
Some Contributions to the
Algebraic Theory of Automata

Enric Cosme i Llópez

Supervised by

Adolfo Ballester-Bolinches
and Jean-Éric Pin

Facultat de Ciències Matemàtiques
Universitat de València

This dissertation is submitted for the degree of
International Doctor in Mathematics

September 2015

als meus pares
i a la meua germana

a Toni de l’Hostal

i

Agräıments

Els agräıments són complicats quan tens tant a agräır. Més encara si és la part de la tesi
que més expectatives sol endur-se i que amb més entusiasme es llig la gent. Representem la
resta de la tesi com una meta elevada i no ho és tant; no és cap obra suprema, ni principi ni
final de res. És treball fet, voluntats escrites i riuades de sentiments contraposats. Només cal
pensar-la com un viatge honest cap endavant, cap al que anomenem ciència i que no deixa
de ser una activitat humana, que beu de les nostres virtuts i dels nostres vicis. Per això són
importants els agräıments, perquè és l’únic lloc on no es parla del que has fet, sinó de la gent
que has conegut pel camı́ i que t’ha ajudat a arribar fins al final. La tesi, al cap i a la fi,
sempre és allò que acompanya els agräıments. Qui ho negue menteix.

Agräısc, aix́ı, tot el que he aprés del meu tutor, Adolfo Ballester. Agräısc, la confiança que
ha tingut en aquest projecte, la seua amistat, estima i generositat. A ell em vaig acostar per
dir-li que volia fer autòmats i sense pegar-li moltes voltes mamprenguèrem este viatge. Pensat
i fet. Com millor solen eixir les coses. Gràcies pels seus consells i les batalles quotidianes,
per apretar i afluixar quan tocava. Ha sigut tot un privilegi vore el geni en marxa. Que siga
aix́ı per molts anys! Gràcies també a Jean-Éric Pin per les orientacions i indicacions donades,
per l’ajuda inestimable i per haver guiat aquest projecte i aportar tot el seu coneixement a
l’elaboració dels treballs. Merci beaucoup!

A Jan Rutten per haver contribüıt amb la seua gran capacitat, humana i professional, als
treballs que aćı es presenten. Trobar-se gent com ell alleugera el viatge i ho fa tot una miqueta
més fàcil. Gràcies per la proximitat i confiança rebuda, per l’espenta que sap imprimir i per
la cura amb què tracta els alumnes. Heel hartelijk bedankt! Gràcies també a la resta de la
gent del CWI per fer-me sentir part d’aquell centre, per l’ambient de treball i les ganes de
treballar que alĺı em vaig trobar. Gràcies a Marcello, Alexandra, Julian i Henning per la seua
ajuda i comprensió. Grazie mille! Muito obrigado! Muchas gracias! Vielen Dank!

Gràcies al professor John Cossey, per haver-nos acollit a Austràlia i haver-nos ajudat a
batallar amb semigrups, monoides i autòmats. Per la seua incrëıble capacitat per a escoltar
i proposar idees. Thank you so much!

A la gent de Bogotà, per l’experiència tan gratificant que alĺı vaig viure. A los pelaos
juiciosos de la Distrital per ser un exemple d’esforç i dedicació, per ensenyar-me també a
valorar les matemàtiques com a motor de canvi, pel tracte proper i per descobrir-me el café.
A la professora Verónica Cifuentes per l’acolliment que em va donar i la seua amistat.

Des d’aćı una abraçada a la professora Paz Jiménez per l’ajuda que m’ha donat, per llegir-

ii

se els meus apunts i per la col·laboració iniciada. Per les hores dedicades i per la seua forma
de ser, pel treball que ja està en marxa i pel que ha de vindre. Gràcies també a la gent que
m’ha acollit a Saragossa i m’ha fet sentir com a casa. Un record especial per a Javier Otal
i José Maŕıa Muñoz. Muchas gracias! Muitas grazias! Gràcies també a la gent de Navarra.
A Immaculada Lizasoain i a Luis M. Ezquerro per la seua col·laboració i per acollir-me a
Pamplona. Muchas gracias! Eskerrik asko!

A Ramon Esteban, gran investigador i millor persona, per la seua inestimable entrega i
ajuda. Des d’aćı un sentit homenatge a la seua capacitat per a treballar i emprendre. Per la
seua amistat i proximitat. A Ramon li haurien de fer una rotonda a l’entrada del Campus!
Amb llums i tot! Gràcies als seus consells i creativitat he aprés moltes coses útils i profitoses.

Vull donar també les gràcies a la resta dels membres del grup d’investigació, especialment
a Francesca i Vicent, per l’ajuda rebuda i pels grans moments que hem compartit. Sense
vosaltres haguera sigut més dif́ıcil i més avorrit. Gràcies també a tots els membres del Depar-
tament d’Àlgebra, especialment a Carolina, Joan i Azahara amb qui he compartit despatx,
treball i hores de desfici. Tinc també un record agräıt a Fran pels seus consells i ajuda.

Agräısc a tots aquells que m’han contagiat la seua passió per les matemàtiques; a Gaspar
i Bernardo, des del Serra Perenxisa, i a tot el professorat que m’he trobat a la Facultat de
Matemàtiques, amb gran record per a Rafa, Francisca i els seus consells. Amb especial estima
a Juan Climent per la seua amistat i per imprimir-li humanitat a la lògica i a totes les coses
que fa. Per l’ajuda que m’ha oferit en aquests anys. Gràcies a ell vaig fer el camı́ de la lògica,
per a continuar estudiant tot el que ell ens havia descobert. Al professorat de Barcelona,
per descobrir-me un poc més la bellesa d’aquell món. Amb un record especial per a Ramon
Jansana, per ser la primera persona a qui li vaig escoltar dir coàlgebra.

A tots els que han cregut en el projecte dels Predoc, una excusa com una altra per a
juntar-nos tots, fer-nos visibles i moure la Facultat. A tots els Predoc, per la seua vitalitat i
ganes de festa. No em puc queixar de res. A Juan Monterde i Rafa Crespo per la seua ajuda
en aquest i molts altres més projectes.

Gràcies al Ministeri d’Economia i Competitivitat per l’ajuda econòmica rebuda mitjançant
la concesió de la beca FPU. Gràcies igualment al CWI per l’ajuda rebuda per a l’estància
a Àmsterdam. A la Universidad de Zaragoza, Universidad Pública de Navarra, Universidad
Francisco José de Caldas, University of Canberra i Australian National University pel suport
econòmic.

A Abel i Raffa —amics, artistes, mestres, templats, aseats, bonicos, treballadors— per
les cerveses fetes! Als bufardos dels meus amics per les batalletes que portem darrere i per
l’amistat que dura tants anys. A Carme, companya, per ser un suport essencial en aquests
anys. Gràcies als meus pares per estimar-me tant, per ensenyar-me tant. A la meua famı́lia,
als que estan i als que se n’han anat, pel recolçament que m’han donat sempre. A Torrent i
a Alaquàs, els meus pobles.

