i) = 0 for ¢ # j and
e;j(j) = 1. Hence for each j > 0 we have

If e < llmlilflxs. feXe
lzejllxe < lijllllzlle, » < E.
To avoid misunderstandings, we will write ||i;|| X% = ||i;|| and |7;||¥# = ||7;| when we

are dealing with more than one space.

Note that the third condition is the same as saying that the £ —valued polynomials,
P(E) are continuously embedded in the space Xp.
In the case £ = C we would be talking of S-admissibility, as expected.

REMARK 2.2. Let Xg, be S(E2)—admissible and let E; be isomorphic to a closed
subspace of Es, say I(FE7). Define

Xg, ={(z;); € S(EY) :xj € E1,(I(x})); € Xg,}
and the norm
1(@5)ll x5, = (I(2));l x5,
Then Xp, is S(E;)—admissible.

Also, if Z is a Banach space and Xp C Z C Yg, where Xp and Yg are S(E)-
admissible, then Z is S(F)-admissible.

Let us give a method to generate S(F)—admissible spaces.

PROPOSITION 2.3. Let E be a Banach space and let X be S—admissible. Then
X E, X[E] and Xyear(E) are S(E)—admissible.

PROOF. Clearly Xyeqk(E) = L(E*, X) and X®,E have complete norms.
Due to the continuous embeddings

X®7TE C X[E] C Xweak(E)

27



28 1. S(F)—admissibility

we only need to see that P(E) C X®,E with continuous injections ij for j > 0 and
that Xyear(E) C S(F) with continuity. Both assertions follow trivially from the facts

lzejllxe, 5 = lellele;llx < i1 ¥ e

and
lzjle = sup o, a) < ml* 1 @k)elx e
=)l &= =1
where the admissibility of X has been used in both inequalities. O
EXAMPLE 2.4. Some examples of S(F)—admissible spaces are (P(E), % . (E),
U(p,q, F) and P@, E for 1 < p,q < oo. In particular, c¢o(F) and UC(E) are S(E)—admissible

spaces.
Recall that

0 our(E) C Rad(E) C 2, (E)

weak weak

with continuous embeddings and therefore Rad(E) is S(E)-admissible.

DEFINITION 2.5. Let Xg be S(E)- admissible. We define
XE ={f = (@) € S(B) : 31w}, 25)] < 00,¥(x5); € X }.
J

We denote XBX = (XE)K,
The space X g is nothing but the so-called Kothe dual of the space Xg.

REMARK 2.6. The space X& is S(E*)—admissible.
The proof is standard, taking into account the S(F)— admissibility of the space Xg
and considering the norm defined by Hfog = SUPgex, 2 (2], 25)| for f = (27); €

J
XK.
Some well-known Kéthe duals are ¢1(E)K = ¢>(E*),¢>*(E)X = ¢1(E*) and
co(E)K = (1 (E").
DEFINITION 2.7. (Minimal space) Let Xg be S(E)—admissible and recall the

——X
notation X% = P(E)"”. We say that Xp is minimal whenever P(E) is dense in Xg ,
that is to say X% = Xp.

Of course X% is S(E)—admissible whenever Xp is.

PROPOSITION 2.8. Let Xg be S(E)—admissible and let F' be a Banach space. Then
L(XE, F) is S(L(E, F))—admissible.
In particular (Xg)* and (X%)* are S(E*)—admissible.

PROOF. Identifying each T € L£(Xg, F') with the sequence (T'(j)); € S(L(E, F))
given by T(j)(x) = T(xe;), we have that L(Xp, F) < S(L(E, F)). Moreover
[l | “X2F) < ;|17 due to the estimate | T(j) | c(z,r) < li1FP 1T coxp,m)-

To show P(L(E, F)) C L(XE, F) with continuity, we use that, for each 7 > 0 and
S e L(E,F), Se; defines an operator in L(Xg, F) by means of

Se;(f) = S(xj), f = (x;); € Xp.

Moreover [|i;|“"%F) < ||m;||[¥® because [[Sejllcixg,r) < Imil1¥2 18] 2o, - O
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2. New results on vector-valued sequence spaces. 29

2. Operator-valued multipliers

Recall that, given two S—admissible Banach spaces X and Y, a coefficient mul-
tiplier A € (X,Y) is a sequence whose coefficients lay in K, where we have an inner
product. Now we are dealing with spaces which have coefficients on different Banach
spaces. This leads us to a change of perspective: the coefficients A\; must “transform”
coefficients in F7 into coefficients in Ey. Thus, the most natural definition one can
think of is the following.

DEFINITION 2.9. (Operator-valued multipliers) Let X, , Xz, be Banach spaces.
We define the multipliers space between Xg, and Xg, as

(XE17XE2) = {)\ € 8(£(E1,E2>) : )\*Lf GXE2 Vf GXEI},

where

Aec [ =Y X(F())es
J

We can endow this space with the norm

[Ml(xp, xp,) = sup [[A*z flix,
T g, <1 ’

and it becomes a Banach space.

Two particular cases worth mentioning are, on one hand, the case F1 = K . In
this case A € § and we will write A xp, f =), )\jf(j)ej and (X, Xg)p, for the space
of multipliers. On the other hand, the case Ey = K, where A € S(E*) and naturally
)\j(f(j)) = (\j, f(§)). Here we will write A xp f for the product and (Xg, X)p for the
space of multipliers.

The notation might seem a bit strange, but we will keep it to be coherent with the
following chapters.

THEOREM 2.10. If Xp, and Xg, are S(E1), S(E2)—admissible Banach spaces
respectively, then (Xg,, Xg,) is S(L(E1, E2))—admissible.

Proor. Let A = (T}); € (Xg,,Xg,) and j > 0. For each x € FEi, using the
admissibility of Xg, and Xg,, we have

1T @)l < N2 1T (el x,

X
= w722 1A +2 2ejl xp,

IN

X
s 12 1IN x5

IN

122 i 122 UM i, ) 2l

This gives || ¥63XE2) < [l ¥ 15| X6 and (Xp,, Xp,) <> S(E(Fy, Fz)) with
continuity.

On the other hand if p € P(L(E1, E2)) and f € Xg, we have px, f € P(E2) C Xg,.
Hence p € (Xg,,Xpg,). For each j > 0 and T € L(E1, E3), we have to show that
1T€5ll (xp, xp,) < CilIT|l. Now given f € Xp,, again by the admissibility of Xp, and
XE27

ITej e fllxs, = IT(FG))eillxn,
\I%I!X@HT(JE(;?'))HEQ
3122 | T ()|

122 g || 22 | £ 1| x5, -

IN

IN N
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30 2. Operator-valued multipliers

Therefore [[i;||(X21X82) < ;|| 22 || ¥21.,

Let us now show the completeness of (Xg,, Xpg,). Let (A\n)n C (Xg,, XE,) be a
Cauchy sequence of multipliers. Since the sequence of operators A, (f) = A\, x¢ f is
a Cauchy sequence in £(Xp,, Xg,) we define A € L(Xpg,, XE,) to be its limit in the
norm. Therefore

1A= Aall = 0 = IAG) = An(F)llxs, =0 = Ante £ — A(S) € S(B).
On the other hand, we know (Xg,, Xg,) = S(L(E1, E2)) and then there exists A €
S(L(Eh, E2)) such that
An X f —= A X f
in S(L(E1, E2)). Hence necessarily A(f) = A x. f. O

We find a particular case of operator valued multipliers in solid spaces.
DEFINITION 2.11. Let Xg be S(F)—admissible. We define
X ={f = (j); € S(E) : (ajaj); € Xp,¥(ay); € £}

In general we have
X2 C Xp C XEE,

REMARK 2.12. The space X3 is S(E)—admissible.
The proof is standard, taking into account the S(E)— admissibility of the space
Xg.

DEFINITION 2.13. (Solid space) We say that a Banach space, Xp C S(E),
is S(E)—solid (or simply solid) whenever Xz is a S(E)—admissible space verifying
(;f(5)); € X for f € Xp and (ay); € £, that is to say Xp = X3

As in the scalar case, X is solid iff £*° C (Xg, Xpg)

PROPOSITION 2.14. Let Xg be an S(E)—admissible space. The largest solid subset
of Xg exists and is s(Xg) = (>, XE)B,-

PROOF. Since £ is a solid space and ({*°, Xg)p, is an S(F)—admissible Banach
space (see Theorem 2.10), it is straightforward that (¢*°, Xg)p, is a solid subspace of
Xpg. Now let Yr be another solid subset of Xg. If g € Yg, given a € £°° we have
g*BOCuGYECXE. O

REMARK 2.15. (a) X[E], Xyeak(E) and X®@,E are S(E)—solid iff X is a solid
space. The proofs are quite easy taking into account the characterization ¢ C (Y,Y)
with the corresponding space Y on each case.

In particular, P(E), ¢’  (E) and P®,E are S(E)-solid for 1 < p < cc.

» Fweak

(b) Rad(E) is a S(E)-solid space. (This follows from Kahane’s contraction princi-
ple).

(c) Neither HP(D, E) nor AP(D, E) are S(E)-solid unless p = 2.

Assuming that they are S(E)-solid, and restricting to ¢(z)x for ¢ € H(D) and
x € FE, we will have that also HP or AP must be solid for p # 2, which is not the case.

ProroSITION 2.16. Let X,Y be a solid spaces. Then

(X[EN], Y[ED]) = (X, Y)[L(En, E)].
ProOOF. Given A = (\;); € (X,Y)[L(E1, E2)], note that for x = (z;); € X[E4],
1A (@)l < sl 2, -

Then it is clear that A € (X[E], Y[Es]).

For the reverse inclusion, given A = ();); € (X[E1],Y[E3]), consider a = (aj); € X
and take (¢;); € (X,Y) such that ¢; > 0,5 € Nyg. The existence of such a sequence is
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2. New results on vector-valued sequence spaces. 31

guaranteed by the fact that (X,Y") is solid, since X is solid. We can find (z;); C Ei,
|lz;||E, = 1, such that
1Aj(egzi)]l = el Xl = €jay

By construction, the sequence (ojz;); € S(E4) is such that (||ajz;||E,); = (|oy]); and
since X is solid and a € X, we get to (|a;|); € X. Thus, (ajz;); € X[E1]. Now use
the fact that \ € (X[E1], Y[Es]) to obtain (||)\j(aj:nj)HE2)j ey.

Notice that, by the choice of (€;);, we get (eja;); € Y . This together with the fact
that ||\j]lo; < [[Aj(ajzj)|| B, + €jo; and that Y is solid, gives (||Aj]ley); € Y. O

Making use of Remark 2.15 and Proposition 2.16,
(2.1) ((P(Er), 07 (E2)) = L1(L(Ey, E2))

where 1 <p,q<ococand g=por.
In a similar way, for 1 < p,q,u,v < o0

(E(p, q, El)a g(uv v, EQ)) - £<p ou,qov, ‘C<E17 E2))7

(see [32]).

COROLLARY 2.17. Given X,Y solid spaces, we have (X[E]|,Y)p = (X,Y)[E*]. In
particular (X [E))K = XK[E*].

Therefore, for 1 < p < co and p’ its conjugate exponent,

(P(E)K = (°(E), ' )p = (7, ") [E"] = ' (E¥)
and
(P (E)FE = ((P(B)F,)p = (P [E],41) = (&7, 6)[E*] = P(E™).
PROPOSITION 2.18. Let X be S—solid and E a Banach space. Then
(X®7TE)K = (XK)weak(E*)-

PROOF. We first claim that (z7); € (X ) pear (E*) if and only if ((1:;‘,@)] e XK

for all x € E. We only need to see that if

sup (@) lxx < oo
=]l z=1
then ((z**,z ;‘)) € XK for x** € E**.
Let x** € E**. For each (a;); € X with |(o;)j/|x <1 and N € N, there are ¢;
with |6j| = 1,

N N
Z‘ zy)ag| = |Z Ty)aej|

Jj=0 j=0

= [{=, Zﬂf}*%’éﬁ\
§=0
N
> wjageslp

*k

2™ ==

<
=0

< |lz*|[g= sup Z| z)a|
el z=15"0

< e sup [[((25,2)), ]l xx
|zl =1

This concludes the claim.
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32 3. Generalized mixed-norm spaces

We show first (X&,E)X C (X&) year(E*). Take \ = (z7); € (X&.E)E, z e E
and («j); € X. Note that

(2.2) (x5, ) j) e/t

]7

and then we obtain that (z

the previous result.
Assume now that A = (z7); € (XE) pear (E*) and let us show that A € (X®,E)%

Ife>0and f =3, fo®a, € XOE with fo(j) = o and 3, [ fullx |zl <
Ifllxg, £ + € we have

STl Y ata)l < 30w an)al
J n j n
= ZZ|<x;f,:cn>a

)i € (X )wear(B) with [[(27);]l (76,0 +) < Il from

< annuEu( %5 =) el
< s )i O Il sl fall )
<

H(x;)jH(XK)weak(E*)(HfHthb,rE +€).

O

REMARK 2.19. In general XX &, E* C (Xyear(E))E
Indeed, for each g = (B;); € XX, 2* € E* and f = (2;); € Xweak(E), we have
that

> K @) Bl < Mgl e 11X e ()
j

and then

19 ® Tl (xun(

Now we extend using linearity and densaty to obtain XX &, E* C (Xyear(E))X.
For the case X = (P, 1 < p < o0, it was shown (see [19, 26, 5]) that

(Eieak:( )) = gp/ ®7‘(‘E*

3. Generalized mixed-norm spaces

During the following sections the inclusion E; C Fo will be considered a continuous
inclusion.

We define now a vector-valued version of the spaces £(p, q) presented in Definition
1.2 with some modifications on the support of the sequence and the way one takes the
intervals:

DEFINITION 2.20. (Generalized vector-valued mixed-norm spaces) Let 1 <
p,q < oo and let Z be a collection of disjoint intervals in Ny, say I, = No N [ng, n})
where nj, < nj, < ngy1. We set Az = Ugen, . We write £Z(p, g, E) for the space of
sequences (a;)jen, € S(E) verifying

1/p

> llajll; € &,

JE€Ik
k
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2. New results on vector-valued sequence spaces. 33

This space becomes a Banach space under the norm

e
pqE Z Z HaJH%

k=0 \jel,

a/p\ V4

with the obvious modifications for p = oo or ¢ = oo
We will simply write ¢Z(p, q) for the scalar case and || - HzInq either for the scalar case
or for the case in which there is no possible confusion with the Banach space.

We can define the weak version as well: we will say (an)nen, € £ _..(p,q, E)
(shorter, ¢Z(p,q, F)) if

1/p
> la*,a)P €l
J€ly
k
for every a* € E*. This space also becomes a Banach space under the norm

a/p\ /4

)

Z,

allyas= s | DY [t aplP
a*eB

B* \ k=0 \j€l

with the obvious modifications for p = oo or ¢ = oo
REMARK 2.21. Of course
E(p,p, E) = {(an)ner, € S(E lea )P < oo}

and
0.0, B) = {(an)ner, € S(B): sup (3 [{a",an)")'/? < o0},

a*€Bpx n

In particular

Ep.p. B) = (°(B) = {(xm €SB (X llally)"” < oo}
k
and

Co(pp B) = € (E) = {($k)k €S(E); sup |[[((a”, @p))kller < OO}
a*€Bpx
whenever A7 = Nj.
Both spaces ¢£(p, g, E) and (£ (p, q, E) are S(E)—admissible with [|i;|| = ||r;| = 1.
PROPOSITION 2.22. For 1 <p,q<oo and 1/p+1/p'=1/q+1/¢d =1
Ep,q,B) =, d, EY).
Therefore, X (p,q, E)* is an S(E*)—admissible space

PROOF. Let * = (2)nen € 2 (', ¢, E*) and define ¢p : £(p,q, E) — C, ¢(z) :=
> (5, 2n). Using Holder’s inequality twice,

z
ZI ahyan) =D Y Wan en)l < ol g e

k nEIk

pqE

and S0 ¢4 is well-defined. It is also clear that ¢, is a linear continuous map.