Arre haca, anem al camp,
que no e l cànvie per un mestre!
Arre haca, anem al camp,
que no cànvie ês llibres per l’aixâ!

A carro i haca — Les Mãedéus

https://www.youtube.com/watch?v=Z-DcCnEVJWc

iii

Resum

En el present treball estudiarem els autòmats des d’una perspectiva tant algebraica com
coalgebraica. Volem aprofitar la natura dual d’aquests objectes per a presentar un marc
unificador que explique i estenga alguns resultats recents de la teoria d’autòmats.

Per tant, la secció 2 conté nocions i definicions preliminars per a mantenir el treball
tan contingut com siga possible. Aix́ı, presentarem les nocions d’àlgebra i coàlgebra per
a un endofunctor. També introduirem alguns conceptes sobre monoides i llenguatges. En
aquest caṕıtol també exposarem les nocions d’autòmats deterministes i no deterministes,
homomorfismes i bisimulacions d’autòmats i productes i coproductes d’aquestes estructures.
Finalment, recordarem algunes nocions bàsiques de teoria de reticles.

Des d’una perspectiva algebraica, els autòmats són àlgebres amb operacions unàries. En
aquest context, una equació és simplement un parell de paraules. Direm que una equació és
satisfeta per un autòmat si per a cada estat inicial possible els estats als quals s’arriba des
de l’estat considerat sota l’acció de les dues paraules coincideix. Es pot provar que, per a un
autòmat donat, podem construir el major conjunt d’equacions que aquest satisfà. Aquest con-
junt d’equacions resulta ser una congruència en el monoide lliure associat a l’alfabet d’entrada
i ens permet definir l’autòmat lliure, denotat per free. Pel que respecta a la perspectiva coal-
gebraica, un autòmat és un sistema de transicions amb estats finals. Aix́ı, una coequació és
un conjunt de llenguatges. Direm que una coequació és satisfeta per un autòmat, si per a cada
observació possible (coloracions sobre els estats indicant-ne la finalitat o no), el llenguatge
acceptat per l’autòmat es troba dins la coequació considerada. Intüıtivament, les coequacions
poden ser pensades com comportaments o especificacions en el disseny que se suposa que una
coàlgebra deu tindre. Com hem fet abans, per a un autòmat donat, podem construir el menor
conjunt de coequacions que aquest satisfà. Aquest conjunt de coequacions resulta ser un sub-
conjunt amb caracteŕıstiques ben determinades del conjunt de tots els llenguatges associats a
l’alfabet d’entrada i ens permet definir l’autòmat colliure, denotat per cofree. Provem, a més,
que aquestes construccions basades en equacions i coequacions són functorials.

Al caṕıtol 3 hem establert un nou resultat que presenta la dualitat entre quocients de
congruència del monoide lliure i el seu conjunt de coequacions, que són àlgebres booleanes
completes i atòmiques tancades sota derivació i que hem anomenat preformacions de llen-
guatges. Aquesta dualitat no imposa cap restricció en la grandària dels objectes, per tant,
també s’aplica a objectes infinits. El caṕıtol 3 està basat en els següents articles:

iv

• [65] J.J.M.M. Rutten, A. Ballester-Bolinches, and E. Cosme-Llópez. Varieties and
covarieties of languages (preliminary version). In D. Kozen and M. Mislove,
editors, Proceedings of MFPS XXIX, volume 298 of Electron. Notes Theor. Comput.
Sci., pages 7–28, 2013.

• [14] A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equivalence
of equations and coequations for automata. Information and Computation, 244:49
– 75, 2015.

Aquesta dualitat és emprada en el caṕıtol 4 per a presentar un nou apropament al teorema
de varietats d’Eilenberg. En primer lloc presentem una descripció equivalent, basada en
equacions i coequacions, de la noció original de varietat de llenguatges d’Eilenberg. Aquesta
nova descripció és un dels millors exemples possibles del poder expressiu del functors free
i cofree. Una adaptació adient d’aquestes construccions permet presentar un resultat de
tipus Eilenberg per a formacions de monoides no necessàriament finits. En el nostre cas,
primerament provem que les formacions de monoides estan en correspondència biuńıvoca amb
les formacions de congruències. Un segon pas en la prova relaciona formacions de congruències
amb formacions de llenguatges. Aix́ı, provem que tots tres conceptes són equivalents

Formacions
de monoides

⇔ Formacions
de congruències

⇔ Formacions
de llenguatges

La primera correspondència pareix ser completament nova i relaciona formacions de
monoides amb filtres de congruències per a cada monoide. L’última correspondència és un
dels millors exemples on poder aplicar la dualitat presentada al caṕıtol 3. A més, donem una
aplicació d’aquestes equivalències per al cas dels llenguatges relativament disjuntius. Aquests
teoremes poden ser adequadament modificats per a cobrir el cas de les varietats de monoides
en el sentit de Birkhoff. Discutim aquest cas particular al final del caṕıtol 4. Els resultats
d’aquest caṕıtol han estat enviats per a la seua possible publicació en una revista cient́ıfica
sota el t́ıtol

• [13] A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero, and J. Rutten. For-
mations of monoids, congruences, and formal languages. 2015. Enviat.

El caṕıtol 5 està completament dedicat a l’estudi de l’objecte final associat als autòmats no
deterministes. En general, les tècniques emprades en el caṕıtol 5 difereixen de les presentades
en els caṕıtols 3 i 4. En conseqüència, al principi d’aquest caṕıtol introdüım alguns conceptes
preliminars sobre bisimulacions i objectes finals. El nostre resultat principal és presentat
en el Teorema 5.17, que descriu l’autòmat final no determinista amb l’ajuda d’estructures
basades en llenguatges. A continuació, relacionem altres descripcions de l’autòmat final no
determinista amb la nostra construcció. El caṕıtol 5 està basat en el següent article:

• [11] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. A description
based on languages of the final non-deterministic automaton. Theor. Comput.
Sci., 536(0):1 – 20, 2014.

Certament, els diferents punts de vista emprats en aquesta dissertació ja han estat explo-
rats en alguns altres treballs. Per això, al final de cada caṕıtol presentem un estudi detallat

v

dels treballs relacionats i discutim les aportacions o millores realitzades en els resultats exis-
tents. Finalment, el caṕıtol 6 presenta les conclusions i indica els treballs que caldrà realitzar
en el futur. També presentem alguns del articles de recerca que es deriven de la realització
d’aquest projecte.

La vida mai nostra.
Embriagadors els vins,
que bevem quan fugim
de la primera impressió.

Els vespres verds — Mishima

https://www.youtube.com/watch?t=11&v=PX5r2tsHAxs

vii

Resumen

En el presente trabajo estudiaremos los autómatas desde una perspectiva tanto algebraica
como coalgebraica. Queremos aprovechar la naturaza dual de estos objetos para presentar
un marco unificador que explique y extienda algunos resultados recientes de la teoŕıa de
autómatas.