For the reverse inclusion, consider ¢ € ¢£(p, q, E)* and define z¥ : E — C, z%(a) :=
#(ae,). Then ae, € ¢*(p,q, E) because it is finitely supported. Thus the map is well
defined.
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34 3. Generalized mixed-norm spaces

Now consider z* = (2, )nen, and let € > 0. Using duality in ¢¢ we can find a sequence
B € ¢% such that ||3||; = 1 supported in A verifying

AN
/
g = | D2 | D Nl
ke \n€ly
1/p
/
=Bk [ D Il
keA nely

Then, for a fixed k € Ny, we take o, € (P supported in A such that |lax|, = 1 and

'\ /P
(Zne 7l ) = Ser, ox(m)l@ille, and let ay = sadmr Yoey, ar(n). We
can find a sequence (z,), C E, with ||z,||z = 1 for any n and such that ||z} | g~ =
¢(xnen) + o Thus

2] =Y Bk) Y ar(n)lar]

keA nely v
= Z B(k) Z ag(n) (¢(wnen) + ai)
keA nely ¥
< Y809 Y axtmdteacn) + Y060 Y outn) <
keA nely keA n€ly
=" B(k) Y anln)d(anen) + €Y Bk
keA nely keA
<D Bk) Y ar(n)d(anen) +e
keA nely

If n € I, name v(n) = p(k)ag(n). Now notice that for N, M € A, there exist
N1, M; € N such that N € Iy, and M € Iy, therefore

M M,
| Z Y(n)znenllpg.e < || Z B(k) Z ok (n)nen|pgp
n=N

k=N nEIk
", d\ o
< Y2 BEI D lerm)Pllzal < | D IBE)
k=N nely, k=N

which tends to zero as N, M — oo. This together with the fact that ¢ is a continuous
linear map, allow us to write

"]l < ¢( D Bk) Y ar(n)znen) + € < 1811 (V(0)zn)nllpge + € = 6] + e
k nelk

by the choice of ag, 5 and (x,,),. This completes the proof. O

REMARK 2.23. It is clear that (a;); € (*(p, ¢, E) & (a}); € £*(1,q/p, E) in the case

p < q and also (a;); € X(p,q,F) &< (a?)j € Zz(g, 1, E) in the case p > q. Moreover,

for a? = (af)j,

1/p 1/q
(2.3) lal%, = (Hapllfq/p) = <|Vaq”§/q71>

There is an analogous result for £Z(p, q, F).
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2. New results on vector-valued sequence spaces. 35

REMARK 2.24. Let a € X(p,q, E).

(i) If 7’ is a sub-collection of intervals in Z then ||al II,/ ||a||pq I "

<

7w
lallzk -
(i) If Z =7 UZ" for two disjoint collections Z' and Z” then

JallZ, = (ClallZ,)+ (lalZp)e) "
and

ol = sup (™ a)iZ)7 + (Ga” a1 ) "

a*€Bgx

We would like to analyze the embedding between ¢Z(py, g1, E) and £Z(ps, g2, F) and
Eg(plv q1, E) and ézlzu(p27 q2, E)

PROPOSITION 2.25. Let T be a collection of disjoint intervals in Ng and let 1 <
p1,p2,q < 00 with p1 # pa. Then (X(p1,q, E) = (% (p2,q, E) (with equivalent norms) if
and only if

(2.4) sup #I < oo.
keNy

In particular if supyey, #1r < oo then

1/q
EI(pa q, E) = an n€Ar - (Z ”CLan) < 00

PROOF. =) Assume, for instance, p1 < py and that |ja|ll . ~ [la|Z,, for all a
supported in Az. Hence taking ayy, where ||a;||p = 1 Vi € I one concludes that
(), — ng)/P1r=1/P2 < O for any k. Hence supy, #1Ij, < oc.

<=) Note that #I;, = (n}, — ny) and assume M = supy,(nj, — ng). Then

- a/p\ M1 - a/p2\ /4
lallZ, o= { D D llasl% YD Nl = |lall%, 4
k=0 \jel k=0 \jeI,

since || - [lp, & || - [lp, in CM
O

REMARK 2.26. In the same conditions of Proposition 2.25, the proof may be
adapted for the weak case, that is, ¢Z (p1, q, E) = £ (p2, q, F) (with equivalent norms)
if and only if supyey, #1x < 00.

PROPOSITION 2.27. Let 1 < p1,q1,p2,q2 < 00 and let T be a collection of disjoint
intervals in No with supp#I; = oo
Then (*(p1,q1) C €*(p2, q2) if and only if pr < pa and q1 < go.

PROOF. =) Assume that there exists C' > 0 such that ||a|Z, . < Clal .
for all a supported in Az. Hence taking k¥ € Ny and a = xj, one concludes that

(#1;,)V/P2=1/P1 < C. Hence p; < ps. Let N € Ny and consider a = Z]kV:1 Xny, -
Applying the above inequality we obtain N*/2~1a < C. Therefore ¢; < ¢o.
<=) Let us denote

[e%¢) 1/q
e1(07) = 4§ (@k)ken, : ks € £, (Z IIwkIIZp> < oo

k=0
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36 3. Generalized mixed-norm spaces

Hence the mapping

(an)nenr = ((a5)jen, Jken,
is an isometric embedding from ¢%(p, q) into £9(¢P). Notice that the index that don’t
belong to Az are not considered in any case. Taking into account that ¢ (E) C ("2 (E)
for any Banach space E and r1 < r9 we conclude that

F(p,q1) € € (p,q2) and X (p1,q) € % (p2,q).
Therefore

(o1, q1) € F(pa,qr) € F(p2, o).
|

COROLLARY 2.28. Let 1 < p1,q1,p2,q2 < 00, E1, Eo be Banach spaces and let  be
a collection of disjoint intervals in Ny with supp#I; = 0.
Then (*(p1,q1, E1) C €5 (pa, g2, E) if and only if p1 < pa, q1 < go and Ey C Es.

PROOF. =) Let us start proving that Fy C Fy with continuity. Consider z € E;
and take the sequence xe, for some n € Az. It is straightforward to see that xe, €

a1, Br) C 1 (p2,q2, B2) and [|z||p, = [lzenl], 0 < llzenllf, o = l#llE. Now
for the condition on p;, ¢; (i = 1,2) take (ayx); € €X(p1,q1, E1) for a fixed x € Ej.
Then [[(i@)ill}, 0 5, = (@)l g |2l < aix)ill}, 4 5y = [(@)ill7, 4 2]lE, and

the result follows from the scalar case.
<=) Let us denote

0o 1/q
(P (E)) = { (z1)ren, € S(E) : zx € P(E), <Z llwkllifpw)) <0
k=0

Hence the mapping
(an)nens = ((aj)jéfk)keNo
is an isometric embedding from ¢Z(p, ¢, F) into £4(¢°(E)). Now use the fact that
FEi C By = fp(El) C fp(Eg)

and use the same ideas above to get the desired result. U

REMARK 2.29. For the weak version, consider the scalar case for every z* € Bp:
whenever p; < p2, ¢1 < q2 and E; C Ep, which implies £5 C ET. Then take the
supremum and

E(p1,q1, E1) C 02 (pa, g2, Fa).

For the other direction,we use the same argument above based in the scalar case, taking
into account that ||z||g = sup,«¢p,, [(z*,z)| for E'a Banach space.

We would like to analyze the embedding between ¢Z(p,q, 1) and ¢7 (p, q, E3) for
T # J whenever A7 = A .
PRrOPOSITION 2.30. Let Ey C Eo be Banach spaces. Let T = {I; : | € Ny} and
J={Jr: ke No}. If Az =Ay, p<q and sup, #J;, < oo then
ZI(p7 q, El) - éj(pv q, E2)
and
gllu(pv q, El) - Eg(pv q, EQ)
In an analogue way, if ¢ < p and sup; #1; < oo,
7 (p,q, E1) € ¢*(p, q, Bs))

and
Eg(pa q, El) g e{u(pv q, EQ)
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Proor. We will only prove the first two inclusions, as the other are obtained
reasoning in an analogue way. Let p < ¢ and supy #J; < co. Then Proposition 2.25
gives ¢ (p, q, E2) = 19 (q,q, E2) and clearly ¢7 (q,q, E2) D ¢*(q,q, E1). Then the result
follows using Corollary 2.28, which states ¢Z(p,q, F1) C ¢*(q,q,F1). For the weak
case consider the scalar case for z* € E C Ef, ||z*||g, = 1 fixed. Then take the
supremum. O

Let us mention a particular case where they coincide.

PROPOSITION 2.31. Let Z be such that I, = [ng,n)) N Nog with nby, = nopy1 and
define
J = {Jk =l Ul : k€ No}.
Then (*(p,q, E) = 7 (p,q, E) and £3,(p,q, E) = €] (p. q, E).
Proor. Note that J = Iox U Io;41 is again an interval in Ny. Using that
(2.5) (a+b)* < Cu(a® +b%)
for a,b,a > 0 then

- a/p\ /4
lall Ty =1 > D llajll%,
k=0 \jEJ
- a/p\ /4
=10 D el + D Nl
k=0 \j€lax J€lak+1
- ar q/p\ /9
<O DY lagllh, + > gl
k=0 \j€la k=0 \j€lops1
< Cllallyq-
On the other hand, using now (a” + b%) < Csla+ b)? for a,b, B > 0,
- a/p a/p\ V4
lallZ, = 1> D llaylit, + 1 D0 el
k=0 \Jj€lz J€l2k+1
a/p\ /4

(e o]

<[l 2 ek

k=0 \j€loxUlok 1
= C'|allf,-

For weak spaces just take the supremum over all the elements of Bg- and use (2.5)
when necessary.

O

The previous idea is easily generalized using the following definition.

DEFINITION 2.32. Let Z := {I; : | € No} and J := {Jx : k € No}. We say that
I < J if the following conditions hold:
(i) Az =Ag,
(ii) F = Fk(I,j) = {l eNg:I; C Jk} 7'é 0 for all k € No,
(iii) Ji = UlGFkIl for all £ € Ng.
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PROPOSITION 2.33. Let 1 < p,q < oo, B4 C Ey andZ < J. Then
(1) Ej(pv q, El) g EI(pv q, EQ) and Eg(pv q, El) g gi(pa q, EQ) fO’f‘ D S q.
(i) ¢%(p,q, E1) € 7 (p,q, E2) and (X (p,q, Ex) C €] (p,q, E2) for q < p.

ProoOF. (i) Case ¢ = oo: Let a € 7 (p,00, 1) and | € Ng. We know that there is
k such that I; C J;. Hence

1/p 1/p
Do lanlly, | <O Y lanlly | < llally g,
nel; neJy
This gives ”aHpoo Ey = ”aHpoo By
Now for the weak case use that, in the scalar case, ||({(z*, an))n Hpoo < ||({z*, an>)n||goo

and then take supremums.
The case p = 1: Let a € Kj(l,q,El) and ¢ > 1. Therefore

q

(||a|| ,q7E2> - Z Z Z lanlle, | < CZ Z Z lanlle, | = <||a|] Lg, El)q

k leF, \n€l; leF, nel;

The case 1 < p < ¢ < oo follows using (2.3) and the previous one.
Again for the weak case use the scalar case and take supremums.
(ii) The case p = oo: Let a € £%(00,q, F1). Then

1/q
lallZ, g,z = (Zsup sup flanllz,)?) " < O( 323 sup lanle)?) " = allZ gz

leF, nel; klanel

To cover the remaning cases, from (2.3), we simply need to show that ¢Z(p, 1, Ey) C
¢7 (p,1, Ey) for p > 1. Now observe that

1/p 1/p
Ha‘|g]_7E2 = Z Z Z ”anH Z Z HaXIzng(E2
leFy, nel; leFy,
1/p
<O laxalles) = CZ > llanllb, =Cllall}, k-
k lcF, nel,

The proof for the weak case is easily adapted given that E5 C Ej using the scalar
case (E1 = Fy = K) and then taking supremums. O

THEOREM 2.34. Let T < J and 1 < p,q < oo with p # q. Then {*(p,q,E) =

7 (p,q, E) and (X (p,q, E) = tJ (p, q, E) (with equivalent norms) if and only if supy, #Fp <
00.

Proor. Case: ¢(p,q, E) = ¢7(p,q, E). =) Assume that HaHp HaHI for all
a finitely supported. Take e € E such that ||e|]|z = 1. Now define

a®) — Z(#[l)*l/pexll

leFy,

for k € No. Then [la®)||7 = (#F;,)/? and [[a®)||Z, = (#F;)"/9. One concludes that
Cy < (#F},)"/P=1/1 < €| which implies, in the case p # q, SUPgen, (# k) < o0o.
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<) Case p < ¢: From Proposition 2.33 we only need to show EI(p, q,F) C
¢7(p,q, E). Using now Hélder’s inequality for ¢/p > 1

1/p 1/p a/p\ M1

Slaally ] < (S el < | S laal (#Fy,) 70

neJy lEF, nel; lEF}, nel;

Therefore, if M = sup;, #F}, we have

a/p\ V4 a/p\ /4
s 1
lallyy = [ D | D2 llanl <M (3 Y el
k=0 \neJy keNg leFy nel;
a/p\ /4
1 1
— Moa Z Z lan[5 = MpeqHaHg,q-

leNg \n€el;

Case p > ¢: Using again Proposition 2.33 we shall show ¢7(p,q,E) C *(p,q, E).
Using 1/¢=1/q&p+1/p

1/q 1/q
uaugq—(zumug) (3 ol
l k IEF,
q/p 1/q
<UDo D llaxaln ] (#F)Y P
k leFy,
q/p\ /4
_1 _1
<M (S anl < M |all,.
k neJy

For the weak case fix x* € E* and argue in an analogue way making use of the
scalar case. Then take the supremum in the unit ball of E*. O

Let us now exhibit an example where neither ¢Z(p, q, E) C ¢7 (p, q, E) nor ¢/ (p, q, E) C
*(p,q, E).

ExAMPLE 2.35. Let 1 < p < g < oo and take Z, J as shown below:

Iy T
+1
b B In, n Iniv2 Tning 1
0 ni 2n1 2n1+n2 2(n1+mn2)
I ] P
I

Jo i Jn1 \_/Jv \_/ e v

n1+1 n1+n2 J

m ni+no+1
with:
card(lp) = card(Jp) = ... = card(Jp,) =1
card(ly) = ... = card(I,,) =1 card(Jp,) = ny
card( n1+1) =ny card(Jp,+1) = card(Jn,4n,) =1
card(In,+2) = ... = card(In, 4ny+1) = 1 card(Jn,4ny+1) = N2, ...

card( n1+nz+2) =ng,...
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40 3. Generalized mixed-norm spaces

Let us see that neither ¢ (p, ¢, E) C ¢X(p, q, E) nor *(p,q, E) C 7 (p,q, E).
Taking

ni ni na

—N— N —N—
a = (516, ...,516,0, ...,0,,326, ...,626,0, )
and
b= (0, ...,0,,816, ...,,816,0, ...,0,526,...)
—— ——

ni ni n2

where e € E with ||e|]|g = 1 we have:

lalZ, = 1BlI, = (3 Bind/?)ta

J
lallyly = l1bll7g = O Binj)Me.
J
Then it is enough to consider ¢ > p and 8; = nj_l/pj_l/q. Now
Qo Bpmy7y e = (R =0
J J

and, since n; > 7,

(Z 5;17%.)1/(1 _ (Zj*lnjl,—‘ﬂp)l/q < (ijq/p)l/q < 0.
J J j

j
Hence we have a € 7 (p, q, E)\t*(p, q, E) and b € ¢*(p,q, E)\¢Y (p, q, E).

This procedure may be applied in the weak case (all proofs may be repeated fixing
x* € E* and then taking the supremum). Thus, we can find examples where neither
A (p.q.E) C t](p,q, E) nor £ (p,q, E) C £ (p,q, E).

We would like to explain a procedure to analyze the general case Az = A7. We
will give the results for the weak case at the very end of the section as a remark to
avoid becoming repetitive.

DEFINITION 2.36. Let Z and J be two families of disjoint intervals in Ny with
Az = Ay. For each k € Ny we use the notation, as above, Fy, = {l € Ng : [; C Ji}
which now might be empty. We also define

F,={leNy:J,NI #0}.
We write ¢ and ® for the mappings given by
$(k) = min F}, and ®(k) = max F},.
Similarly, interchanging Z and 7, we define Gy, Gy, (1) and ¥(1).
DEFINITION 2.37. We define the ”left” and ”right” part of the interval J, by
J = Ji N Isy and Jy = J N I

and, denoting J; = Ujcp, [; and Jp = UleFkIl’ we have

(2.6) J. C Jp C Jy
and
(2.7) Ji = Ji U Jx U Jy,

where J; = () whenever Fy, = (). Similarly, interchanging Z and J we consider I, I, T ;
and fl.

In the following picture one grasps the idea easily.
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2. New results on vector-valued sequence spaces. 41

With this notation out of the way we can classify intervals in J into four different
types (according to Z). Note that for each interval J € J there are four possibilities:
J coincides with I for some I € Z, J can be written as a union of at least two intervals
in Z, J is strictly contained into some interval I € Z or there exists I € Z which
overlaps with J and its complement J¢. Therefore we decompose Ny into four disjoint
sets defined as follows:

DEFINITION 2.38. Let Z and J families of disjoint intervals in Ny with Az = A 7.
We introduce

(2.8) N o = {k €No: #(F \ Fy) = 0,#F), = 1},
(2.9) N ={k € No: #(Fx \ Fr) = 0, #F; > 2},
(2.10) NJ o ={k € No: #(Fy, \ Fx) > 0,#F, = 1},
(2.11) N7 ={k €No: #(F,\ Fy) > 0,#F, > 2}.
We define the sets Nquual, ngg, NI . and NZ, . similarly.