Por tanto, la sección 2 contiene nociones y definiciones preliminares para mantener el
trabajo tan contenido como sea posible. Aśı, presentamos las nociones de álgebra y coálgebra
para un endofuntor. También introducimos algunos conceptos sobre monoides y lenguajes.
En este caṕıtulo también introduciremos las nociones de autómatas deterministas y no deter-
ministas, homomorfismos y bisimulaciones de autómatas y productos y coproductos de estas
estructuras. Finalmente, recordaremos algunas nociones básicas de la teoŕıa de ret́ıculos.

Desde una perspectiva algebraica, los autómatas son álgebras con operaciones unarias. En
este contexto, una ecuación es simplemente un par de palabras. Diremos que una ecuación se
satisface en un autómata si para cada estado inicial posible los estados alcanzados desde el
estado considerado bajo la acción de las dos palabras coincide. Se puede probar que, para un
autómata dado, podemos construir el mayor conjunto de ecuaciones que éste satisface. Este
conjunto de ecuaciones resulta ser una congruencia en el monoide libre asociado al alfabeto
de entrada y nos permite definir el autómata libre, denotado por free. Por lo que respecta
a la perspectiva coalgebraica, un autómata es un sistema de transiciones con estados finales.
Aśı, una coecuación es un conjunto de lenguajes. Diremos que una coecuación se satisface
en un autómata, si para cada observación posible (coloraciones sobre los estados indicando la
finalidad o no), el lenguaje aceptado por el autómata se encuentra dentro de la coecuación
considerada. Intuitivamente, las coecuaciones pueden ser pensadas como comportamientos o
especificaciones en el diseño que se supone que una coálgebra debe tener. Como hemos hecho
antes, para un autómata dado, podemos construir el menor conjunto de coecuaciones que
éste satisface. Este conjunto de coecuaciones resulta ser un subconjunto con caracteŕısticas
bien determinadas del conjunto de todos los lenguajes asociados al alfabeto de entrada y
nos permite definir el autómata colibre, denotado por cofree. Probamos, además, que estas
construcciones basadas en ecuaciones y coecuaciones son funtoriales.

En el caṕıtulo 3 hemos establecido un nuevo resultado que presenta la dualidad entre
cocientes de congruencia del monoide libre y su conjunto de coecuaciones, que son álgebras
booleanas completas y atómicas cerradas bajo derivación y que hemos llamado preformaciones
de lenguajes. Esta dualidad no impone ninguna restricción en el tamaño de los objetos, por

viii

tanto, también se aplica a objetos infinitos. El caṕıtulo 3 está basado en los siguientes
art́ıculos:

• [65] J.J.M.M. Rutten, A. Ballester-Bolinches, and E. Cosme-Llópez. Varieties and
covarieties of languages (preliminary version). In D. Kozen and M. Mislove,
editors, Proceedings of MFPS XXIX, volume 298 of Electron. Notes Theor. Comput.
Sci., pages 7–28, 2013.

• [14] A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equivalence
of equations and coequations for automata. Information and Computation, 244:49
– 75, 2015.

Esta dualidad se utiliza en el caṕıtulo 4 para presentar un nuevo acercamiento al teorema
de variedades de Eilenberg. En primer lugar presentamos una descripción equivalente, basada
en ecuaciones y coecuaciones, de la noción original de variedades de lenguajes de Eilenberg.
Esta nueva descripción es uno de los mejores ejemplos posibles del poder expresivo de los
funtores free y cofree.

Una adaptación adecuada de estas construcciones nos permite presentar un resultado de
tipo Eilenberg para formaciones de monoides no necessariamente finitos. En nuestro caso,
primeramente probamos que las formaciones de monoides están en correspondencia biuńıvoca
con las formaciones de congruencias. Un segundo paso en la prueba relaciona formaciones de
congruencias y formaciones de lenguaje. Aśı, probamos que todos estos tres conceptos son
equivalentes

Formaciones
de monoides

⇔ Formaciones
de congruencias

⇔ Formaciones
de lenguajes

La primera correspondencia parece ser completamente nueva y relaciona formaciones de
monoides con filtros de congruencias para cada monoide. La última correspondencia es uno de
los mejores ejemplos de aplicación de la dualidad presentada en el caṕıtulo 3. Además, damos
una aplicación de estas equivalencias para el caso de los lenguajes relativamente disyuntivos.
Estos teoremas pueden ser convenientemente modificados para cubrir el caso de las variedades
de monoides en el sentido de Birkhoff. Discutiremos este caso particular al final del caṕıtulo 4.
Los resultados de este caṕıtulo han sido enviados para su posible publicación en una revista
cient́ıfica bajo el t́ıtulo

• [13] A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero, and J. Rutten. For-
mations of monoids, congruences, and formal languages. 2015. Enviado.

El caṕıtulo 5 está completamente dedicado al estudio del objeto final asociado a los
autómatas no deterministas. En general, las técnicas utilizadas en el caṕıtulo 5 difieren de las
presentadas en los caṕıtulos 3 y 4. En consecuencia, al principio de este caṕıtulo introduci-
mos algunos conceptos preliminares sobre bisimulaciones y objetos finales. Nuestro resultado
principal se presenta en el Teorema 5.17, que describe el autómata final no determinista con la
ayuda de estructuras basadas en lenguajes. A continuación, relacionamos otras descripciones
del autómata final no determinista con nuestra construcción. El caṕıtulo 5 está basado en el
siguiente art́ıculo:

ix

• [11] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. A description
based on languages of the final non-deterministic automaton. Theor. Comput.
Sci., 536(0):1 – 20, 2014.

Ciertamente, los diferentes puntos de vista utilizados en esta disertación ya han sido
explorados en otros trabajos. Por eso, al final de cada caṕıtulo, presentamos un estudio
detallado de los trabajos relacionados y discutimos las aportaciones o mejoras realizadas en
los resultados existentes. Finalmente, el caṕıtulo 6 presenta las conclusiones e indica los
trabajos que se han de realizar en el futuro. También presentamos algunos art́ıculos de
investigación que se derivan de la realización de este proyecto.

Perdut cada dia com sempre, patines
per un tobogan i passa sa vida a tota
hosti i a molta alta velocitat.
Tu m’entens, jo sé que tu m’entens.