Since the notation may be a bit confusing, we will illustrate the idea. Let Z, 7 be
different partitions of Az = A7, then:

1,3,4eNZ
z T I
0EN  ual 26N nter l 5€Ngig
+ +

1
Io I I I Iy I5

IAI/\I/\I/—B\I/—\I I/\

1 1 1 |
L T 2 | L

~——
J3 Ja
~ J2
N \/

1,2eNT 3,4eNT

inter small

REMARK 2.39. Using (2.7) we can also give a description of the sets above in terms
of ¢ and P:

N =k 0(k) = ®(k), Jr = Ly}
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42 3. Generalized mixed-norm spaces

Ngg ={k: (k) < ®(k
small {k ¢(k) =0

C
lnter - {k ¢( ) < (I)(k)ﬂjk g Jk}
Using the above decomposition we can generalize Proposition 2.30, Proposition
2.33 and Theorem 2.34. We will generalize the weak version of the theorems at the
end of the section.

Note that supy #Jk < 00 implies supy, #F), < oo and also that Z < J corresponds
to the case where N7, UNY = or equivalently #G; = 1 for any | € Nj.

inter small —

THEOREM 2.40. Let 1 <p < q<o0 and Z,J with Az = Ay. Then
Ez(pv q, E) - gj(p7q’E) — Sup{#pk7 ke NO} < 0.

PROOF. =) Arguing as in Theorem 2.34, for k € Ny we consider

alk) = Z(#(Il N Jx) " Pexnng

lEFk
where ||e|]|p = 1. Hence
1/p 1/p
@, = (S leall | = (30 3 Maaly] = #E0Y
nedy leFy, n€LNJg
and
a/p\ 14
a1, =SS S Jlanly = (#Fp)".

leﬁ‘k neliNJg

Therefore using that Ha(k)ng < C’||a(k)\|%7q and p < ¢ we conclude that sup{#F}; k €
No} < 0.

<=) Denote supy(#F;) = M > 0 and let k € Ny. Case ¢ = oo: If k € Nsma” U
J
Nequal then
1/p 1/p
T
dollanly ] < D lanllp | < llalp e
neJy n€I¢(k)
If k € NiJ UN;,,, we have
1/p 1/p
Z ||anH% = Z Z HanH% + Z Hann%
neJy leF, nel; nejkujk
1/p 1/p 1/p
< Z Z Han||% + Z ||an||% + Z Han”%
leF nel; nEI¢(k) REIq)(k)

< s (3 laallp) " )7 + 20l

I€F), nel;
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This shows ¢ (p, 00, E) C ¢J(p, 00, E). Case ¢ < oo: Arguing as in Proposition 2.33

we simply show that ¢£(1,q, E) C ¢7(1,q, E) for ¢ > 1. Observe that

q Yo 2| D2 llanle q

S Y lanle | <
KEN an \"ETk IENE UNE,,, ¢(k)=1l \n€Jy
q
< > (Z S lanlls
leNgguNi{Lm (k)= nedy
q
= 3 llanls
ZENI)Z;QUN'LInter nEIl
T q
< (llalif,)"

Also we have
q

> Yodaals | < > D llanls q

’“GNgzuazUNgfg neJy keNe{malLJNb{g leFy, nel]
q
< Y #FR)TD Y lanle
keN . UN, leF, \n€l
q
syt e 32 el
keNﬁ,szN;f-glEFk nel;
q
<M (Jlalf,)"
Finally
1 q
> | 2 laalle | = 3 {2 D lanlle+ 3 llanlls + > llanlls
keN{ZLte'r nejk keN{ZLter leFk ne[l nejk nejk
q
< > H#FR)TY Y lanle
keENT,.. lEF, \nel
g q
+C D [ D lanle ] +C D0 | D lanle
kENivj’Lter 'n,ij keNglter nejk
q
semt o S | Xllanlls
leNiInterUNsImall TLG[L
q
10 3 Y e ]+ Y YD laalls
kEN{ZLieT n€lyk) kGNiJnte'r n€ly (k)
l' q
< ¢(Jlalf,)"

Combining the above estimates we conclude this implication.
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COROLLARY 2.41. Let 1 <p<q<oo and Z,J with Az = Ay. Then
7 (p,q,E) C *(p,q, E) <= sup{#Gi;1 € No} < <.

THEOREM 2.42. Let 1 < qg<p<oo and Z,J with Az = Ay. Then
7 (p,q, E) € £5(p, q, B) <= sup{#Fis; k € No} < o0

PROOF. =) The argument is similar to the one presented in the direct implication
of Theorem 2.40.
<=) Denote again sup,(#F;) = M. Case p = oo: Observe first that if [ €

Nég U Niual we have

(sup [lan| p)? = lan@|? < (sup [lan|£)?

nel; neJy
for some k = k() € NJ ., UNg .. Since k(1) # k(I') for | # 1" € NE, UNZ ., we
obtain

Y (supllan|p)? < > (sup [lan|£)".
lerIigUN;ual nell keNgnallUNgzual nejk

Also if I € NZ,., then (sup,cy, [|anl|p)? = |an@|? where n(l) € I/ UL U L. Note that
n(l) € Jy for some k € N;Znall UNJ  and

1< #({l € Nigyer - (1) € Ji}) < 2.

Hence
D (sup [lan|lp)? < 2 > (sup [lan|lg)?
leNiznter nEIl kENgnallUNi{Lwr neJk

On the other hand

Y Guwllanfp)?< Y- > (sup [lag]|p)?

S KeNg, N, D=k "N
< D (sup [lanllp) (#F)
keNS UNT, . n&Jk

< MA(|Jally )"

Combining the previous cases we get /7 (00, q, E) C (00, q, E).
Case p < co: Arguing as in Proposition 2.33 we simply show that ¢7(p,1, E) C
I(p,1,E) for p > 1.

/
JalfF =3 (3 Naalt)
l

nel;

< Y (D)’

T
lENsmall neh

Y (Y Y )

leNZ lUNing keGpnedy

equa.

+ 2 (XX el + Y el + Y Han||f,g)”p

leNT keG nedy nefl neil

inter

=L+ 1L+ I
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Now observe that

he Y Y (Tlel) s Y (X el 5 <l

kENg UN;L,, €Fk el keNJ UNT, ~ n€Jp

big inter big inter

Also note, since p > 1,

/
b Y Y (X lanl)” < lali

leN;mluNb{gkeGl neJy
Finally
1/p 1/p 1/p
L= > (0 D taaly) 7 (X aalh) "+ (D Naaly)
leNZ, = keGineldy nel; nel
1/p 1/p
< Y (Xhealy) " S (X Naalh)
kEN{ZLterUN.;{nall nEJk leNg’lter nejd)(l)
1/p
+ 3 (X )
leNE. =~ nedyq
1/p
<O (S lanlty) " = Cllalyy.
k neJy
The converse implication is now complete. O

COROLLARY 2.43. Let 1 <g<p< oo and Z,J with Az = Ay. Then
(p,q. B) C 7 (p,q, E) <= sup{#Gi;1 € No} < <.
COROLLARY 2.44. Let 1 < p,q < oo withp # q and Z,J with Az = Ay. Then
I (p,q, E) = t*(p,q, E) <= sup{(#F}) (#C1); k,1 € No} < oo.

Proovr. It suffices to show the case p < q. Note that ¢Z(p, q, E) C ¢7(p,q, E) and
I (p,q,E) C EI(Q,q,E) are equivalent, due to Theorem 2.40 and Corollary 2.41, to
the facts supg(#Fx) < oo and sup;(#G)) < oo, or equivalently

sup{(#F%)(#Gy); k,1 € N} = Sgp(#ﬁk) Slllp(#éz) < oo.

REMARK 2.45. For 1 <p < ¢ < o0 and Z,J with Az = A7 we have
Co(p.a: B) C €] (p,q, B) <= sup{#F; k € No} < 0o
and
(0,4, E) C l5(p. q, B) <= sup{#Gi; 1 € No} < oc.
On the other side, for 1 < ¢ <p < oo and Z,J with Az = A; we get
(0,4, E) C L5 (p.q, B) <= sup{#Fi; k € No} < o0
and
Go(p.a. B) C 6 (p.q, B) <= sup{#GCi;1 € No} < 0.
Soif 1 < p,q < oo with p # ¢ and Z,J with Az = A7, then

t7(p,q, E) = & (p, q, B) <= sup{(#Fx)(#G1);: k.1 € No} < oc.
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4. Multipliers between generalized mixed-norm spaces

In this section we consider 1 < r,s,u,v < oo and Z,J such that Az = Ay. We
define

(KI(ﬁS,El)?ej(u?vaQ)) -
{A = (M)neazray € S(L(EL, E2)) : [(Aan)nens 1Y o 5, < Cll(@n)nenz|rs -

The case Z = J can be easily determined adapting the proof of (1.3) (see [32,
Theorem 1]) considering Z = {I} : k € No} where I}, = [2¥ — 1,2F"! — 1) "Ny and the
norms || - ||g,, || - ||z, instead of the modulus.

THEOREM 2.46. (¢X(r,s, E1),(*(u,v, Fs)) = {X(r o u,s © v, L(E1, Ey)).
COROLLARY 2.47. (X(r,s, E)K = (X(v' s/, E*).
There are some other cases where the set of multipliers can be easily determined.

PROPOSITION 2.48.
(i) If supgen, #Jrx < 00 then (0X(r, s, E1),07 (u,v, E3)) = X (row, sov, L(Ey, E»)).
(i) If supen, #11 < oo then ((X(r, s, E1), 47 (u,v, E2)) = 07 (sOu, sov, L(Ey, E)).
(iii) If sup{(#F}.)(#G)): k,1 € Ng} < oo then

(X (r,s, E1), 07 (u,v, Ey)) = 07 (r o u, s © v, L(E1, Ey)) = £ (r o u,s v, L(Ey, Ey)).

PROOF. To prove (i) take into account that using Proposition 2.25 and Corollary
2.44 one easily obtains that if supycy, #Jx < oo then 0 (u,v, Ey) = 9 (v,v, Ey) =
¢I(v,v, Ey). Then use Theorem 2.46.

The other proofs are similar. O

Also as a direct consequence of Theorem 2.40 we obtain:
PROPOSITION 2.49. Ifr <u, s <v and u < v and sup{#F}; k € No} < oo then
(X (r, s, E1), 07 (u,v, Es)) = {(An)nenr; € S(L(E1, E2)) sup || A < oo}
n

PROOF. It is obvious that, if (Ay)nea, is a multiplier, it necessarily is a bounded
sequence. For the inclusion

{(A)nens € S(L(E1, Ba)) : sup [ An| < 00} C (¢F(r,s, B1), 47 (u, v, Ep))
let A\ € S(L(E1, E2)) be such that sup,, | A4]| < oo and consider a € ¢Z(r, s, Ey). Then
IAn(an) |2y < lIAnllllan]l By, thus (An(an))nea, € ¢£(r, s, E2). Now use the embedding
E(r, s, Ey) C X (u,v, Ey)
and argue as in Theorem 2.40 to conclude % (u,v, E3) C ¢7 (u,v, E3). O

DEeFINITION 2.50. If Z, 7 with Az = Ay. We define the collection of pairwise
disjoint intervals in Ny
m:{flﬂJk:kENo,ZEFk}.
It coincides with {[; N Jy : 1 € Ny, k € él}
PROPOSITION 2.51. Let 1 <7, s,u,v <oo.
(i) If r < s,v < u then ((X(r,s),07 (u,v)) C VY (r S u,s ©v).

In particular, if supy, #F), < oo then
(F(r, ), 67 (u,0)) € 0 (r S u,s S ).
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(1) If s <r,u<w then}ﬁ(r Su,s ©v) C (H(r,s),07 (u,v)).
In particular, if sup; #G; < oo then

E(rou,sov) C (E(r,s), 07 (u,v)).

ProoF. (i) Note that ZNJ <Z and ZN J < J. Hence, from Proposition 2.33,

(212) EImj(pv q, El) g Ez(pa Q7E1)7 p Z q
and
(2.13) 07 (p,q, E2) C "V (p,q, Es), p < q.

Now using (2.12), (2.13) and Theorem 2.46 we obtain

(E(r,5, Br), 07 (u,0, Ba)) C (507 (v, 5, By), 6507 (u, v, By)) = (207 (ru, s0v, L(Ey, By)).

Also we have

—_~—

F(ZINT,TJ)={(k1):1€F}
and

FINT.I)={(k1): kel

Therefore, #Fk(m, J) = #F), and Fl(m,l) = #@,. Using now Theorem
2.34

2.14) T (p,q, L(E1, Eo)) = 07 (p, q, LB, E2)) <= sup #F}, < oc.
k

(2.15) (57 (p,q, L(B, Ez)) = (X(p, ¢, L(E1, B)) <= sup#Ci < 00
l

The particular case follows now applying (2.14).
(ii) The proof is similar and left to the reader. The particular case follows applying
(2.15). 0

Our purpose is to get a final description of multipliers (¢Z(r, s, E1), ¢ (u, v, F»)) for
arbitrary families Z, J. We shall deal first with the case Z < J and get a reduction
to this situation in the remaining cases.

4.1. The case 7 < J.

In this section we consider Z and J such that Ay = N,;zjg U Nézual'

Fk =F, #0and J, = Uier, I; for all k. Notice that [ € Fj, means I; C Jj and we have
F={l €Ny : ¢(k) <1< B(k)}.

We use the notation J/Z = {F}, : k € No}.
We shall need the following well known fact.

This means that

LEMMA 2.52. Let1 < u,r < oo, E, F Banach spaces, A C Ny and \; € L(E,F), i €
A. Given € > 0 there exists (a;)ica, a; € E such that

1/r 1/r6u 1/u
(ZHW%) =1 and (ZH&‘HT@“> < (ZHA,-(@H%) +e
1€EA €A €A

(with the obvious modifications whenever u,r or r © u equals 00 ).
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Proor. We will prove the different cases, depending on the value of 7, u. In all of
them, consider C' = (3;c4 2_“i)1/u and A4 > 1 the number of indices contained in A.
For r = co (then r © u = u) it suffices to take a; = ﬁiAELi for a; such that ||a;||g =1
and ||\;(a;)| r is arbitrarily close to ||A;||, that is, given € > 0

€

c2i

[l < [IAi(@i)|| F +

r\1/7
Then (3;c 4 llailll) " =1 and

Vu 1/u
<Z||Aiu”> : <Z (M@l + ) )
=~ icA
1/u ¢ \u 1/u
< <ZH>\Z~(&¢)||}?) + (Z (02i) )
ieA ted
1/u u 1/u
< (Z jjA”]&(@)H%) + (Z (C€2i> )
icA ied
1/u . 1/u
< (ZHM%)II%) + (Z (C€2i) )
ieA el
1/u
< (Zwaou%) +e
icA

where we have made use of the triangle inequality when necessary.

If r < oo and u > r (hence 7 © u = oo) it suffices to take a;(4), [|a;4)llz = 1 such
that [|\i(a;(4))||F is arbitrarily close to || A; 4[| for i(A) such that sup;c 4 [ Ail| = [ Aica)ll;
and a; = 0 for ¢ # i(A). That is, given ¢ > 0 it is enough to take a; verifying
iyl < [[Ai(aica))llr + €. Then

1/u
sup [|Al| = [[Aiga | < [[Xi(aia)llr +e= <Z H/\i(az')H%) +e.
€A icA

If u<r < oo take

—1/r
ai = || Mgl (Z IIAnllre“) ,i€A

ncA
and a; = a;a;, where ||a;|| = 1 and ||\;(a;)||F is arbitrarily close to [|A;]|, in this case
given € > 0 we need [|A;|| = [[A\i(@;)||F + &5 Notice that, with this choice, one gets
1/r 1/u 1/rou
(Stete) = (Sarmrr) = (Simr=)
i€A icA i€A
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by simply using that @T“u = r ©u — u. Making use of these equalities together with
the triangle inequality we get to

1/rou 1/u
(Z ||)\z‘\|re"> = (Z 04?”)\@'”")

€A i€A

g

REMARK 2.53. Note than in the scalar case (a; € K, \; € K) arguing in a similar
way we obtain the equality:

1/r6u 1/u

€A icA
for some a € S verifying (ZieA |ai|r)1/r 1
THEOREM 2.54. If T < J then

(¢ (r, 5, B1),t7 (u,0, Ba)) =

(An)n € S(L(E1, E)) (ZH)\ Hre”> € EJ/I(S@U,SQU)
iel; I

PROOF. C) Assume that (\,), € ((X(r, s, E1),¢7 (u,v, E3)) and take € > 0.
Now, define 8 = (3 ¢, [ Xi]|7€*)/ 7% and use Lemma 2.52 in the scalar version
with A = F, for each k € Ny, to choose (ay)iep, verifying (3 p, lay|*)Y/5 = 1 and
(Z Bromt/scu = Z |Brou|)*/™.
lEFk lEFk

Again, use Lemma 2.52 in its scalar version for A = Ny. Take 7 = (%) verifying

(Xk [l*)/* =1 and
1/s6v 1/v

Z (Z Blseu)sev/sgu Z |7|k Z 5s@u v/sOu

k leFy leFy,

Finally, use Lemma 2.52 with A = I; to select for each [ € Ny, a sequence (&El))ieh
such that (zie,l & |7 )" = 1 and

rouw rouw l u 6
= (STl e < K () (- Inay %,)Y

Oé ol+k”
7,6][ ZEIl l’yk
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50 4. Multipliers between generalized mixed-norm spaces

This procedure allows us to obtain the sequence a = (a;);, a; = Vkalégl) where
i €I, 1€ Fyand k € Ng. With this choice we get that ||a|/* =1 and

T787E1

J/T
181 0 < K (w,0)[A % all],, g, + Ke < CIA|l.