Foto — Joan Miquel Oliver

https://www.youtube.com/watch?v=ohUD0fwgS28

Contents 1

Contents

1 Introduction 3

2 Preliminaries 11

2.1 Algebras and coalgebras for endofunctors . 11

2.2 Monoids . 13

2.3 Languages . 14

2.4 Automata theory . 15

2.4.1 Homomorphisms, subautomata, and bisimulations 16

2.4.2 Products and coproducts of automata 18

2.4.3 Non-deterministic automata . 19

2.5 Lattice theory . 20

3 Equations and coequations: A dual equivalence 23

3.1 Introduction . 23

3.2 Setting the scene . 25

3.2.1 Equations and coequations . 27

3.2.2 Free and cofree automata . 29

3.3 A dual equivalence . 33

3.3.1 Main theorems . 34

3.3.2 Illustrating the duality . 39

3.3.3 Equational bisimulations . 41

3.4 Discussion and future work . 42

4 Eilenberg’s theorem revisited 47

4.1 Introduction . 47

4.2 Eilenberg’s variety theorem . 48

4.3 Eilenberg’s formation theorem . 51

4.3.1 Formations . 51

4.3.2 Eilenberg’s theorem for formations of monoids 54

4.3.3 An application to relatively disjunctive languages 57

4.3.4 Varieties of monoids . 57

2 Contents

4.4 Discussion and future work . 59

5 A description based on languages of the final non-deterministic automaton 65
5.1 Introduction . 65
5.2 Final non-deterministic automata . 66
5.3 Discussion and future work . 79

6 Conclusions 87
6.1 Further research directions . 88
6.2 Derived works . 89

3

CHAPTER 1

Introduction

Fundamentally, Computer Science is a science of abstraction aiming at providing a right model
for thinking about a process and devising the appropriate mechanisable techniques to solve it.
Computer scientists must create abstractions of real-world problems that can be understood
by computer users and, at the same time, that can be represented and manipulated inside a
computer. Among several existing methods that can be used for this purpose, we underscore
in this dissertation the expressiveness of automata.

Automata can be seen as graphs with outgoing arcs on each node (or state) labelled with
symbols in a set called alphabet. States can be flagged as starting or accepting states. One
of the most basic operations using an automaton is to take a sequence of symbols and follow
from an starting state a path whose arcs are labelled by these symbols in the correct order.
The automaton changes from state to state according to these inputs. Basically, automata
render an accept/reject decision on any sequence of input characters by seeing whether there
is a path from an starting state to some accepting state labeled by that sequence. The set of
all words that are accepted, that is the language accepted (or recognised) by the automaton,
represents the power of the automaton to discriminate words; in each context, some words
are useful and some are not.

Imagine the designing process of a vending machine; for each product, we will be interested
in collect the amount of money specified by the vendor. It should start in a void state, where
no money has been entered by the consumer. The machine needs to differentiate all possible
combinations of coins or bills inserted during the process and it should recognise when the
sum of all these inputs is enough to pay the selected product. The system behind this process
and its behaviour are described with an automaton. With such simple abstraction process,
automata can be used to model many important kinds of software and hardware. Indeed,
the behaviour of digital circuits, the lexical analyser of a typical compiler, the software for
scanning large bodies of text with the purpose of finding occurrences of words, phrases and
other patterns, or the software for verifying communication protocols or protocols for secure
exchange of information are explained and designed using automata.

4 Chapter 1 Introduction

Algebraic treatment of automata

During the development of this field, a desirable abstract description of the data handled
by automata was seen to be necessary and algebraic techniques were used to describe these
objects. Kleene’s theorem (1956) [46] is considered the starting point of the algebraic study of
automata theory. Kleene described finite deterministic automata (which he called nerve nets)
and showed that the class of recognisable languages, that is, recognised by a finite automaton,
is equal to the class of all rational languages, which can be written using rational expressions.

Kleene’s rational expressions, which can be used for describing sequential circuits, were
defined using three operators (union, concatenation and iterate) on languages. Word descrip-
tions of problems can be more easily put in the regular expression language if the language
is enriched by the inclusion of other logical operations. Thus, in 1964, Brzozowski [26] intro-
duced the notion of derivative of a rational expression, which allowed him to prove Kleene’s
theorem without having to recur to non-deterministic automata.

These esentially combinatorical definitions can be interpreted in algebraic and logical
terms. In this context, the definition of the syntactic monoid, a monoid constructed accord-
ingly to each language, was a cornerstone in the algebraic study of these objects. This concept
first appeared in a work of Rabin and Scott [57], although the notion is credited to Myhill.
A fundamental question in the theory is to reveal what information about a language, or
an automaton accepting this language, is encoded in its syntactic monoid. It was shown, in
particular, that a language is recognisable if and only if its syntactic monoid is finite. The
first classification results on recognisable languages were stated in terms of automata and
the first non-trivial use of the syntactic monoid can be found in the work of Schützenberger
[71]. Schützenberger theorem (1965) states that a rational language is star-free if and only
if its syntactic monoid is aperiodic. This interesting result is considered, right after Kleene’s
theorem, as the most important result in the early years of the theory.

These results allowed Eilenberg (1974-76) [31, 32] to present an axiomatisation of the
algebraic approach to automata theory. Following his work, a variety of finite monoids or
pseudovariety is a class of finite monoids closed under taking submonoids, quotients and finite
direct products. Eilenberg’s theorem states that varieties of finite monoids are in one to one
correspondence with varieties of regular languages, these being classes of regular languages
closed under Boolean operations, derivatives and preimages of monoid homomorphisms. His
correspondence is a direct one; larger varieties of languages correspond to larger varieties
of monoids. For instance, the rational languages are associated to the variety of all finite
monoids (Kleene [46]), the star-free languages with the variety of finite aperiodic monoids
(Schützenberger [71]), and the piecewise testable languages with the variety of finite J -trivial
monoids (Simon [75]). Eilenberg’s work put scattered results on diverse classes of languages
into a general setting and initiated a research line in automata theory with particular emphasis
in the study and description of classes of both monoids and languages.

Eilenberg’s definition of a variety of finite monoids is similar to, but subtly different from,
the definition of variety of monoids in the original sense of Birkhoff [19]. A variety of monoids
is defined as being closed under taking substructures, taking quotients, and taking arbitrary
(not necessarily finite) products of structures. Birkhoff proved two main results. First, he
showed that varieties are characterised by the sets of identities they satisfy. For example,
semigroups are characterised among structures with one binary operations by the associative
identity (xy)z = x(yz). Second, he gave a set of closure conditions that characterise those
sets of identities.

5

Varieties play a central role in the theory of Universal Algebra, and it was thus natu-
ral to seek analogous connection between pseudovarieties of monoids and identities. It was
Reiterman [59], who showed that varieties are characterised by the “implicit identities” that
they satisfy. In a modern rendering, these “implicit identities” are better known as profinite
identities. A profinite identity is a relation between two profinite words, these being limits of
sequences of ordinary terms, or elements in the projective limit of a family of given monoids.

Almeida [7], among other researchers in the field, made further progress by characterising
the sets of profinite identities that correspond to pseudovarieties of monoids. The profinite
aproach is a very rich and powerful tool to understand several recent developments in the
field. Pippenger exploited the duality established by Stone [77, 78] between Boolean algebras
and certain topological spaces called Stone spaces. Following this path, Gehrke, Grigorieff,
and Pin proved in [38] that any lattice of recognisable languages can be defined by a set of
profinite equations, a result that subsumes Eilenberg’s original result.