’lL,’U,EQ

D) Let a = (a;); € (X(r,s,Fy) and A = (\;); such that (8;); € ¢7/%(s & u,s ©v)
where

1/rou
Br=1 DIl
S
Fix k € Ny
1/u 1/u
D Nian)lg, = [ DD ez,
i€J} leFy i€];
1/u
u/rou u/r
< (o) (S il )
leFk iell iGIZ
1/s6u 1/s
sou/rou s/r
< (> (D) S (S lailiz)
lEF}, i€l lEF}, S
Taking the v-norm, we get to:
= v v 1
S In@lz) ] = [ s > (X laily, )
k 1€ J k leFy, leF, €]}
ey :
DD >3 (X el )
k leFy k leF, i€l
sgv o 2\ ¥
=2 | 8 S0 X laill,
k leFy l i€l]

Hence (An)n € (€X(r, s, E1), 07 (u, v, E2)) and || < |18l 240 o0
COROLLARY 2.55. Let F <Z, F1=FEy;=Kand1<r,s,u,v <oo. Then
(¢X(r, 8),67 (u,v)) =

1/r6u
(An)n € S(L(E1, E2)) - (Z ])\Z-]’"e“> e M (rov,sow)

1€y k

PROOF. Recall that G; = Gy = {k € Ny : J, C I;} and I; = Ugeg,Jr: We now
denote Z/J = {G; : | € Np}. Using Kothe duals we actually have

(EI(T, s),ﬁj(u,v)) = (Ej(u’,v'),ﬁz(r’,s')).

Taking into account that ¢’ © p' = p © ¢ for all p, q the result follows from Theorem
2.54. O
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COROLLARY 2.56. Let J <Z, E1,Ey Banach spaces and 1 < r,s,u,v < oo. Then
(KI(T’ S, El),ﬁj(u, v, E2)> =

1/rou
N € SEEL E2)) | (3 Il e 1 (r 60,5 6)

i€ k

PROOF. Let A = ()\;); be in (¢X(r,s, E1),¢7 (u,v, E)). Consider the adjoint \’
defined as (N *2 b, a) = (b', \*2 a) where v/ € ¢7 (u/,v', E3) and a € ¢X(r, s, E1). Then
N = (N € (07 (/' E3), 02(r', s/, EY)) is well-defined.

Taking into account J < Z and applying Theorem 2.54, we have that \’ verifies

SN\ 1w er
(Z Y 97") c I W or v os).

1€y k

Since ||[N}]| = ||\l and ¢’ © p' = p © ¢ for all p,q , we have the inclusion.
For the other inclusion, let

1/rou
A e n)n € S(L(E, Ey)) : ( 3 |])\i||7"9“) e H9 (r 5 v,s0v)
i€y k

Now it is enough to consider the inequality ||A;(a;)||E, < ||AillllaillE, and apply the
previous Corollary to the scalar sequence (||A;]|); to get the result. O

4.2. The case m cCZTUJ.
Let Z={[;: 1 € No} and J = {Ji : k € Ngo} such that Az = Ay. We assume in this
section that NZ, =0 and N7, =0, that is to say for a given | € Ny either there

wnter inter

exists k such that I; C J, or there exist &’ such that J C I;. In other words each

interval in Z N J belongs either to Z or to J.
To extend the result on multipliers to this setting we shall use the following lemma
whose easy proof is left to the reader.

LEMMA 2.57. Let Z ={l;: 1 € No} and J = {J : k € No} such that Az = Ay and
let 7; (respect. J; ) fori=1,---,m sub-collections of L (respect. J) with T = U |Z;
(respect. J = U",TJ;) satisfying Az, = Ay, fori=1,--- ,m. Then

A= A)neay € (EE(ry 8, Br), 07 (u, v, E))
if and only if
AD = (An)neag, € (5 (r, s, B1), 07 (u,v, Ep)) i =1, -+ ,m.
Moreover | \[| ~ S, [|A®)].

THEOREM 2.58. Let TNJ C TUJ. Then (Ay)n € (EX(r, s, E1), 07 (u, v, E2)) if
and only if it satisfies the conditions

1/r6u
(2.16) ( Z ||)\i||r6u> € 59V (L(Ey, B)),
1€Jy keNqual
rou) /oY F
(2.17) (ZIIMII ) € (¥ (s O u,s 0, L(Ey, b)),
ieh leNZ

small
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52 4. Multipliers between generalized mixed-norm spaces

1/rou
(2.18) (Z ”wreu) € 9(r 0w, 500, L(Ey, Bs)),

1€Jg keNT

small

where F = {Fy -k € N} and G = {G,: 1 € szg}

big

PROOF. Let us consider the following collection of intervals

To={J: ke NS}, Te={Jx:keNJ } and J,={Jp:ke NI .}

bigJ> equa

and similarly for Z.

If J, € Jp (vespect. I} € Tp) we have F, = {l € Ng : I; C Jp} # 0 (respect.
Gl:{kENo:JkQIl}#m and
(2.19) Jy =Uer ), I € Iy (respect. I} = Ujeq, Ji, Ji € Ts)-

Hence 7 =J. UM UJTs, T =7, UL, UL, and

Je={Jk ke Nequal} ={;:l €N, qual} Z..

Observe that Z; < 7, and Js < 7, and, in particular, G = 7,/ Js and F = J/Zs.

We use Lemma 2.57 and observe that, denoting Ag = Ay, Ay = Ay = Az, and
Ay =Ag =Ag,

(A)nen, € (E¥(r, s, Ey), 07 (u, v, E))
corresponds to (2.16) invoking Theorem 2.46, also that
An)nens € (5 (r, s, Br), 6% (u, v, Ea))
corresponds to (2.17) invoking Theorem 2.54 and, finally,
(An)n€A2 € (EIb (T, S, E1)7 EJS (’LL, v, EQ))
corresponds to (4.3) invoking Corollary 2.56. O

4.3. The general case.

In this section we assume that there exist k € Ny and [ € Fk such that I;NJ}, € m
and [ NJy ¢ ZTUJ.
The situation we are handling now corresponds to Nmter # () (and hence NZ,  +#

0).
DEFINITION 2.59.

j/ = {Jl:: = UleFkIl k€ NO?#Fk > 0}7

H=TNnT\(ZUJ),

js - {Jk ke Nsmall}

Denote J" = J' U Js and Tnew = J" UH.
We use similar notations for 7.

Recall that ¢(k ) = min F}, and <I>(k) = max F}, for k € Ng. We easily observe

that (z)( equal) N, equal’ (z)( bzg) Nsmall’ (b( sjmall) < Nlig U Nz%zter and ¢( mter) =
NI  UNZE Same results hold for ®.

small inter*

LEMMA 2.60.
H= {Jk ke N’mter’¢( ) mter} U {Jk k€ NJ

inter?

(I)(k) € Nznter}
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2. New results on vector-valued sequence spaces. 53

PROOF. C) Let I € H. Since I € ZN J then there exist k € Ny and [ € F}, such
that I = I; N Ji. On the other hand, since I ¢ ZU J we have that I C I; and I C Jj.
Hence either ¢(k) = [ and ¥(l) = k or ®(k) = [ and ¢(I) = k. This gives either
ke N7 and ¢(k) € NE, . (and hence I = Ji) or k € Ny, and ®(k) € NZ,., (and

hence I = Jy). e

D) Let k € N7, with ¢(k) € NZ,. and consider J; = J; N Iy € 2N J. Then
Jp € Ji (hence Ji, ¢ J) and Jj, C I4(k) (hence Ji, ¢ Z). Similarly for J, in the case
k€N, with ®(k) € NL,,,

O
REMARK 2.61. Note that jk = Jp N1 if and only if I; = I; N J;. Therefore
H - {fl e Ni%tteww(l) € N'L}Zter} U {jl ke Ni%zter? \Ij(l) € Nz%ter}'

LEMMA 2.62.

P

"N Jg"CIT,uJs U, Cc 1" u g,
PROOF. Let I € T’UZs and J € J' U Js with INJ # (). The case I € Z; and
J € Js cannot hold. If I € Z, and J € J' then INJ = I € Z,. Similarly if I € 7' and
JeJsthenINJ=J€J, Finallyif [ e’ and Je€ J' then [ =J e€Z,=7,. O

THEOREM 2.63. A € (¢X(r,s, E1), 47 (u,v, E2)) if and only if (A\n)n satisfies

1/rou
(2:20) (3 Idre) € (" (L(Br, By))
i€Jy kENé:zuaz
rou 1/rou F
(2.21) (ZW\ ) € 7 (s O, s O v, L(Ey, Ey))
iEIl leNsImall
rou 1/rou g
(2.22) (Z BN ) € 9(rov,s 00, L(Ey, Bs))
i€ Jy, keNT

small

23 [(Z =)™ ) () ) e et m)

i€k kEA, i€ kEA;
where

Ar={ke N, &) €N

nter

}and A, = {k € N7, (k) € NE,. 1,

for example,
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54 4. Multipliers between generalized mixed-norm spaces

1,2e N7

inter

G ={Gi:1€ Njj, UNyep, #Gy > 0}
and
F={F: ke N UNJ,... #F: > 0}.

Proor. Using Ji = J’ U jk U Ji, and Lemma 2.60 one obtains Jpew < J and
Tnew < ZI. Clearly #F( new,I) < 3 and #Fi(Tnew, J) < 3 for all k. Therefore, using
Theorem 2.34, we have ¢7nev (p,q,E) = ¢ (p,q, E) and {Irnew(p,q, E) = (*(p,q, E),
which gives

(2.24) (X (r, s, E1), 07 (u, v, Ep)) = (¢Xnew (r, s, E1), 07w (u, v, Ey)).

Taking into account Lemma 2.60 and Remark 2.61 we observe that Ay = A, U Ay
and AI// = Aj//.

Since Jnew = J" UH and Zye, = Z” UH we can apply Lemma 2.57 to conclude
that A € (¢Z(r, s, B1), 7 (u, v, E2)) if and only if (Ay)nen,, € (€ (7, s, E), (7 (u, v, E»))
and (An)nga,, € (2" (r, 8, E1), 07" (u,v, E)).

Now apply Theorem 2.46 to obtain (Ay)nen,, € 7(r © u,s © v, L(Ey, E3)) which
corresponds to (2.23).

On the other hand, comparing Z" and J” we notice that I € Z"y;, corresponds to
I = Ij for some | € Ni U lenter and #G; > 1. Hence we obtain that G = {G;: I €
T"ig} and similarly F = {Fy : J € J"pig}-

We now use Lemma 2.62 together with Theorem 2.58 to obtain the equivalence
with (2.20), (2.21) and (2.22) and (An)nga, € (X (r, s, E1), 67" (u, v, By)).

O

4.4. An application.
Let us apply the previous ideas to a particular case. Consider £y = E5 =C. Let p :

[0,1) — [0, 00) be a non-decreasing function such that p(0) = 0 and p(t)/t € L'([0,1)).
We define the weighted Bergman-Besov space B!(p) as those analytic functions F' in

the unit disk such that
/|F' 1_ |’Z’|)dA(z) < o0

An analytic function F is called lacunary if F'(2) =, .5 an2" where £ = {{n} :
k € Ng} for some (ny) such that infg ngq/ng > 1.
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2. New results on vector-valued sequence spaces. 55

Recently weights with the following condition had been considered in [33]: There
exist C1,Cy > 0 and K (n, p) such that

1—2-(n+1)

(2.25) Oy / 21 P21 e ) < 02/ i pd=r)
1 - T 1—-2—n ]. - T

and the following result has been shown.

THEOREM 2.64. (see [33]) Let F'(z) = >_,cx, anz" be a lacunary function and let
p be a weight satisfying (2.25). Then F belongs to BY(p) if and only if

(2.26) Z ( > Jan] )1 K (k, p) < oo

where J, = {n :2F —1 <n < 2k 1},

We shall extend the previous result for more general classes of weight functions
and families of intervals 7.

DEFINITION 2.65. Let 0 < g < 0o, J be a collection of disjoint intervals in Ny, say
Jr = No N [myg, mp4+1) where mo = 0 and (my) is some increasing sequence in Ny. and
let p:[0,1) — [0,00) be a measurable function such that p(t)/t € L'([0,1)).

We say that p is g-adapted to J whenever there exists C > 0 depending on my,, q
and p such that

! 1-— 1—
(2.27) / rqmnudr <C FaMn 1 udr
0 IL—r An 1—7r
for all n > 0 where Ag = [0,1— ) and A, = [1— -1 — 10 forn > 1.
We denote
1
1
(2.28) to(8) =/ Tsudr s> 0.
0 1—7r

In particular, from condition (2.27) if p is g-adapted to J we get that

(2.29) Np(qmn) ~ :U’p(qmn-f—l)'
Note also that condition (2.25) means that p is 1/2-adapted for J where m,, = 2" — 1.

PROPOSITION 2.66. Let po(t) = t* with o > 0 and J = {[my, mp4+1)Ng : n € Np}.
The following statements are equivalent:

(i) pa is q-adapted to J for all ¢ > 0.

(ii) po is q-adapted to J for some q > 0.

(111) sup,, Mp41/my, < 0.

PROOF. (i) = (ii) Obvious.

(i1) = (ii7) It is well known that B(n + 1,«) fo — ) ldr ~ n= and
therefore p,, (gmn) = m;

Hence it follows from (2.29) that m,11 =~ m,,. therefore sup my1/m, < co.
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56 4. Multipliers between generalized mixed-norm spaces

(791) = (i) Let supmy41/m, = and take ¢ > 0. Now observe that

1 1

1fmn+1 1 qmn41 oy
/ ern+1(1 _ T)a—ldr > (1 . ) / Sa—lds
1—

1 My, 1

mn Mp41
1 1 qMmmn 41 o
2 (mm) e 0-GE))
n n+1
n\ 0

S AN e

e My n 0o

Z C/‘Pa (qmn)

We now modify the proof of Lemma 3 in [8] to obtain the following result.

LEMMA 2.67. Let 0 < g < 1, let J be a collection of disjoint intervals in Ny and
assume p is a weight g-adapted to J. If () > 0 then

q

1 00 q _ 00
/0 (Z anr"> p(ll—r)dr R Z Z ag | pplgmy)

n=0 n=0 \keJ,

where Jp, = {k :m, <k <mp41}

PROOF. As above 4y = [0,1 — mil) and A, =[1 — %’ 1— 1) forn>1. Then

m Mn+1

s N\ & SN CET))
/0 (;anr> T dr_;::)/n (;anr> T dr

Conversely, since ¢ < 1,

n=0 n=0 \keJ,

= YOI p1=7)

< Z oy (/ rqm"p d >

0 1—r

n=0 \keJ,
- q

YD | wolama).
n=0 \keJ,
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We first note that for lacunary functions F' and 0 < p < oo we have (see [41])

2m ” de 1/p 2m 0 2d9 1/2
myn ) = ([Tireepgl ) m e = ([T IFeePE)

Therefore for lacunary functions F one has that F' € B!(p) if and only if

/MT‘F )dr<oo

Therefore invoking Plancherel’s theorem and Lemma 2.67 we recover Theorem 2.64.
Recall that an analytic function F' : D — C with F(z) = > o7 a,z" is said to
belong to H(p,q, p) (see [8, Definition 2]) whenever

/g
1 _
Pl = ([ 330008 ar) - < o

We use the notation H(p, ¢, a) if p(t) = t“.
A consequence of Lemma 2.67 is the following result.