Several attempts were made to extend Eilenberg’s variety theory to a larger scope. For
instance, ordered syntactic semigroups were considered in [54]. The resulting extension of
Eilenberg’s variety theory permits to treat classes of languages that are not necessarily closed
under complement. Other extensions were developed by Straubing [79] and Ésik and Ito [33]
and more in [38].

However, in group theory, varieties are challenged by another notion. Although varieties
are incontestably a central notion, many results are better formulated in the setting of for-
mations. A formation of groups is a class of groups closed under taking subdirect products
and quotients. The significance of formations in group theory is apparent since they are the
first remarkable step in the development of a generalised Sylow theory. It was Gaschütz and
Lubeseder who began their pioneering work on the subject in 1963 [35]. Since that time the
subject has proliferated and has played a fundamental role in studying groups. This raised
the question whether Eilenberg’s variety theorem could be extended to a formation theorem.
For the case of formation of finite monoids, we can find a positive answer in the paper [15].The
weaker closure conditions for formations lead to more possibilities than for varieties as more
general classes of languages can be described and understood.

Coalgebraic treatment of automata

It turned out, however, that this algebraic treatment was unable to describe most of the
inherent dynamical structures used in Computer Science. During the last years most of
the state-based systems were not studied as algebras but as coalgebras, the formal dual of
algebras. Coalgebras [63, 62] were used to represent infinite data or behavior defined by
observations rather than constructors, and come equipped with corecursive definitions of
functions and coinduction as a dual proof principle of induction. Coalgebra theory offers a
unifying mathematical framework for state-based behavioural systems and (component-based
and service-oriented) programming paradigms. Examples of coalgebras include streams and
transition systems and several variations of automata. The theory of universal coalgebra
provides a standard equivalence and a universal domain of behaviors, uniquely based on the
type of the system, given by a functor F . Most of this new techniques rely on the description
of the final coalgebra [73] (the categorical dual of the initial algebra).

For the case of deterministic automata, the first coalgebraic studies [62] of these structures
focus on the notions of homomorphism and bisimulation that lead to a uniform presentation
of automata theory. The main contribution for that matter is based in the coalgebraic study

6 Chapter 1 Introduction

of languages. For deterministic automata, the set of all languages over a fixed alphabet plays
a central role. It carries an automaton structure determined by the notion of Brzozowski’s
derivatives of languages [26, 28] and it is shown to be a final automaton. Taking this prop-
erty as a basis, new proof methods based on bisimulations for language equality and language
inclusion were presented [62]. Based on these pioneering works, Rutten used finality for both
definitions and proofs by coinduction on power series [66] or stream calculus [64] based on
behavioural differential equations. Other variants of automata have been studied from a coal-
gebraic perspective, specially non-deterministic automata [73] or linear weighted automata
[20]. The case of automata is of special interest since they can be viewed both as an algebra
and as a coalgebra. The grounds of this work are built on these previous constructions and
results. Specially on [22], which is the first work that clearly present the dual nature of au-
tomata from the very beginning. Generally less information is known on the coalgebraic side,
that is why we believe this coalgebraic aspect has not received the attention it deserves.

Summary

In the present work we want to study automata both from an algebraic perspective and a
coalgebraic one. We want to exploit the dual nature of these objects and present a unifying
framework to explain and extend some recent results in automata theory.

Accordingly, Section 2 contains background material and definitions to keep the work as
self-contained as possible. Thus, the notions of algebra and coalgebra for endofunctors are pre-
sented. We also introduce some basic concepts on monoids and languages. In this Chapter we
also introduce the notions of deterministic and non-deterministic automata, homomorphisms
and bisimulations of automata and the product and coproduct of these structures. Finally,
we recall some basic notions of lattice theory.

From the algebraic perspective, automata are algebras with unary operations. In this
context, an equation is just a pair of words, and it holds in an automaton if for every initial
state, the states reached from that state by both words are the same. It can be shown that,
for a given automaton, we can construct the largest set of equations it satifies, which turns
out to be a congruence on the free monoid on the input alphabet. We use this construction to
define the free automaton associated to a given automaton, denoted by free. Coalgebraically,
an automaton is a transition system with final states. A coequation is then a set of languages
and it is satisfied by an automaton if, for every possible observation (colouring the states as
either final or not) the language accepted by the automaton is within the specified coequation.
Intuitively, coequations can be thought of as behaviours, or pattern specifications that a
coalgebra is supposed to have. As we did before, for a given automaton, we can construct the
smallest set of coequations it satifies, which turns out to be a special subset on the set of all
languages over the input alphabet. We use this construction to define the cofree automaton
associated to a given automaton, denoted by cofree. These constructions based on equations
and coequations are proved to be functorial.

In Chapter 3 we have established a new duality result between congruence quotients of
the free monoid and its set of coequations, what we called preformations of languages, which
are complete atomic boolean algebras closed under derivatives. This duality result does not
impose any restriction on the size of the objects, therefore infinite objects are allowed. Chapter
3 is based on the following papers:

• [65] J.J.M.M. Rutten, A. Ballester-Bolinches, and E. Cosme-Llópez. Varieties and
covarieties of languages (preliminary version). In D. Kozen and M. Mislove,

7

editors, Proceedings of MFPS XXIX, volume 298 of Electron. Notes Theor. Comput.
Sci., pages 7–28, 2013.

• [14] A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equivalence
of equations and coequations for automata. Information and Computation, 244:49
– 75, 2015.

This duality result is used in Chapter 4 to present a renewed approach to Eilenberg’s
variety theorem. In the first place, we introduce an equivalent description based on equations
and coequations of the original notion of variety of regular language, originally introduced
by Eilenberg. This description is one of the best examples of the expressiveness power of the
aforementioned functors free and cofree. A suitable adaptation of this construction allows
us to present an Eilenberg-like result for formations of (non-necessarily finite) monoids. In
our case, we first prove that formations of monoids are in one-to-one correspondence with
formations of congruences. A second step in our proof relates formations of congruences and
formations of languages. All in all, these three concepts are shown to be equivalent

Formations
of monoids

⇔ Formations
of congruences

⇔ Formations
of languages

The first correspondence seems to be completely new and relates formations of monoids
to filters of congruences on every possible free monoid. The last correspondence is one of the
best possible examples of application of the duality theorem presented in Chapter 3. We also
give an application of this equivalence to the case of relatively disjunctive languages. These
theorems can be slightly adapted to cover the case of varieties of monoids in the sense of
Birkhoff. We discuss this particular case at the end of the Chapter 4. The results of this
Chapter have been submitted to a journal for its possible publication under the title

• [13] A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero, and J. Rutten. For-
mations of monoids, congruences, and formal languages. 2015. Submitted.

Chapter 5 is completely devoted to the study of the final object associated to non-
deterministic automata. In general, the techniques applied in Chapter 5 differ from those
presented in Chapters 3 and 4. Consequently, at the beginning of this chapter we introduce
some basic background on bisimulations and final objects. Our main result is presented in
Theorem 5.17 which describes the final non-deterministic automaton with the help of struc-
tures based on languages. Hereafter, we relate other descriptions of the final non-deterministic
automaton with our construction. Chapter 5 is based on the following paper:

• [11] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. A description
based on languages of the final non-deterministic automaton. Theor. Comput.
Sci., 536(0):1 – 20, 2014.

Certainly, the point of view that we adopt throughout this work has been explored in
some other references too. Therefore, at the end of each Chapter, we present a detailed study
of the related work and how our work subsumes or improves the existing results. Finally,
Chapter 6 sets out the conclusions and indicates future work. We also present some of the
derived research papers we have made during the realisation of this project.

8 Chapter 1 Introduction

Digue’m les vives meravelles
del teu treball, del teu turment.
Sota el concert de les estrelles,
anem fumant tranquil·lament.

Cançó de suburbi — Toti Soler
Silvia Pérez Cruz, (Ovidi Montllor)

https://www.youtube.com/watch?v=Y_du99rBG9M

9

Methodology

The working techniques and the metodology used in this work are the usual ones in basic
mathematical research. External help of computer programs will assist us in the development
of an appropriate methodology, specially in the fields of groups, monoids, and automata
theory. We make use of the computer programs GAP (Groups Algorithms and Programming),
MAGMA (The Magma Computational Algebra System), and SEMIGROUPE, for the study
of automata and formal languages with which we can computationally analyse properties of
groups and semigroups and find examples of structures with desired properties.

We begin this work with a searching and updating process of recent related bibliographical
sources that can be of interest with the specified goals. The research will be later addressed
having into account the proposed objectives and the consulted material. Nevertheless, the
initial objectives can be reformulated depending on the results obtained.

The contact between our research group and other research groups is essential. It provide
us new ideas and different perspectives in the challenges we face. We will ensure this aspect
by attending research meetings, seminars and conferences. We also planned stays in different
research centers with the idea of creating consolidated research networks.

Defensem la pràctica pràctica de
doctrines nul·les basada en els
principis d’ultra-caos creatiu
fonamentant els postulats en un
granet de xufa.

Filles d’un meló d’Alger — Orxata
Sound System

https://www.youtube.com/watch?v=2axT1hSbSDI

11

CHAPTER 2

Preliminaries

2.1 Algebras and coalgebras for endofunctors

Definition 2.1. A category X is given by a tuple X = (X0,X1,Dom,Cod, ◦, id) of objects
X0 and arrows X1, that has the following structure:

• Each arrow has a domain and a codomain which are objects. One writes f : X → Y if
X is the domain of the arrow f and Y its codomain. One also writes X = Dom(f) and
Y = Cod(f);

• Given two arrows f and g such that Cod(f) = Dom(g), the composition of f and g
written g ◦ f , or simply gf , is defined and has domain Dom(f) and codomain Cod(g),
that is

f : X → Y
g : Y → Z

7−→ gf : X → Z;

• Composition is associative, that is, given f : X → Y , g : Y → Z and h : Z →W it holds
that h(gf) = (hg)f ;

• For every object X there is an identity arrow idX : X → X, satisfying idXg = g for
every g : Y → X and fidX = f for every f : X → Y .

For example, the tuple (Set0,Set1), consisting in sets from a Grothendieck Universe U
and usual mappings between sets respectively, is a category denoted by Set. The opposite
category or dual category Xop of a given category X is formed by reversing the arrows, that
is interchanging the domain and codomain of each arrow. Doing the reversal twice yields the
original category, so the opposite of an opposite category is the original category itself. In
symbols, (Xop)op = X.

Definition 2.2. Given two categories X and X′, a functor F : X→ X′ consists on a pair of
mappings F0 : X0 → X′0 and F1 : X1 → X′1 such that:

12 Chapter 2 Preliminaries

• For each f : X → Y , F1(f) : F0(X)→ F0(Y);

• For each f : X → Y , g : Y → Z it holds that F1(gf) = F1(g)F1(f);

• For each X ∈ X0, F1(idX) = idF0(X).

When X and X′ are the same category, we say that F is an endofunctor. Given two
categories X and X′ an equivalence of categories consists of a functor F : X → X′ and
a functor G : X′ → X with two natural isomorphisms : FG → idX′ and : GF → idX. If a
category is the opposite or dual of another category then one speaks of a duality of categories,
and says that the two categories are dually equivalent. We denote the existence of this duality
by X ' X′. The reader is referred to [50] for more information about category theory.

We are ready to introduce the basic concepts of algebra and coalgebra for an endofunctor
in a category. For an introduction to the theory of algebras and coalgebras, the reader is
referred to [63] and [62].

Definition 2.3. Given a category X, called the base category, and an endofunctorH : X→ X,
an H-algebra consists of a pair (X,α), where X is an object of X and α : H(X)→ X an arrow
in X. On the other hand, an H-coalgebra consists of a pair (X,α), where X is an object of
X and α : X → H(X) an arrow in X. We call X the base and α the structure map of the
(co)algebra. When the endofunctor is clear we will refer to the pair simply as a (co)algebra.

Definition 2.4. Given an endofunctor H in the category X and two H-algebras (X,α) and
(Y, β), an homomorphism of H-algebras from (X,α) into (Y, β) is an arrow f : X → Y in X
satisfying fα = βH(f), i.e., an arrow such that the following diagram commutes.

H(X) H(Y)

X Y

H(f)

β

f

α

Definition 2.5. We say that an H-algebra (X,α) is initial if, for any other H-algebra (Y, β),
there exists a unique H-algebra homomorphism fY : (X,α)→ (Y, β) .

Definition 2.6. Given an endofunctor H in the category X and two H-coalgebras (X,α) and
(Y, β), an homomorphism of H-coalgebras from (X,α) into (Y, β) is an arrow f : (X,α) →
(Y, β) in X satisfying H(f)α = βf , i.e., an arrow such that the following diagram commutes.

X Y

H(X) H(Y)

f

β

H(f)

α

Definition 2.7. We say that an H-coalgebra (X,α) is final if, for any other H-coalgebra
(Y, β), there exists a unique H-coalgebra homomorphism fY : (X,α)→ (Y, β) .

2.2. Monoids 13

All underlying sets of the algebras and coalgebras presented in the following chapters
will be objects of the category Set of sets and functions. For sets X and Z we define
XZ = {g | g : Z → X}. For sets X,Y, Z and functions f : X → Y we define fZ : XZ → Y Z

by fZ(g) = fg. We define the image and the kernel of a function f : X → Y by

im(f) = {y ∈ Y | ∃x ∈ X, f(x) = y}
ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2)}

For an arbitrary set A, we will be considering algebras and coalgebras for the following
endofunctors on Set

F (S) = SA

G(S) = S ×A
R(S) = Pω(S)A

(2× F)(S) = 2× SA

(1 +G)(S) = 1 + (S ×A)

(2×R)(S) = 2× Pω(S)A

Here Pω(S) denotes the set of all finite subsets of the set S. Moreover, 2 is a set with two
elements and 1 is a set with one element, + stands for disjoint union of sets and × for its
cartesian product.