COROLLARY 2.68. Let 0 < q < 2, let J be a collection of disjoint intervals in Ny
and p be a weight q/2-adapted to J. Then

q/2 1/q

1Flr@an = | D D larl | mpllamn)/2)

n=0 \keJ,

Moreover if F' is lacunary and 0 < p < co then

q/2 1/a

1Flpan = | D Do lal | wol(ama)/2)

n=0 \keJ,NAg

THEOREM 2.69. Let 0 < q < o0, let J be a collection of disjoint intervals in Ny
and assume p is a weight g-adapted to J. Define A = (A\p)r such that

1 _ 1/q
Ak: (/ Tqmnp(lr)) 7k€Jn
0 1 - T

and A\ = 0 otherwise. Then (M) € (H(1,q, p),#7 (00,q)).
ProOF. We shall show that
00 1/q
(Z(SHP \ak\)qup(qmn)> S ClIF( g,
=5 kedn

Recall that

sup |ag|r* < M (r, F)
keJn
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58 4. Multipliers between generalized mixed-norm spaces

and therefore, if Ag = [0,1 — 1) and A4, =[1 — 1-— ) for n > 1 then

1
m1 My’ Mp1

o 1 o
E (sup |ag])?pp(gmn) < C E sup |ag|)? / rqmnﬂip( ) dr
An 1

=0 kEIn —0 k€Jn -r
p(1—r)
<C / sup |ag|r")!———=dr
Z keJn| " L=r
_T)
<C M (r d
Z/ 1 —

g

THEOREM 2.70. Let 1 < g2 < 1 < 2 and let J and I be collections of disjoint
intervals in Ng, generated by sequences my and ni respectively, such that T < J.
Assume that py is a weight q1/2-adapted to T and py is a weight q2/2-adapted to J.
Denote

ons8) = (s azmi) /2 G () f2)) ) 1
Then
(H(2,q1,p1), H(2,q2,p2)) = {(An)n; (:ulp tior . (B) k) € 67/ (00, 41 © an)}.

n

PROOF. Let

Pr(z) = (e, (qura/2) 0 | >4
k=0

JE€Ik

Frz) = 3 (/20 [ S22,

k=0 JEI}
and
Gr(z) =3 (pl@mi/2))Ve [ 37 27
k=0 JjE€Jk

Using Corollary 2.68 one has that f € H(2,qy, p1) if and only if f * Fr € £(2,q) and
g € H(2,q2, p2) if and only if g * G € £7(2,q2)

We use that A € (H(2, g1, p1), H(2, g2, p2)) is equivalent to AxGy € (H(2, q1, p1),47(2,q2))
and also equivalent to A x Gy * Fir € ((2(2,q1), 07 (2, q2)).

Making use of Theorem 2.54 we have

(F(2,01),7(2,42)) = {(3)n; (,fup k)n € 67/ (00, q1 © go)}.
€ln

This concludes the result. g

Let us finish by observing some examples to apply the above results.

EXAMPLE 2.71. Let A > 1 and denote mg(A) = 0 and mg()\) = [M\¥] for k € Ny and
J (A) the partition of intervals Ji(X) = [my(X), mp41(A))NNg. In this case p,, (gm,) =
A" and then, from Proposition 2.66, p, is g-adapted to J () for any value of ¢ > 0.
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2. New results on vector-valued sequence spaces. 59

Let A > v > 1 with A = " with N € Ng. Then J(v) < J()\) because

mi(A) = N = [y = mak(y)
and therefore
k() = Uier, Ji(7)
where F, = {l : Nk <1< Nk+ N}. Hence J(\)/TJ(v) = Z where I, = [Nk, N(k +
1)) NNy, that is mg(Z) = Nk.
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CHAPTER 3

New results on spaces of vector-valued analytic functions.

1. H(FE)—admissibility

DEFINITION 3.1. A Banach space Xp C S(E) is called H(E) — admissible if
(1) Xp — H(D, E) with continuous inclusion
(i) H(RD,E) € Xg VR > 1 and f — f|p is continuous from H(RD, F) to Xg.

REMARK 3.2. We already mentioned that H(RD, E) C S(F) with continuous inclu-
sion. Now note that the definition implies P(E) < X g and therefore H(FE)—admissibility
implies S(E)—admissibility.

Indeed, the only thing left to prove is i; : £ — Xg,ij(x) = xe; is continuous for
every j € Np. Thus, recall ej(z) = 27 and take € E. Obviously ze; € H(RD, E). By
condition (77), we know that there exists 0 < r < R such that

I3 ()|l x5 = llzejllxp < C sup ||227]|x,, < Cr|lz]| .

|z|=r
Most of the vector-valued version of classical spaces are H(E)—admissible.

ExAMPLE 3.3. The spaces A(D, E), BMOA(T,E), VMOA(T, E), Bloch(D, E),
Blochy(D, E) HP(D, E) and AP(D, E) (for 1 < p < c0) are H(E)—admissible.
Indeed take 1 < p < oo, then

(3.1) A(D,E) c H®(D,E) c H’(D,E) C A’(D, E) c AY(D, E)

with continuous inclusions. The H(E)—admissibility, follows from the facts that
AYD, E) — H(D, E) and H(RD, E) C A(D, E) VR > 1 with continuous restriction.
In the case of BMOA(T, E) and Bloch(D, E) use that

H>®(D,E) ¢ BMOA(T, E) C Bloch(D, E)

and
AD,E) c VMOA(T, E) C Blochy(D, E)

For the H(F)—admissibility, the only thing left to prove is the continuity of the inclu-
sion Bloch(D, E) C ‘H(D, E). Taking into account

1
() — £(0) = /O F(t2) 2t

for f in any Banach space, we have that for f € Bloch(D, E)
1
1FGe < WOl + [ 17 el

1
z
< | flIBoch(m,E) + ”f”Bloch(lD),E)/O 1 1 dt

— 2]

1
= ||f||Bloch(]D),E) <1 + log <1 _ |Z|>>

Therefore Mo (r, f) < Clog (ﬁ) £ 1| Bioch(, E)-
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We give now an easy way to generate new H(FE)—admissible spaces from other
admissible spaces.

EXAMPLE 3.4. (i) For X H—admissible, X®,E, X[E] and X,ea(E) are
H(E)—admissible. In particular the spaces ’&E, (?[E] and & (E) are

H(E)—admissible for 1 < p < oco. Also A(D)®-E and Al . (D,E) are
H(E)—admissible and
AD)@rE C AD,E) C AYD,E) C Ao (D, E)
(i4) The space Rad(E) is H(E)—admissible, since £. . (E) C Rad(E) C >

weak
with continuous inclusions.
iii) For X H(E)—admissible, the spaces X2, XX are H(E)— and H(E*)—admissible,
Es\E
respectively.

(E)

There are other ways to obtain H(E)—admissible spaces, but we will need some
new notions and tools first. R
Recall the notation i; : £ — Xpg, ij(v) = ze; and 7j : Xp — E, m;(f) = f(j).
PROPOSITION 3.5. Let Xg be H(E)—admissible. Then:
(i) C(2) =3, inz" € H(D, L(E, XE))

(i1) Cp(2) =X, m2" € H(D,L(Xp, E)))

(iii) The mapping f — F where F(w) = f, (recall thatf,(z) = f(wz)) defines a
continuous inclusion Xp C H(D, X%)

PROOF. (1) Since Xg is H(F) — admissible we have that given f € Xg,
V0 < r < 1 JA, such that

Moo (r, f) < Arl| fllxg
Concretely, for f = xe,, where x € E we get that

Moo (r,xen) < Apllzen| x,

Equivalently
rzl|e < Arllzen|xp
This implies r" < A, ||iy]|.
On the other hand, if f € H(D,E) = f. € H(r 'D,E) — Xpg for any
0 < r < 1 and it exists Ry < 7! verifying
[frllxp < Cry sup [fr(2)le < Br sup |[[fr(2)lle = By sup [ f(2)|le
|2|<R1 |z|<r—1 lz|<1

Again, for f = xe, we get r"||zey|x, < Brllz||g and ||in| < Bpr ™.

these estimates one deduces lim,,_,oo {/||in|| = 1 Therefore (7) follows.
(i) Let us prove that the series converges.

From

Observe that 1 = ||idg|| = ||7n o in|| < [|70]|||én]]- Also
[mnll = sup |lm(f)le= sup |[[f(n)|le
Fllxz<1 lFllxz<1
=r " sup [r"f(n)g=r" sup [fr(n)|s
Ifllx 5 <1 IFllxy<1
<r ™" sup Mu(r, f) <r " sup A |fllx, =1""A,
Ifllxg<1 Ifllxg<1

These two conditions together give us lim, o ¥/||mn|| = 1. Therefore (i7)
follows.
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3. New results on spaces of vector-valued analytic functions. 63

(797) The mapping is well defined as for |w| < 1 the series f,, = Zjv F)w ej =
> 45( F(j))w? is absolutely convergent in Xz (use the fact that lim, oo ¥/]Jin|
=1). Hence f,, = limy_,o0 (fuw)n € Xpg. It is also clear that if f € Xp, then
F(w) = fy is holomorphic. We will only prove that the defined mapping gives
us a continuous inclusion. Let r € (0, 1):

Meoo(r, F) = sup || follxz = sup | Y in(ma(f)2" x5

|z|=r |2|=r

< Sup D llinllmn (A elz™ < 1f1x Y linllllma]
z|l=r

= [fllxzCr

g

REMARK 3.6. Let 0 < r < 1. If Xg is H(E)—admissible and f € Xg, then f, €
X9 Indeed, if f € Xg and 0 < r < 1, we have f, = > fG)rie; = > i (f(45)r’ €
H(r~'D,E) — Xpg. Also, > N3, (fFG) | xp = > 1111l £ (7)]l7? < o by the previous

result. Thus, the series converges absolutely and f, = limy_ 0 Z;V f (j)rie;.
DEFINITION 3.7. Let Xp be a H(F)—admissible space. Define

MXE(T, f) = sup waHXE

|w|=r
for0<r<1.

PROPOSITION 3.8. Let Xg be a H(E)—admissible space. Then
(i) Mx,(r, f) is increasing
(i1) Moo(r, f) < Axp(r)lfllxp. where Axy(r) = (CE)rller,cixp,my and r €

0,1).
(i2) If r € (0,1) and f € AD, E), Mx,(r,f) < Bxg(r)|[flloc, where Bx,(r) =

1(CE el Lr(r 22, x5))
ProoOF.
(7) Since F' is holomorphic, using Cauchy formula we have w — || F(w)| x, is
subharmonic. Then using the maximum modulus principle, for s > r we can
write

M (r, f) = lsug I1F(w)llxp < sup [F(w)|xy = Mxg(s, f)

w|= w|=s

and the function is increasing.
(73) Let r € (0,1). We can write

fr(z) = fur"" = (CE)n(2)[f]

Taking norms || £-(2)|lz < [(Ca)r(2)|l2ll f]lx, and since the series converges
absolutely for every z € ¥, we have the result.
(7i7) Write
27
; _ior, A0
fu= [ B
0 ™
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64 1. H(E)—admissibility

Now for |w| =r
2w ) ) dé
[ follxE S/O H(C;]”;)w(@w)[f(e_w)]IIXE27r
2 5 "
<l [ NCE g

2 ) do
= Hf\loo/o II(C)Ec)r(ew)Hc%

Taking the supremum we obtain the desired result.
O

Let v : D — [0,00) be a continuous weight. Define H)°(D, E) the subspace of
f € H(D, E) such that sup,cp v(2)|| f(2)||r < co. Hence (it) in the previous proposition
shows the following fact.

COROLLARY 3.9. Let X be H(E)—admissible. Define v='(2) = Ax,(|z|). Then
Xg C HX(D, E) with continuous inclusion.

Consider f = 3, f(n)e, € H(D) and g = 3, §(n)e, € H(D, E). We recall the
definition of the convolution product f *p, g

Frpog=Y_ f(n)g(n)e

LEMMA 3.10. Let Xp C H(D, E) be an H(E)—admissible Banach space. If f €
H(D), g € H(D, E) ,then:

MXE(TS,f *By g) < Ml(ra f)MXE(sag)
PROOF. Let 0 < 7,5 <1, |v| =r and |w| = s. Notice that

Gy [ (3 e gtmureen)

= /0 (X (3 fie M gmpuree, ) 5
Hence

1 50 Dhoul < / (Siree D lgueolxe ) o

2 ) d9
< M, (|w],9) /0 Fle )| 2

27
< MXE(Sag)Ml(n f)
O

LEMMA 3.11. Let Xp C H(D,E) be a H—admissible Banach space and f €
H(D, E), then

(32) MXE(T$7Df) S

(s,/)

(3.3) My, (r / Mx(rs, Df)ds
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3. New results on spaces of vector-valued analytic functions. 65

PRrOOF. For the first inequality, recall that De, = (n + 1)e, and Df = K *p, f
where K(z) = ﬁ Now use Lemma 3.10 to obtain the result.

For the second one simply use that, for each 0 < r < 1 and |[£| = 1, one has

the= [ (DP.eds

as Xgp—valued function. Hence, by Minkowski’s inequality,

r 1
rMx, (7, f) §/0 MXE(S,Df)ds:r/O Mx, (rs,Df)ds

We are now ready to define a new H(FE)—admissible space.

DEFINITION 3.12. If Xf is an H(E)—admissible space, we define X5 as the space
of functions in H(DD, E) such that w — f,, € H*(D, Xg). We write

1fll%, = Oi}glMxE(h f)-

For instance o o
A(D, E) = H(D, B), A/(D, E) = A”(D, E),

—~— —~—

H?(D, E) = H?(D, E), Bloch(D, E) = Bloch(D, E)

and

~——

BMOA(T,E) = BMOA(T, E).
Indeed for the first equality notice that

Sup MA(]D)E)(T' f)= sup sup [|f(z)|E= HfHHOO(D,E)-
0< 0<r<1|z|=r

For Bergman and Hardy spaces we have

sup Map,g)(r, f) = sup (/ 1 f(z Hp) = | fllar,)
0<r<1 o<r<1

and

sup Myp, g)(r, f) = sup My(r, f) = || fll e (0,5
0<r<1 0<r<1

respectively, for the integral means are increasing functions of r.
The same result can be used for the case of Bloch spaces. As My (r, f') are increasing
functions of r, we obtain

sup MBloch(]D)E( ) =11£0)e+ sup sup(l—[z])|[f7(2)]le
o<r< 0<r<1 zeh

=WWNW+¥§LﬂMM&WWFﬂmmmmEy

Finally, consider BMOA(T, E). We can embed BMOA(T, E) isometrically in
HY(T, E*)*. Then
/r<ﬁwagw'

sup || frllBrroacr,my = sup sup i
0<r<1 0<r<1 lgll g1 (p ey =1 5—

PROPOSITION 3.13. Let Xg be H(E)—admissible. Then:
(i) Xg is H(E)—admissible.
(1) (Xg)° C XY and Xp = (Xp)° = Xg.

PROOF.
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66 2. Homogeneous spaces and Fatou property

(¢) The fact that [|-|| ¢ _ is a complete norm is standard. Due to (i) in Proposition
3.8 one has that for 0 <r <1

My, (r, f) = 1 £lg, = Mxp(r. f).

From this one easily shows that Xy is also #(E)—admissible.
(7i) Note that for 0 <r < 1

1frll 5, = Mxo (r, f) = Mg, (7, f)

which gives that Xp = (Xg)°. On the other hand if f € P(E) then
= 1i < — =
10 = i e < sup M) = 115,

and we obtain the first inclusion.

Then

Blocho(D, E) = (Bloch(D, E))° = Bloch(D, E)
and

—~—— —~—

VMOA(T, E) = (BMOA(T, E))° = BMOA(T, E).

2. Homogeneous spaces and Fatou property

DEFINITION 3.14. (Homogeneous space) Let Xp be H(FE)—admissible. We will
say Xg is homogeneous if

(i) for f € Xg and |§| = 1 it is verified || f¢||x, = || f||xp, and
(17) for f € Xp and 0 < r < 1 it is verified Mx,(r, f) < K| f||x, for some K
independent of f,r.
PropOSITION 3.15. Let Xg be a homogeneous Banach space.
(i) If f € Xg then w — f,, € H®(D, X%).
(ii) If f € X% then w — f, € A(D, XY).
PROOF.
(i) Note that H(FE)—admissibility guarantees

F(w) = fu € H(D, Xp)
(see Proposition 3.5) and given that Xg is homogeneous,

M (r, f) = sup Ifrellxe = 1Frllmoo,x0) < KN fllxp-
Hence F' € H*(D, Xg).
(43) It is clear that if f € X% then lim, 1 || f, — fllx, = 0. Now use that ||F —
Frllgem,xp) = IIf = frllxp (because F,. € A(D, Xg) for each 0 < r < 1) to
conclude the result.

g

REMARK 3.16. If Yg C Xg and Xg is homogeneous, then so it is Yg. In particular
X9 is homogeneous for Xz homogeneous.

_ ProposiTION 3.17. Let X be a H(E)—admissible Banach space. Then the space
Xg is homogeneous.
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PROOF. To show that Xz is homogeneous use that Mx,, (r, f) is increasing and
the facts, for |{|=1and 0 <7r,s < 1,
MXE(T7 f{) = MXE(T) f) and MXE(Sa f'r‘) - MXE(ST, f)
O

Note that X g homogeneous implies Xg C X g with continuity. Now the previous
proposition gives us the following.

COROLLARY 3.18. Let Xg be an H(E)-admissible space such that Xp = X with
equality of norms. Then Xg is homogeneous.

COROLLARY 3.19. The spaces Bloch(D, E), BMOA(T, E), AP(D,E), H(D, E)
and H*(D, E) (1 <p < o0) are homogeneous.

PROPOSITION 3.20. Let Xg be an H(E)—admissible homogeneous space. Then X5
s also homogeneous.

PROOF. Let f € X& and [¢| = 1. Then
[fellxx = sup Zlfjf 9(j))l = sup Z! guN = I1flxx-

Ilxp=1" llgllx ;=1

Consider again f € X K and take 0 < 7 < 1. Then maklng use of the hypothesis
My (r,f) = sup sup > [(w! f(5),3(5))]

fwl=r llgllx =14

= sup sup Zlf @)

[wl=rllgllx ;=1
< Kllflxx sup sup |lgullxy <K'l fllxx
wl=r|lgllx5=1
d
DEFINITION 3.21. (Fatou property) Let Xp C H(D, E) be a homogeneous Ba-
nach space. Xp is said to satisfy the Fatou property, to be denoted (F'P), if there exists

A > 0 such that for any sequence (f,), € Xg with sup,, ||fnl|x, < 1and f, — fin
H(D, E) one has that f € Xg and || f||x, < A.

PROPOSITION 3.22. Let Xg be H(E)—admissible. Then Xg has (FP).
PROOF. Let (fy)n C X with an||)~(E <1 and f, — f. Using that
lim Mxp, (7, fn) = Mxp(r, f)

one concludes f € X and 1fllg, <1 O

COROLLARY 3.23. The spaces Bloch(D,E), BMOA(T,E), AP(D,E), HP(D, E)
and H*®(D, E) have the (FP) (1 <p < o).
PROPOSITION 3.24. Let Xg be homogeneous. TFAE:
(1) Xg has (FP).
(13) If f € H(D, E) and sup,ep || fullx, < 0o, then f € Xg.
(i) Xp = Xg with equivalent norms.
PROOF.

(1) = (it) Take f € H(D, E) with 0 < supg<,1 Mx,(r, f) = A < co. Select a sequence
rp, converging to 1 and define fn; Apn fr, where A1 = Mx (7, f). Then of
course f, — A7l1f € H(D, E) and | fu||x, < 1. Applying the assumption,
one gets that f € Xpg.
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(i3) — (#ii) The homogeneity of Xp gives us the inclusion Xz C Xp with continuity.
The assumption means that X E € Xpg. The continuity follows from the
closed graph theorem.

(7i1) — (i) Follows directly from Proposition 3.22.

O

COROLLARY 3.25. In the same conditions of Proposition 5.2/, if X% has (FP),
then Xg = X%.

Then we can assure, for example, that HP(T, ) doesn’t have (F'P). Otherwise it
would be HP(T, E) = HP(D, E). Also the spaces Blochy(D, F) and VMOA(T, E) do
not have this property. Indeed Blocho(D, E) = (Bloch(D, E))° and VMOA(T, E) =
(BMOA(T, E))®, then is enough to consider a sequence in Blocho(D, E) and an-
other one in VMOA(T, E) converging to an element in Bloch(D, E)\Blochy(D, E) and
BMOA(T, E)\VMOA(T, E), respectively.
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CHAPTER 4

Vector-valued multipliers associated to bilinear maps and
B-Hadamard product

1. Vector-valued multipliers associated to bilinear maps

Our aim in this section is to generalize the notion of coefficient multipliers and
Hadamard tensor product through continuous bilinear maps.

DEFINITION 4.1. (B—convolution product) Let B : E; x E — FE3 be a

bounded bilinear map.
We define the B—convolution product as the continuous bilinear map S(E1) xS(E2) —

S(E3) given by (A, f) = A*p f where
Nep 1) = BOAG), f(3), G20,
Thus, given f € S(F3) and A € S(Fy),

Axp f(z) = ZB(M’ F(5))7

REMARK 4.2. Notice that, if A € A(D, E) and f € A(D, E1), one can write
27
—i i0y, 40
Mep f(2) = | BA(ze™), f(e"))5
0 i
We have already used the following bilinear maps:
e For By: ExK — E, (z,a) — ax we get

Xxpy f=Nf(G));
e For Bp : E* x E — K, (2*,2) — (2*,z) we get
Ao f = (N, FG)));s-
e For By : L(E1, Esy) x By — Ea, (T, x) — T(x) we get
Mg f= NG,
Of course many maps could be used, but we will only mention two more.
e For By : By x By — E1®,Es, (1,y) =  ®y we get

fong= () ®305));
e For a Banach algebra (A,.) and P: A x A — A, (a,b) — ab we get
Axp f=Nif(5));
REMARK 4.3. Notice that Lemma 3.10 can be generalized now in terms of bilinear

maps as follows:
Let Xg, € H(D, E;) be an H(E;)—admissible Banach space, i = 1,2,3. If f €
H(D, E1), g € H(D, Ey) and B : E; X Es — Ej3 a bilinear function. Then:

Mx,, (rs, f #5 ) < | BIIMi(r, f)Mx,, (5. 9)-
Associated to a bilinear convolution we have the space of multipliers.
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DEFINITION 4.4. (B-multipliers) Let B : E x E; — FE3 be a bounded bilinear
map. Let Xp, and Xpg, be Banach spaces. We define the multipliers space between
Xpg, and Xg, through the bilinear map B as

(XEl)XEQ)B = {)\ c S(E) : )\*Bf € XE2 Vf € XEl}
with the norm

IMl(xp, Xp)s = sup A fllxg, -
P g <1 "

In the particular case E = L(E1, Es) and B = B we are in the case of the
operator-valued multipliers. For this case, we will keep on writing simply (Xg,, Xg,).

It is easy to prove that || - |[(xp, xp,)p i a norm on (Xg,, Xp,)p whenever B

satisfies the condition

(4.1) B(e,x) =0Vx € B} = e =0.

B

In other words, the mapping £ — L(E1, E2) given by e — T, where T.(z) = B(e, )
is injective. The previous mappings satisfy this condition.

THEOREM 4.5. Let B : E X By — FEs be a bounded bilinear map satisfying condi-
tion (4.1) and for which there exists C > 0 such that

(4.2) lelle < C sup || B(e, x)|g, eckE.

=]l 5, =1

If Xg, and Xg, are S(Ey), S(E2)—admissible Banach spaces respectively, then
(XE,, XE,)B is S(E)—admissible.

PROOF. We have proved the case where £ = L(E, E2) and B = B, in Theorem
2.10. For the general case assumption (4.2) allows to use Remark 2.2 where the iso-
morphism is given by e € E — T, € L(FE1, Ey) where T.(z) = B(e,x) for each e € E
and x € Fp. Just note that

(XEleEz)B = {(5‘(]»] €S(E): (Tj\(]‘))j € (XE1ﬂXE2)}'
Il

Notice that condition (4.2) together with condition (4.1) say that we have F —
L(E, E2) with equivalence of norms.
With this theorem we can recover some previous results on S(E)—admissibility. For
example, recall the definition of X g, X g and X g K given in Definition 2.11 and Def-
inition 2.5. For Xg an E-valued sequence Banach space, we can write the spaces as
follows:

Xg = (ZoonE)BO = S(XE)v

Xi = (Xp, ')p
and
Xpt = (Xg, ).
It is easy to check condition (4.2) on By and Bp. Then Theorem 4.5 gives us the
S(E)— and S(E*)—admissibility automatically.
We've seen so far how S(E)—admissibility remains stable under the construction of

the multipliers space through bilinear maps under certain conditions. This also works
for the notion of H(E)—admissibility.
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THEOREM 4.6. Let Xp,, Xp, be H(E1) and H(E2)—admissible respectively. Con-
sitder B : E x By — E5 such that there exists C > 0 s.t.

lelle <C  sup  |[Ble,z)|m,, ec E.

lallcp, =1

Then (Xg,, Xg,)B is H(E)—admissible.

PROOF. S(-)—admissibility guarantees we are dealing with Banach spaces. Need
only check the continuous inclusion conditions.
Let A be in (Xg,,Xg,)p and r € (0,1).
Moo(r?,0) = sup [A(2)|lp <C sup sup [|B(A(2),2)l|z,
|2|=r? ]l &y <1 |2|=r2
=C sup sup [|B(Ar(2), 7)||

”xHEl <1 |Z|:T

<C sup sup |[A*p (Cgl)r[if](z)HEz

”xHEl <1 |Z|:7‘

= sup My(r,\*p (01)5’(1[1‘])7‘)
llzll g, <1

< Axp (1) sup [Axp (CF [2])rllxp,
llz|l g, <1

S AXE2 (T)H)\”(XE17XE2)B Sup ||(C§1[x])r||XE1
[zl 2y <1

< Ax, (I (xp, X505 D il
where we have used the previous theorem and the fact that (Cx ).[z] = >, m"ze, €
Xg,.
On the other hand, let A € (DD, E) and take 7 € (0,1).

Relloen xeps = sup (e Fellxe,
I llxp, <1

< s swp [(3en Hlully,,

1 llxg, <1 lwl=r

- sup MXE2 (7’, (:\ *B f)r)

1 llxg, <1

< BXE2 (T) sup Moo(ra 5\ *B f)
1fllxp, <1

< By, (M| Aloc sup Moo (r, f)

1fllxp, <1
< Bxy, (1) Axp, (7] Aloo-

Therefore, if A\ € H(RD, E), we can write A\ = (\y/2),2. Consider A = A1yp2 for
R >1/r? > 1. Then

1M, Xy 0 < Bt (1) Ax, ()M js2lloo < 0.
O

THEOREM 4.7. Let B : E x Ey — Es be a bounded bilinear map satisfying (4.2).
Define B, : E x E5 — ET given by

(Bi(e,y),x) = (', Ble,z)), e€E,x€ by €E;.
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If Xp, C S(FE1) and Xg, C S(E2) are S(E1) and S(E2)—admissible spaces respectively
and Xg, = XJ{J(QK, then

(XE1 ) XEz)B = (ng ) XLIC(l )B.

PROOF. From the definition we can write for A € S(F), f € S(E1), g € S(F3) and
J =0,

(a(i), A F(7)) = (N*p. 9(3), F(5)-
Assume now that A € (Xp,, Xp,)p and g € Xf . We have

1N, gllxg = sup{Z|<A/*;§g<j>,f<j>>| A, <1

= SUP{Z| D Xxm FOD 1 fllxg, <1

< \\g!\XgQSup{H(A *B [ xg, : 1fllxp, <1}
< It eyl
Using the assumption Xp, = X 52 K one can argue as above for A € (X 52 , X f;{l )B, and

f € XE, to obtain

H)\*BfHXEQ = sup{2| ] /\*Bf )>’:|’9”X§2§1}
_ Sup{z| Xx. (). FOD| < llgllxe <1}
J
< ||f||XElsup{|| Axp, g)”Xgl : ||g||X§2 < 1}
<

Ml s g, 1 s,
O

Let us see under which conditions this new space we have generated becomes a
solid space, a homogeneous space or a space with (F'P).
The following result has already been used in a weaker version (B = By) in Proposition
2.14. We give now a general version.

PRrROPOSITION 4.8. If either Xp, C S(E1) or Xg, C S(E2) is an S(E1)— or
S(E2)—admissible solid space, then so it is (Xg,, XE,)B

ProOF. Let o« = (&(j)); € €*° and XA € (Xg,, Xg,)p. Then (a *p, A) *p f =
axpg, (Axp f) = Axp (ax*p, f) for f € Xpg,. So a*xp, A € (Xg,, Xg,)p whenever Xp,
or Xg, is solid. 0

PROPOSITION 4.9. Let Xpg, and Xg, be H(E1)— and H(E2)—admissible Banach
spaces, respectively. Let B be a bilinear form defined as in Theorem 4.0. If Xg, is
homogeneous then (Xg,, Xg,)p is homogeneous.

PrOOF. The vector-valued H-admissibility has already been proved in Theorem
4.6. Given X\ € (Xpg,,Xp,)p and f € Xg, one has that

IAll(xp, Xp)s =  sup [[AxB fllxp, and Ay *p f = (A*B o
Ifllx g, =1
what trivially gives the result using the homogeneity of Xg,. U

PROPOSITION 4.10. Let X, and Xpg, be H(E1) and H(E2)—admissible Banach
spaces respectively and B defined as in Theorem 4.6. If Xg, is homogeneous with
(FP), then (XE17XE2)B has the (FP)
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PROOF. Let (An)n € (Xp;, XB,)p such that [[An|(xp xp,)s <1 and Ay — Ain
H(D, E). Hence for a given f € Xp, with [|f||x, =1 we have A\, xp [ € Xp, with
H)\n*BfHXEQ <land \yxpf — Axpfin H(D, E). Since Xg, has (FP), \xpf € Xp,
and ||A*p f|x,, < A. Therefore A € (Xp,, Xg,)p with H/\H(XEI,XEQ)B < A. O

Let us see some other examples of multiplier spaces.

DEFINITION 4.11. Let Xg be H(E)—admissible. Define

Xi={f=(z}); € S(E"): Z (2%, z;)e; € A(D) for (z;); € Xg}

X ={f=(x}); € S(E"): Z (zj,z5)e; € H*(D) for (z;); € Xp}

That is to say X% = (Xg, A(D))p and X}, = (Xg, H®(D))p. In general, we will
use the multipliers notation, as it makes easier to keep in mind where we are working.
Note that from Proposition 2.16, if X is a solid space, (X[E])* = X*[E*] and (X[E])* =
X*[E*].

COROLLARY 4.12. The spaces (Xg, A(D))p and (Xg, H*(D))p are
H(E*)—admissible.

It is clear that (Xg, A(D))p C (Xg, H*(D))p. Notice that (Xg, A(D))p C X},
by means of f +— X\ xp f(1). Therefore we have the following chain of continuous
inclusions:

XK cxicx;.
There are other inclusions that is worth studying.
PROPOSITION 4.13. Let Xp C H(D, E) be H(E)—admissible. Then
(Xp, AD))p C (Xp, H*(D))p C (X, A(D)p € (Xp, HX(D))p
with continuous inclusions. In particular (X%, H*(D))p = (X%, A(D))p.

PROOF. The first inclusion is immediate. For the second one note that (H*(D))° =
A(D) and that (X,Y) C (X% Y?). For the third one, let g € (X%, A(D))p and take
f € Xp. Then take 0 < s < 1. By the definition of Xg, [z € Xg. Now apply that
hreX%foranyheXEtoh:(f\/g) and r = /s to get fs € X%

1D (4(n), f(n))s"enllamy < Cllfsllxe < Clifllx,-

Therefore g € (Xg, H*(D))p. O

Let us now give some information on the dual of homogeneous Banach spaces.

PROPOSITION 4.14. Let Xp C S(E) be a homogeneous Banach space. Then
(Xp, A(D))p C (X%)* C (X%, A(D))p with continuity.

PRrOOF. For the first inclusion let A € (Xg, A(D))p. Now define
1 (9) =3, (AM(n), g(n)), for g € X%. Then v, € (X2)* and [|x] < |z

Universitat de Valencia




74 1. Vector-valued multipliers associated to bilinear maps

For the second one, given vy € (X9)*define A, € (X2)* = (X9, A(D))p as follows:
A=, A(n)e, where (/\(n) z) = y(zey) for any x € E. Then given f € X%

HZ n))enllam) = sup Zv en)w"

lw|<

= sup |'Y(fw)‘ = sup |y(F(w))]

lw|<1 lw|<1
< IIEN A, x9)
where F(w) = f,, and we have used Proposition 3.15. O
COROLLARY 4.15. If Xp C S(F) is an homogeneous Banach space then
(Xp, H°(D))p = (X, H*(D))p = (Xp, A(D))p = (Xp)*
with equivalent norms.

PROOF. Since Xg C X E, we have X* C X%. Then it follows from Proposition
4.13 (taking Xp as Xp) and Proposition 3.11 (XE = Xpg) that (Xg, H*(D))p =
(Xg, H*(D))p. Clearly, for Xr homogeneous,

(X, H*(D))p = (Xg, AD))p = (Xp)".
Now Xg homogeneous implies X% homogeneous. Applying Proposition 4.13 we get
(X3, A(D))p = (Xp)*. O

PROPOSITION 4.16. Let Xp C S(E) be homogeneous and recall the notation X5 =

(Xp, H®(D))p. Then X% C X3 and there exists K > 0 such that

0
Ifllxg < Ifllxe < Klflxy, fe X
In particular X%, is isomorphically contained in (X3)°.
PROOF. The inclusion and first inequality are straightforward. Let now f € X%,
From the previous results and Hahn-Banach theorem

1 fllxs < sup{|v(£)] 17 € (XB)* vl = 1}
< Ksup{lg*p f(1)] : g € (XB)" llglls < 1}
< Ksup{|lg *p flloo : 9 € (X, lglls < 1}

= Ksup{|lg #p flloo - g € (XE)" llgllx < 1}
< K[ flle

Again, recall the notation X, = (Xg, H*(D))p

PROPOSITION 4.17. Let Xp C S(E) be homogeneous. Then Xg has (FP) if and
X**
only if Xgp = X0

ProOOF. For the direct implication, recall X7 = (X7, H*(D))p. Since H*(D) is

—X
homogeneous with (FP), Proposition 4.10 and the fact X% is a closed subspace of
X3 give us the desired result. For the reverse direction it is enough to check f € Xg

(see Corollary 3.24). Consider f € X}, X0~ . Then f, € X%. Hence using Proposition
4.16

MXE(Ta f) < KMX};*(Ta f) < K/HfHXE*
This gives f € Xg. O
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2. B—Hadamard product
In Chapter 2, we mentioned that the space
Xp, xp X, ={f*B9: f € Xp, g€ Xp,}

was not necessarily a Banach space for B = By. But if we consider the space of infinite
sums of these elements endowed with a proper norm, it becomes a Banach space.