2.2 Monoids

Definition 2.8. A monoid is a tuple (M, ·, 1), where M is a set and · an associative binary
operation in M that has 1 ∈ M as identity element. When the operation and the identity
element in a monoid (M, ·, 1) are clear, we will denote the monoid simply by M .

For monoids M and N , an homomorphism of monoids is a function f : M → N such that

• for all m,m′ ∈M , it holds f(mm′) = f(m)f(m′);

• the identity of M is mapped to the identity of N .

The homomorphism f is an isomorphism of monoids if it is both an injective and a surjective
homomorphism of monoids. In this case, we will write M ∼= N . Monoids with homomorphism
of monoids form a category denoted by Mon.

Definition 2.9. For a monoid M , a subset N ⊆ M is a submonoid if 1 ∈ N and N is
closed under the binary operation of M . In this case, the inclusion mapping i : N →M is an
injective monoid homomorphism.

For a monoid M , a right congruence is an equivalence relation θ on M such that, for all
(m,n) ∈M ×M and p ∈M ,

• if (m,n) ∈ θ, then (mp, np) ∈ θ

A left congruence is an equivalence relation θ on M such that, for all (m,n) ∈ M ×M and
p ∈M ,

• if (m,n) ∈ θ, then (pm, pn) ∈ θ

14 Chapter 2 Preliminaries

We call θ a congruence if it is both a right and a left congruence. Equivalently, an equivalence
relation θ is a congruence if for all pairs (m,n), (m′, n′) in θ, the pair (mm′, nn′) also belongs
to θ. For a monoid M and a congruence θ on M , the quotient M/θ is a monoid for the
multiplication given by ([m], [n]) 7→ [mn]. In this case, the quotient mapping π : M →M/θ is
a surjective monoid homomorphism. We denote the set of all congruences over M by Con(M).

Recall that, for a monoid homomorphism f : M → N , the kernel of f , ker(f), is a con-
gruence on M and the image of f , im(f), is a submonoid of N . Moreover, the mapping
f : M/ker(f)→ im(f), given by [m]→ f(m), is an isomorphism of monoids.

2.3 Languages

Definition 2.10. An alphabet A is a set, whose elements are called letters. A word over an
alphabet A is a finite sequence a1a2 · · · an of letters of A. We denote the empty word by ε.
The set of all words over A is denoted by A∗.

Note that A∗ can be regarded as the free monoid on the set A, where the multiplication
in A∗ is defined as the concatenation of words. For words v and w in A∗ its concatenation is
given by the word whose first letters bijectively correspond with the letters of v, respecting
its order, and immediately followed by the letters of w in the same way. We denote the
concatenation of v and w by vw. One of the most important consequences of the universal
property of the free monoid is presented in the following Proposition. It states that all free
monoids are projective.

Proposition 2.11 ([53, p. 10]). For a set A and monoids P and Q, if γ : A∗ → Q is a monoid
homomorphism and η : P → Q is a surjective monoid homomorphism, then there exists a
monoid homomorphism ϕ : A∗ → P with η ◦ ϕ = γ.

A∗

P Q

ϕ
γ

η

Definition 2.12. A language L over A is a subset L ⊆ A∗ and we denote the set of all
languages over A by

2A
∗ ∼= {L | L ⊆ A∗}

(we will ignore here and sometimes below the difference between subsets and characteristic
functions assuming the above sets as equal). If L and L′ are languages, we define

1. the sum of L and L′, as L+L′ = L∪L′, which coincides with the set-theoretical union
of L and L′;

2. the product of L and L′, as LL′ = {ww′ | w ∈ L, w′ ∈ L′}, composed by the words
which are the result of concatenating one word of L and one word of L′;

3. the complementation of L, as A∗ \ L, and

4. the Kleene star of L, as L∗ =
⋃
n∈N L

n, where L0 = {ε}, L1 = L, and Ln+1 = LnL, for
n ∈ N.

2.4. Automata theory 15

Definition 2.13. The set of all regular languages R is the smallest set of languages containing
all finite languages and closed under taking sums, products, and Kleene stars.

It is usual to identify a letter a with the word (a), of length one, and also with the language
{a}. With this convention, we can identify the regular languages with the so-called regular
expressions. For a language L ⊆ A∗ and a ∈ A we define the a-derivative of L by

La = {v ∈ A∗ | av ∈ L},

and we define, more generally, for a word w ∈ A, the w-derivative of L by

Lw = {v ∈ A∗ | wv ∈ L}.

In fact, La and Lw are also called right derivatives of L, in contrast to the left derivative
of L, which we define, respectively, by

aL = {v ∈ A∗ | va ∈ L}, wL = {v ∈ A∗ | vw ∈ L}.

One readily verifies that the operations ()w and w() of right and left derivatives commute
with the Boolean operations of (possibly infinite) union, intersection and complementation,
on languages.

2.4 Automata theory

Definition 2.14. Given an alphabet A, a deterministic automaton is a pair (X,α) consisting
of a (possibly infinite) set X of states and a transition function

α : X → XA.

In pictures, we use the following notation:

x ya
⇔ α(x)(a) = y

We will also write xa = α(x)(a) and, more generally,

xε = x andxwa = α(xw)(a),

with w ∈ A∗.

We observe that a deterministic automaton is an F -coalgebra[63]. Because there is, for
any A and X, a natural isomorphism

(̃) : (X → XA)→ ((X ×A)→ X), α̃(x, a) = α(x)(a).

deterministic automata are also G-algebras [51].
A deterministic automaton can be decorated by means of a colouring function

c : X → 2,

using as set of colours 2 = {0, 1}. We call a state x accepting (or final) if c(x) = 1, and
non-accepting if c(x) = 0. We call a triple (X, c, α) a deterministic coloured automaton. In
pictures, we use a double circle to indicate that a state is accepting. For instance, in the
following automaton

16 Chapter 2 Preliminaries

x y

a

b

b a

the state x is accepting and the state y is not. By pairing the functions c and α, we see that
a deterministic coloured automaton is a (2× F)-coalgebra

〈c, α〉 : X → 2×XA.

Given a deterministic coloured automaton (X, c, α) and a state x ∈ X, the set

oc(x) = {w ∈ A∗ | c(xw) = 1}

is called the language accepted or recognised by the automaton (X, c, α) starting from the
state x. A deterministic automaton can also have an initial state x ∈ X, here represented by
a function

x : 1→ X,

where 1 = {0}. We call a triple (X,x, α) a pointed automaton. By pairing the functions x
and α̃, we see that a deterministic pointed automaton is a (1 +G)-algebra:

[x, α̃] : (1 + (X ×A))→ X.