DEFINITION 4.18. (Hadamard projective tensor product) Let B : By x By —
Es5 be a bounded bilinear map and let Xg,, Xg, be S(E1)—, S(E2)—admissible, re-
spectively. We define the Hadamard projective tensor product Xp, ®p Xpg, as the
space of elements h € S(E3) that can be represented as

h:an*Bgn

where the convergence of Y f, *p gn is considered in S(E3), being f, € Xg,,gn €
Xpg, and

D M fallxs, lgnllxe, < oo
n

The particular case B3 = F1®,Fy and By : By x Ey — E3 will be simply denoted
XE1 ® XE2

PROPOSITION 4.19. Let E1, E» and E3 be Banach spaces and let B : E1 X Fo9 — FEs
be a bounded bilinear map. Let h € Xg, ®p X, and define

k)5 = int Y [1fallxp, ll9n]lxs,
n

where the infimum is taken over all possible representations of h =7 fn *B gn.
Then (Xg, ®p Xg,, || - ||B) is a Banach space.

PRrROOF. Let ||h][p = 0 and € > 0. Thus there exists a representation h(z) =
> on In*Bgn(2) such that 3, [ fnllxp, [|9nllxs, <€ Since the series converges in S(E3)

we conclude that 2(j) = 3 B(fu(j),in(4)). Using the admissibility of X, and X,
) s < D IBUa(5): Guli)les

<IBIY N Dz l12 () 2

X X ¢ ~
< Bl e s 11422 Y fallx, gnll xs, <€

n

Consequently h(j) = 0 for all j > 0.
Of course ||ah||p = |a|||h||p for any o € K and h € Xg, ®p XE,.

The triangle inequality follows using that if hy ~ (f! *p gL)n and ho ~ (f2*5 g2)n
such that .

,=1,2.
2’7’ )

Do I alixe, lgnllxs, < lhills +

n

Then hy + hy = Zn fé *B 9711 + Zm f?grz *B 972n and

11+ halls <Y 1 fallxs, lonllxe, + D IFmlxe, lgmllxe, < lhdls + he]ls + e
n m

Finally, let us see that Xg, ®p Xp, is complete. Let ) h, be an absolute con-
vergent series in Xg, ®p Xg, with h, € Xg, ®p Xg,. For each n € N select a
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decomposition hy, = >, fi* *p g} such that

D I xe, 98 N, < 2|5
k

Let us now show that > h, =) > . fi' *p gy in S(E3). Indeed, for each j > 0
we have

ZZHB RONAON A

IN

X X
B 12 sl 222 Y S 1 I xs, 9k 1 x s,
n k

2| Bl |21 [l 122 Y |5
n

N

and since F3 is complete we get the result.
Moreover h =}, hn € Xg, ®p Xp, because 3, > | fil xp, 195 | x5, < oo. Now

use that
| E hnllp < Z Zka 1xg, 1198 x5, <2 Z [hallB
n=N k
to conclude that the series ) hy converges to h in Xp, ®p X Ey- O

REMARK 4.20. If h =), fu*B gn € XE, ®B X, then > || fn *B gnllB < 00 and
h =73, fn*B gn converges in Xp, ®p Xp,.
Indeed, simply use that
1f*Bglls < Ifllxg, 19X,

for f € Xp, andg € Xg, and that for M > N

| Z fnxB gnllp < Z 1 fn*B gnllB < Z [ fnllx g, 19011 X 5, -

= = n=N

THEOREM 4.21. Let E1, Es and E be Banach spaces and let B : E1 X Fo — E
be a bounded bilinear map satisfying that there exists C' > 0 such that for each e € E
there exists (xpn,yn) € E1 X Ey such that

(4.3) e= ZB (Zn, Yn), Z [@nll2 [ynll2, < Cllelle-

If Xg, and Xg, are admissible spaces, then Xg, ®p Xg, is S(E)—admissible.
In particular Xg, ® Xg, is S(E1&xEy)—admissible.

PRrROOF. We show first that Xg, ®p Xg, C S(E) with continuity. For e > 0 we
can find a representation h = 3, fn *p gn such that >, || fullxpz, |90l xs, < Al +e€.
Therefore, for each j > 0,

1A e < Z IB(fu(5): 9n(5)) |
< HBHZ £ G 120 1 ()| 2,

X X ; .
< Bl 1= s 122 Y 1 fallxs, Ignllxs, < Cillhlls +e.
n
To show that P(E) C Xg, ®p Xp,, it suffices to see that ee; € Xp, ®p X, for
each j > 0 and e € E. Now use condition (4.3) to write e = > B(zy,yn) € E and
therefore

eej = Z (znej) *B (Ynej)

n
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and
44 D lzneillxe, lvneillxg, < 1155151722zl e lyall e, < Cjlle]e-
n n
Hence ee; € X, ®p Xp, and |leej||p < C’HinXEl Hz’jHXEz llell - O

REMARK 4.22. If E1, E5 and E are Banach spaces and B : E; X Fs — FE is a
surjective bounded bilinear map such that there exists C' > 0 s.t. for every e € E there
exists (z,y) € E1 X Ey verifying

(4.5) e=B(z,y), |zlelylle < Clele
then we can apply Theorem 4.21.

A simple application of (4.5) gives the following cases.

COROLLARY 4.23. (i) If X and Xg are S and S(E)-admissible spaces respectively,
then X ®p, Xg is S(E)—admissible.

(i) Let (D,%, ) be a measure space, 1 < p; < oo for i = 1,2,3 and 1/p3 =
1/p1 4+ 1/pe. Let B : LP*(u) x LP2(u) — LP3(u) be given by (f,g) — fg. If Xpr and
Xip2 are admissible spaces then XLpl(u) ®p Xro (n) 8 admissible.

(iii) Let A be a Banach algebra with identity and P : A x A — A given by (a,b) —
ab. If X4 and Y4 are admissible spaces then X4 ®p Y4 is admissible.

Recall the concept of minimal space, that is, a space such that X% = Xg. The
new space we have built preserves minimality.

PROPOSITION 4.24. Let Fq, Eo and E be Banach spaces and let B : E1 X Fyg —
E be a bounded bilinear map satisfying (4.3). Let Xg,,Xg, be S(E1) and S(E2)-
admissible Banach spaces respectively, such that either Xg, or Xg, are minimal spaces,
then Xg, ®p Xp, is a minimal S(E)-admissible space.

PROOF. We shall prove the case X%l = Xpg,. Let h € Xg, ®p Xg,. From Remark
4.20, there exist f, € Xpg,, gn € Xg, and N € N such that

N
€
Hh__ji:fﬁ’ﬂ3gnHB < 5-

n=0

By density choose polynomials p,, with coefficients in E; such that

€
fu = Pullxe, <
£ = Prllxs, 2(N + Dllgnllxs,

Then SN py #5 gn € P(E) and

N N N
Ih = " puxpgnlz <IIh = faxpgnlz+ 1Y (fo— D) *8 gnlls
n=0 n=0 n=0

N N
€ ¢ ‘
<5+ D = pullxe, llgnllxs, < 5 +Zm —f
n=0

n=0

g

With the same conditions on the bilinear map, the H(F)—admissibility also re-
mains stable under B—Hadamard products.

THEOREM 4.25. Let Xg,, Xp, be H(E1)— and H(E2)—admissible, respectively. Let
B : Ey X Ey — E be a bilinear map verifying (4.3). Then Xg, ®p Xg, is
H(E)—admissible.
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Proor. We have already checked the Banach space condition in Proposition 4.19.
Need only check the continuous inclusion conditions. Take h =Y f, *p gn € Xp, ®p
X, such that [[A]|5 = zn anHXEl ugnuxEQ —e. Forre (0,1)

) <[1B] ZM Moo (7, gn)
< B[l A, () Axp, (r Z 1fnll x5, [1gnll s,

= 1Bl Axp, () Axp, (r )(||h||B+6)

Also let h(z) = 32, h(j)2? € H(RD, E) with h(j) = 3, B(fn(j), §n(4)) for some f, €

Xp,, gn € Xp, verifying 3, | fa()l|E, 192 (7) | 2 < CllA(j)|l5- Then arguing as in
(4.4) and using the S(E1) and S(Esz)-admissibility of X g, , X, respectively, we obtain

Ils =11 223 (nl)ei) #5 (gn()ei) 1o
< ijﬁ<j>ej\3
< iz 1Fn@eslxe, Ian(i)esllxe,
< IR i 3 WDl

< CZ 1175 511522 | A G) | 2
J
< Cllhslloe S lif1¥51 |l | X225~
7
for any S € (1, R). O

The B—Hadamard product can help us determine some spaces of multipliers and
vice-versa. Let us see how this two concepts are related.

THEOREM 4.26. Let Xp,,Xp,, Xp, be S(E1)—, S(E2)— and S(E3)—admissible
Banach spaces, respectively. Then

(XE1 ®XE2’XE3) = (XEla (XEgaXEg))

PROOF. Due to the identification between L(FE1&,Es, E3) and L(Ey, L(Es, E3))
where the correspondence is given by ¢(x ® y) = Ty(x)(y) we obtain, in our case, that
each \ € S(L(E1®,Es, F3)) can be identified with A € S(L(E1, L(E», E3)) satisfying

~

ANG) ©a(0) = XD () (@G))-
Let A € (Xg, ® Xp,, Xg,). For each f € Xpg, and g € Xp, we have
(4.6) Ast (F o g) = (A2 f) 5 g

where *; is used for multipliers in S(L(E1®,F2), E3), *o for multipliers in
S(L(Ey, L(Ey, E3))) and x3 for multipliers in S(L(Es, E3)).

Let us now show that A € (Xg,, (Xg,, X5,)).
We use (4.6) to get

1 %2 £) %5 gllxe, < 1Ml Gen, @5, ol %2 DI = N, @, 300 |11y 191,
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Therefore |All(xp, (Xg,X5,)) < A (x5, ® X5y, X, )
For the converse, take A € (Xg,,(Xg,, Xg,)) and h € Xg, ® Xpg,. Assume that
hi= 20 fn ¥ gn With 32 [| full g, [|gnllx s, < o0o. Hence

A1 Bllxg, <D IA %1 (fa*r gn)llxs,
= Z H(S‘ *2 fn)H(XEQ,XEB)HQNHXEz

< S Al Ml X, 9alx,

n

< Mo, o Xm) S Ifallx, l9allxn,

n
which gives [Allx, @x,.x5,) < IMl(xe, (X5, X5, O

PROPOSITION 4.27. Let B : Fy X Fs — E be a bounded bilinear map satisfying
(4.3). Denote B* : E* x E1 — E3 the bounded bilinear map defined by

<B*(€*,Jf),y>: <€*,B($,y)>, xEEl,yEEg,e* SO
If Xg, and Xg, are S(E1)— and S(E3)—admissible respectively, then
(XE, ®5 Xg,)" = (Xpg,, Xp,) B+ and
(XEI ®B XE2)* = (XEMXEQ)B*'
In particular (Xg, ® Xp,)* = (XEl,XE2) and (Xg, ® Xp,)¥ = (XE17X{3(2)~
PROOF. Let \ € (XEI,X,IE(Q)B* and define, for f € Xg, and g € Xg,,
MJ 5 .9)”(7) = (A*p £)7(7),9(1)), 5 = 0.
Let us see that \ € (Xp, ®p Xg,)E.

ST g = DK xs- £)7(),90))]
J J

IN

A5 fllxs l9llxe,

IN

1M gy x5 ) [ s, 19,

By linearity we can extend the result to finite linear combinations of * p—products and,
by continuity, to Xg, ®p Xg,, that is

S‘(h) = Z S‘(fn *B gn)

whenever h = > fn *B gn and > ||fn *B gnllB < o0. Therefore we conclude
(Xpy, X5,) B C (Xp, @B XB,)".
For the other inclusion, consider v € (Xg, ®p Xp,)* and define 5(f)"(j) € E3 by
<5/(f)/\(.])7y> = 7(«}0 *B yej)/\(j)a f € XE'lay € ky, 720
This gives
<;5/(f)/\(])7g(.7>) = /Y(f *B g)/\(j)vf € XE17g € XE27 ] > 0.
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Let us see that 7 € (XE17X§'2)B*:
Blxg = s Sh(/*59)°G)]
2 lgllx g, =17

< llxp epxp)x  sup [If *BgllB
lolxs, =1

S H’YH(XEléBBXE2)K”f”XEl‘

The argument to study the dual is similar: Let A € (Xg,, Xf, )p+ and define
oA(f *B g) = (A *p+ f,g). Note that X7, is also S(E£3)—admissible and

[o7(f *B 9l < [ Ml(xp, x5 1 FlIxp, 9] xE, -

By linearity we can extend the result to finite linear combinations of * z—products and
then extend by continuity to Xg, ®p Xg,, that is

da(h) =D éx(fn *B gn)

whenever h = > fn *B g and > ||fn *B gnllB < o0. Therefore we conclude
(Xe, Xp,) B € (XE, ®B Xp,)".
For the other inclusion, consider T' € (Xg, ®p Xg,)* and define

Ar(f)(g) =T(f *B g).
Then
Ar(Hllxz, = sup Ar(H)@l < sup (TI[f *5glls < [T fllxp, -

lgllxcp, =1 lgll e, =1
0

Let us see what happens with solid spaces, homogeneity and (FP) in our new
spaces.

We first give a characterization of S(E)—solid spaces in terms of Hadamard tensor
products.

REMARK 4.28. It is straightforward to see that, under the assumptions of Theorem
4.21, if either Xp, or Xg, are solid spaces then Xp, ®p X, is a S(E)—solid space.

Consider now the set X xp, Yg = {f*p,9: f € X and g € Yg}.

PROPOSITION 4.29. Let Xp C S(E). Then there is a smallest solid superset of X,
Xg C S(Xg). Moreover S(Xg) = (>°xp,Xp = {g € S(E) : 3f € X such that ||f(j)||z >
19}

PRroOF. Clearly S(Xg) is the intersection of all solid sets containing X g and since
(> xp, Xp is solid, we have S(Xpg) C ¢ xpg, Xg. On the other hand, by definition
Xg C S(XEg), therefore

goo *By XE Q goo *By S(XE) = S(XE),

as S(Xg) is solid.

For the second equality, name A = {g € S(E) : 3f € Xg such that ||f(j)|z >
lG(45)||£}- This set is, by definition, a solid superset of Xg. Now let B be any other solid
superset of X and let g € A. Then there exists f € Xg such that |§())|z < If()le
for all j. As f € Xg C B and B is solid, we get g € B. O

Denote by SB(Xg) = {*°®p, Xg. Of course, for S(Xg) the smallest solid superset
of X, we have S(Xg) C SB(Xg), but also we have the following result.
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PROPOSITION 4.30. Let X g be admissible. Then {*®p, X is the smallest S(E)—solid
space which contains Xg.
In particular Xg is S(E)—solid if and only if Xg = ®p, Xg

PRrOOF. Of course X C I*®®p, X and {*° ®p, Xg is solid (due to Remark 4.28).
Let Yg be a solid space with Xp C Ygp. We shall see that (> ®p, Xp C YEg.
Let h € £>* ®p, Xg be given by h = ) fn *B, gn Where f, € €, g, € Xg and

Zn ”anongnHXE < co. Note that fn *Bo In € YE and ||fn *By gnHYE S ||anongnHYE
for each n because Yg is solid. Hence

D Mo gallve <D I fallssllgnllve < C Y I falloollgnllxs < oo
n n n

and then h € Yg. O

PROPOSITION 4.31. Let Xp, and Xg, be H(E1)— and H(E2)—admissible Banach
spaces, respectively. Let B be a bilinear form defined as in Theorem 4.25. If Xg, and
Xpg, are homogeneous then Xg, ®p Xg, s homogeneous.

PRrROOF. The vector-valued H-admissibility has already been proved in Theorem
4.25. Given h = 3, fn * gn € Xp, ®p Xp, with >, | fallxp, [|gnlxp, < 0o, using the
homogeneity of X, and Xg,, as well as the properties of Mx, described in Chapter
3, one has

M, 05X, (1% 0) S | BI Y My, (v, fo)Mxp, (r.gn) < |BIK K2 Y || fall X, I 9nll X, -
n

n

Therefore Mx, &5xp, (r,h) < K||h|[p (K = ||B|[K1K2), for all 0 <7 < 1.
For the other condition, let € > 0. Then we can find (f,)n C Xg,, (gn)n C XE&,
such that h = )" f, *B gn and

D M fallxs, lgnllxe, < lIAlls +e
n

Taking into account that
he = Z (fn)&j *B gn, €] = 1,
n

and the homogeneity of X, , one concludes

lhells < D I (Fadaillxg, 19nllxs, =Y 1 fallxp, lgnllxs, < IAlls +e
n n

for [¢| = 1 and the result follows.
g

Lets see under which conditions the space we’ve generated has the (F'P). Notice
that is not enough for Xz, ®p Xg, to have this property if only one of the spaces has
it (see [16], p.437).

THEOREM 4.32. Let Xg, and Yg, be homogeneous with (F'P) and B defined as in
Theorem 4.21. Then Xg, ®p Xg, has also (FP).

PRrROOF. Let (hy)n € Xp, ®p Xpg, with ||h,]| < 1 Vn € N and such that h, — h
in H(D, E3). Take a decomposition hy, = 3, fn,j *B gn; Where || fn il x5 = l|9n,jllxp,
and

1
hall < D fagllxe, I9nll xs, < Ihall + S =2
j
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Then (|| fujllxg,)is (I9nillxs,); € € and if we consider (ay;); € €2, [(j)jll2 = 1, we

get
Xpyo 1D ign,
J

For ¢n = > ajfnj, © = 22 Qjgn,j, Suby ||énll < 2 and sup, [|¢n| < 2. Taking into
account Xp C ((Xg, A(D))p)*, the Banach-Alaoglu theorem gives us a subsequence
(ng)r € N such that ¢,, — ¢, ¢n, — ¢ in the weak-star topology. Consequently
ny — ¢ € H(D,E), on, — ¢ € H(D, E»). Using (FP), ¢ € Xg, and ¢ € Xp,
with [|¢]xs, <2, flellxs, <2.

Apply the previous idea to the canonical basis (e;); € ¢2, then for (aj); = e;
¢n = fn,i and @, = gn; and, as before, it exists (ng); € N such that f,, ; — f; and
Onyi — 9i in H(D, Ey) and H(D, Ey) respectively. Taking limits h = ), f; *p g; in
S(Es).

To see 37, [1fll s, lgillx, < o0 it is enough to check (| fillxy, )ir (lgillxs, )i € £
Then we have >, || fillx, [|9ill x5, <4, and our space has the (F'P). O

XEQ} <2

max{]| Y a;fu;
i

THEOREM 4.33. Given'Y a S—admissible space with the (FP) and Ey a reflexive
Banach space, we have (Xg, ® Y[Eq|*)* = (Xg,,Y[E3)).

PrOOF. Taking into account that if Y has the (FP), then Y = Y** (see [?, ?,
Theorem 5.1,BP] Theorem 4.26 and Corollary 2.17 we get the result. O

3. Computing the ®p—product.

Let us see some useful examples of the ®p—product and how they can help to
compute some multiplier spaces. We start computing the Hadamard projective tensor
product for sequence spaces.

PROPOSITION 4.34. Let 1 < p,q < oo with ]% + % =1. Then
ép(El) ® fq(E2) = él(El(}A@ﬂ—Eg).
PROOF. Let f € (P(E;) and g € £9(E5). Since [+ g(j) = f(j) ® §(j) and

17 x 9 2182 < 1F )2 190)

we have, using Holder’s inequality,

(4.7) 1f *x gl (mre, By < 1 ler ()l 9llea(m)-

Let h € (P(E1) ® {4(E>). Let € > 0 and take h = ) fn *x gn with f, € #(E;) and
gn € L1(E2) and 37 (| fuller () l9nlleay) < IRlB, + €

From (4.7) we have that h =) f, *x gn converges in N (E1&,F>) and
1Pl (zr 6. ,) < IhllB, + e This implies that 7(Ey) ® £4(Ey) C (1(E1®,Ez) with
inclusion of norm 1.

Take now h € (}(E1®,F>). In particular for each j > 0 and € > 0 there exists
= Eq and yﬁL € B such that ﬁ(]) =>.  ® yﬁl and

> ledllewile. < 1ADl s,z + 5
n

Define F;, and G,, by the formulae

/p gz,

N . . . 1/q y%
Ga5) = (Il Il )

OB (EAPIARY T
n || Fo
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Note that
1Fallenmy = O N2dllm 9 le) P, 1Gnllescmy = O lad iz v l16,)
J J

and
S N Ealler @) Gulleaesy = Y Nadlle 193z < hllpg g, m) + €
n n,jJ

In such a way we have h =37, Fiy#x Gy, € (P(E1) @09(Es) with ||h||B, < Ml (g6, 5)-

To analyze the other values of p we shall make use of 2.1.
PROPOSITION 4.35. Let 1 < p,q < oo with 0 < % =+ % = % < 1. Then
£p<E1) ® €q(E2) = ET(E1®WE2).

PrOOF. Note that same argument as in Proposition 4.34 gives (P(FE;) ® ¢4(E3) C
("(Ey &y Ey) with inclusion of norm 1.
Indeed, as above, if f € /P(E;) and g € ¢9(E>) then

1f *x 9 e, < 1FDIENIG) | B,
Hence

(4.8) If *x QHer(El@ﬂEg) < ||f||ZP(E1)Hg”€‘1(E2)~
For a general h = ) fn*x gn € (P(E1) ®1(Ey) where fy, gn are chosen such that f,, €
(E)) and g, € £1(E5) and 3, [l fullocylgnleagiy < 0]z, + € we have from (4.5)
that >, || fn *x gnH”(El@)ﬂEQ) < o0o. Then h =" fn *x gn converges in (" (B1®,Fs)
and ||hllpr g6, £, < 10l B, + €.

To see that they coincide it suffices to show that ((P(E1)®¢%(Es))* = ({"(E1®,F2))*.

It is well known that for % =1- %,

(7 (Er&rEa))* = 07 (L(E, E3)).
On the other hand, using Proposition 4.27 and (2.1) we have
(P(Er) @ ¢1(Ep))" = (((Eq), 67 (E3)) = €7 (L(EX, E3))

here £ =1— 1, 0
Weeq/ q

One of the purposes of our work was to get to know the B—Hadamard tensor
product between analytic function spaces. We now compute the Hadamard tensor
product in some particular cases of spaces of analytic functions. We shall analyze
the case H! and H!(D, E) at least for particular Banach spaces E following the ideas
developed in [16].

We need some notions and lemmas before the statement of the result. Recall that
for an E-valued analytic function, F(2) = Y 7% z;2/, we define DF(z) = >72(j +
L)axjz?.

LEMMA 4.36. Let E be a complex Banach space, 1 < p < 00.
(i) There exist Ay, As > 0 such that

A" fll e,y < Mp(r, ) < Aar™ (| fll ey, 0<7r <1
for f € P(E) given by f(z) =" x;2/,2; € E,n,m € N.

—n
2n+1 J

(ii) If P(z) = o ou-1 P(K)2*, P(k) € C, then there exist constants By and Ba
such that

(4.9) B12" | Py fllarm,p) < P *By Dfl|pem,e) < B22"||P *p, fllarm,E)
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for any f € HP(D, E).
PROOF. It is well known (see Lemma 3.1 [34]) that

" Plloe < Moo (r,0) < r™||¢]loe, 0 <7 < 1.

for each scalar-valued polynomial ¢(z) = 377", a2, where ||¢]lc = SUPp|;|=1 |¢(2)]

and Mo (1, ¢) = supy,|— [¢(rz)].
This allows us to conclude, composing with elements in the unit ball of the dual
space,
| Flloo € Moo(r, F) <7"||Fllo, 0<7<1.
for any F(z) = Z;":n y;27 where y; € Y where Y is a complex Banach space.
Now select Y = HP(D, E) and F(z) = f, that is to say

F(z)(w) = Z zjwl 2.

Using that

[ Fl|oo = ‘S‘Tlpl HszHP(]D),E) = HfHHP(]D),E)

and Moo (r, F') = M,(r, f) we obtain the result.

To see (ii) we first use [16, Lemma 7.2] that guarantees the existence of constants
Bi, By such that

Bi2"|P %5, dllow < |IP 5, Délloc < Ba2"| P #5, dlloc

for any ¢ € H*>(D). Now apply the same argument as above to extend it to H?(D, E).
O

THEOREM 4.37. Let D~ 1AYD, E) denote the space of E-valued analytic functions
F(z) =>_;_gxj?’ such that DF(z) € AY(D, E) with the norm given by

I1Flp-0m) = IFO)e+ [ IDFE)5dAG)
Let E = LP(u) for any measure p and 1 < p < 2.
H'(D) ®p, H'(D, LP(1)) = D~ AY(D, LP (1))

PROOF. Let us first show that D~ AY(D, E) C H*(D)®p, H'(D, E) for any Banach
space E. We argue similarly to [16, Thm 7.1].
Let {W,}5° be a sequence of polynomials such that

(4.10)  supp(Wy) C [2"71,2"™] (n>1), supp(Wo) C [0,1], sup Wyl < oo
and

(4.11) 9= Wntp, g, g€HD,E).
n=0
Let f € D~'AY(D, E). Note that
|(Wa *By el e < IWallill el ey < Clfllam,E)

Hence, [|Wy, *p, fllz1m.e) < Clfl a1 m,E)-
Denoting Q,, = Wy,—1 + W,, + W, 11 we can write

F= Quxp, Wa s, f.

n=0
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Note now that Lemma 4.36 allows us to conclude

o0 (o.)
Z 1Qull 2 [Wh B, fllmey < Kz Wa %8y flla1(m,8)
n=0 n=0
© 12 (n+1)
< KZ 2" W %8y [l o,y dr
n=0v1-27"
0 12 (ntl)
< KZ/ 2" |Wa %8, Df | g1 o,y dr
n=07/1-27"

00 1—2—(n+1)

My (r, Wy, xp, Df)dr

IN

=
L[]
—

Ml(r, Df)d’l”

IA
=
1 []
—

1

= K/ M (r,Df)dr
0

< K| fllp-1a1,5)-

To show the other inclusion between these spaces we shall use that £ = LP(u)
for 1 < p < 2 satisfies the following vector-valued extension of a Hardy-Littlewood
theorem,

1/2

1
(4.12) ( / <1—r>M%<Df,r>dr) < Alfl o

for some constant A > 0(see [10], Definition 3.5 and Proposition 4.4).
It suffices to see that ¢ xp, g € D~1AY(D, LP(u)) for each ¢ € H'(D) and g €
HY(D, LP(11)). Now taking into account that D?(¢ *p, g) = D¢ *p, Dg and

[e.9]

rD(¢ x5, g)(re™) = Y (i +1)d(7)g(5)r! e’ = /0 " D(p g, g)(s€")ds

j=0

we have,

IN

/o1 (/0 My(s, D*( %5, g))ds> rdr

1
= /0 (1—s)Mi(s, D*(¢ %, g))ds

1
/ M (r, D(¢ B, g))rdr
0

< 2/1(1 — rQ)Ml(r, D¢)M,(r, Dg)rdr.
0

Now from Cauchy-Schwarz and (4.12) we obtain

1/2

/01(1 — )My (r, D¢) My (r, Dg)rdr < </01(1 —rHM?3(r, Do, )rdr)

</01(1 — M3 (r, Dg)rdr) v

Kol allgll g1, ne)-

IN
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It has been already mentioned that (H')* = BMOA. In the vector-valued case,
using LP is an UMD space for 1 < p < oo, we have

(H'(T, L?(1)))" = BMOA(T, L (1)),1 < p < o0

(see [7]). Tt is also well known that (D"1A')* = Bloch (see [1]) and for the vector-
valued case (D~1AY(D, E))* = Bloch(D, E*) for any complex Banach space E (see [8],
Corollary 2.1) under the pairing

(F.G) = [ (DF(2),G()dAG).
D
We can give a version of this duality in terms of H>*(D).
PROPOSITION 4.38. Let 1 < p < 2.
(H'(T, LP (1)), H*(D))p = BMOA(T, L¥ (1))

and
(D7'AYD, E), H*(D))p = Bloch(D, E*).

PROOF. Given f € BMOA(T, L¥ (1)), take g € H'(T, L?(11)). Then

do

Fo0.9() = {f.9:) = [ () ale 5]

for any |z| < 1. Thus, since BMOA(T, L” (1)) is the topological dual of H*(T, L” (1)),

‘S|11Pl |f *p g(2)] < Hf”BMOA(T,LP/(H))”gZHHl(’]I‘,LP(,u)) < HfHBMOA(’JI‘,LP'(u))HgHHl(T,L?’(,LL))'
z|I<

For the reverse inclusion, we will use again a duality argument. Consider
f € (H'(T, L?(11)), H™(D))p and take g € H'(T, LP(i)). Then | f+g(2)] = (f2, g) < o0
for |z <1, and so f. € BMOA(E™) with || f:||ppoacr,z<y < Cllgll g r,p) for any 7 €
(0,1]. By Alaoglu’s Theorem, there exists h € BMOA(T, E*) such that f, converges
in the weak-star topology to h as r — 1.
To see h = f, consider the polynomial xze,(z) = 22", where x is an arbitrary element
of . Then

(fromen) = (f(n),T)r™ — (h(n),z), as r — 1.

As polynomials are dense in H(T, E) we get f(n) = h(n) almost everywhere in T.
Therefore h = f almost everywhere in the disc.
Now consider f € Bloch(D, E*) and g € D™ AL(D, E). Then we can identify the

convolution product with the following pairing:
fxpg(2) =2(Df + f, Dg:) = Z/D ((Df + f)(w), Dg.(@))(1 — |w[*)dA(w).

Notice that [, [|Dg:(w)l|dA(w) < [y [|Dg(w)||dA(w) < |lgllp-141, that Df(z) =
(2f(2)) = f(2) + zf'(2) and that writing f(re’) = f(0) + [ f'(se")ds one deduces

1£ (re’)|

pe(1=r2) < (1= 1?) <||f<o>||E* [ ||f'<se”>||mds)

(1=72) (IOl + supocrcllf/ (k)| p-7)
(L =) Oz + 7 fllztocn-

IN

IN
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Therefore for a fixed |z| < 1

[f# g(2)| < K sup (Df (w) + f(w))(1+[w]*)) /D [1Dg.(w)||dA(w)

|lw|<1
< K sup ((2f(w) + wf'(w))(1 + le2>)/ |1Dg(w)||dA(w)
lw|<1 D
< K'([| flBioch,£+) + 119/l p-1 410, B))-
Finally, considerf € (D71AY(D, E), H*®(D))p = Bloch(D, E*). We know
fxg9(z) = ((Df + [)(w), Dgz(w)) = (D f(w), Dg=(w)) + (f2(w), Dg(w)) < o0

O

Using this together with Proposition 4.27 and Theorem 4.37 we recover the follow-
ing result.

COROLLARY 4.39. (See [10]) Let 1 < p; <2 and 2 < py < co. Then

(H'(T, L"), BMOA(T)) = Bloch(D, LP') and

(HY(T), BMOA(T, LP?)) = Bloch(D, L?).

Using similar techniques as in Theorem 4.37, we can compute the ®g,—product
between A!(D) and the vector-valued Hardy space H'(D, E).

THEOREM 4.40. Let E be a Banach space. Then
AYD) ®p, H'(D, E) = A'(D, B).
PROOF. Let f € AY(D, E). Again take (W,,)nen, a sequence of polynomials verify-

ing conditions (4.10) and (4.11). Again, consider Q,, = Wj,—1 + W,, + W41 and write
f=2>,Qn*B, (Wnx*p, f). Let us see that

Z 1Qnll 4t |Wh %8y fllm1(p,E) < 00

Lemma 2.3 in [30] gives for r € (0, 1)

n+1
7,,2

n—1
IWallgr < My(r,Wo) <" |[Wallg-
Integrating the expressions

|Wall [ Wl
gty q < IWnllar < ey

Using sup,, [|[Wy||g1 < oo we get to [|[Wy||a1 € O(27") and thus [|@Qn]l4r € O(277).
Therefore we need only check the convergence of > 27"|W,, *p, fl| g1 (p,g)- Note now
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that Lemma 4.36 allows us to conclude

Z 1Qull 4t Wh #By fll,e) < KZ 27|Wh =B, fllmo,e)

n=0 n=0

00 p1_g—(n+1)

< kY| P2 W s Flin o,y
n=07/1-27"
00 1—2—(n+1)

< KZ/ My (r, W, %, f)dr
n=0 1-2—n
00 1—2—(n+1)

< x> [ Mi(r, f)dr
n=0v1-27"

= K/OlMl(r,f)dr

< Kl fllao,g)-

For the reverse inclusion consider f =Y, gn *p, hn € A'(D) ®p, H'(D, E). Since
| Bo|| = 1, one gets

Ml(rzv Z gn >kB() hn) S Z Ml(?’, gn)Ml <T7 hn):
n n
integrating both expressions and taking into account that h, € H'(D, E) for every n,

1 1
1 f1l a1 (D, E) :/o Mi(r®,> " gn *By b )dr S/O > My(r, hn) My (r, gn)dr

1
<3l sy /O My (r, g0)dr = 3 [all izt 0.5 | lLas-
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Desmayarse, atreverse, estar furioso,
aspero, tierno, liberal, esquivo,
alentado, mortal, difunto, vivo,

leal, traidor, cobarde y animoso;

no hallar fuera del bien centro y reposo,
mostrarse alegre, triste, humilde, altivo,
enojado, valiente, fugitivo,

satisfecho, ofendido, receloso;

huir el rostro al claro desengano,

beber veneno por licor siiave,

olvidar el provecho, amar el dano;

creer que un cielo en un teorema cabe,
dar la vida y el alma a un desengafio;
es la tesis, quien termind lo sabe.
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