We call a 4-tuple (X,x, c, α) a pointed and coloured deterministic automaton. We could
depict it by either of the following two diagrams

1 2

X

XA

x c

α

1 2

X

X ×A

x c

α̃

We will be using the diagram on the left, which is just a matter of personal preference. We
observe further that pointed and coloured deterministic automata are simply called automata
in most of the literature on automata theory. A pointed and coloured automaton (X,x, c, α)
is neither an algebra nor a coalgebra —because of c and x, respectively— which can be a
cause of fascination and confusion alike.

2.4.1 Homomorphisms, subautomata, and bisimulations

Definition 2.15. Let (X,α) and (Y, β) be two deterministic automata. A function h : X → Y
is a homomorphism between deterministic automata (X,α) and (Y, β) if it makes the following
equivalent diagrams commute:

X Y

XA Y A

h

α

hA

β

X ×A Y ×A

X Y

(h,idA)

α̃

h

β̃

2.4. Automata theory 17

Equivalently, h(xw) = h(x)w for all x ∈ X and w ∈ A∗. In this case, h is both an
F -coalgebra homomorphism and a G-algebra homomorphism. An epimorphism is a homo-
morphism that is surjective, and a monomorphism is a homomorphism that is injective. A
homomorphism of pointed deterministic automata (X,x, α) and (Y, y, β) and of coloured au-
tomata (X, c, α) and (Y, d, β) moreover respects initial values and colours, respectively:

1

X Y

x

h

y 2

X Y

c

h

d

If in the diagrams above X ⊆ Y , and (i) h is subset inclusion

h : X ⊆ Y

(and, moreover (ii) x = y or (iii) c = d), then we call X a (i) subautomaton of Y (respectively
(ii) pointed and (iii) coloured subautomaton). For a deterministic automaton (X,α) and
x ∈ X, the subautomaton generated by x, denoted by

〈x〉 ⊆ X

consists of the smallest subset of X that contains x and is closed under transitions.

Definition 2.16. Let (X,α) and (Y, β) be two deterministic automata. We call a relation
R ⊆ X × Y a bisimulation of deterministic automata if for all (x, y) ∈ X × Y ,

if (x, y) ∈ R then ∀a ∈ A, (xa, ya) ∈ R

(where xa = α(x)(a) and ya = β(y)(a)). The states x ∈ X and y ∈ Y are said to be bisimilar
when there exists a bisimulation R ⊆ X × Y such that (x, y) ∈ R. For pointed deterministic
automata (X,x, α) and (Y, y, β), R is a pointed bisimulation if, moreover, (x, y) ∈ R. And
for coloured deterministic automata (X, c, α) and (Y, d, β), R is a coloured bisimulation if,
moreover, for all (x, y) ∈ X × Y ,

if (x, y) ∈ R then c(x) = d(y)

A bisimulation E ⊆ X ×X is called a bisimulation on X. If E is an equivalence relation
then we call it a bisimulation equivalence. The quotient map of a bisimulation equivalence on
X is a homomorphism of deterministic automata:

X X/E

XA (X/E)A

q

α

qA

[α]

with the obvious definitions of X/E, q and [α]. If the equivalence E is a pointed bisimulation
on (X,x, α) or a coloured bisimulation on (X, c, α), then we moreover require, respectively,

18 Chapter 2 Preliminaries

1

X X/E

x

h

[x] 2

X X/E

c

h

[c]

with, again, the obvious definitions of [x] and [c]. For a homomorphism h : X → Y , ker(h) is
a bisimulation equivalence on X and im(h) is a subautomaton of Y . Any homomorphism h
is equal to the composition of an epimorphism followed by a monomorphism, as follows:

X X/ker(h)

XA (X/ker(h))A

Y

Y A

e m

α

eA mA

[α] β

h

hA

with e(x) = [x] = {z ∈ X | h(z) = h(x)}, and m([x]) = h(x). Note that X/ker(h) ∼= im(h).
The pair (e,m) is called an epi-mono factorisation of h.

2.4.2 Products and coproducts of automata

Deterministic automata (are bothG-algebras and F -coalgebras and hence) have both products
and coproducts, as follows.

• The product of deterministic automata {(Xi, αi) | i ∈ I} is given by (
∏
i∈I Xi, γ) where∏

i∈I Xi is the cartesian product and where

γ : (
∏
i∈I

Xi)→ (
∏
i∈I

Xi)
A γ((xi)i∈I)(a) = (αi(xi)(a))i∈I .

• The coproduct of deterministic automata {(Xi, αi) | i ∈ I} is given by (
∑

i∈I Xi, γ)
where

∑
i∈I Xi is the disjoint union and where

γ : (
∑
i∈I

Xi)→ (
∑
i∈I

Xi)
A γ(z)(a) = αi(z)(a) if z ∈ Xi.

Pointed deterministic automata (are (1 + G)-algebras and hence) have products, as fol-
lows. The product of pointed deterministic automata {(Xi, xi, αi) | i ∈ I} is given by
(
∏
i∈I Xi, (xi)i∈I , γ) with (

∏
i∈I Xi, (xi)i∈I , γ) as above and with initial state

(xi)i∈I : 1→
∏
i∈I

Xi.

Coloured deterministic automata (are (2× F)-coalgebras and hence) have coproducts, as
follows. The coproduct of coloured automata {(Xi, ci, αi) | i ∈ I} is given by (

∑
i∈I Xi, [(ci)i∈I], γ)

with (
∑

i∈I Xi, γ) as above and with colouring function

[(ci)i∈I] :
∑
i∈I

Xi → 2 [(ci)i∈I](z) = ci(z) if z ∈ Xi.

2.4. Automata theory 19

2.4.3 Non-deterministic automata

Definition 2.17. A non-deterministic automaton is a pair (X,α) consisting of a (possibly
infinite) set X of states and a transition function

α : X → Pω(X)A,

that assigns to each letter and to each state a finite set of states. When we assign to each
state a single new state, we will recover the previous definition of deterministic automaton.
In pictures, we use the following notation:

x ya
⇔ y ∈ α(x)(a).

We will also write xa = α(x)(a) and, more generally,

xε = {x}, xwa =
⋃
{ya | y ∈ xw}.

We observe that non-deterministic automata are R-coalgebras. An automaton can be
decorated by means of a colouring function

c : X → 2,

using a basic set of colours 2 = {0, 1}. We call a state x accepting (or final) if c(x) = 1, and
non-accepting if c(x) = 0. We call a triple (X, c, α) a coloured non-deterministic automaton.
In pictures, we use a double circle to indicate that a state is accepting. By pairing the
functions c and α, we see that non-deterministic coloured automata are (2×R)-coalgebras:

〈c, α〉 : X → 2× Pω(X)A.

Given a non-deterministic coloured automaton (X, c, α) and a state x ∈ X, the set

oc(x) = {w ∈ A∗ | ∃y ∈ xw (c(y) = 1)}

is called the language accepted or recognised by the automaton (X, c, α) starting from the
state x. It is also common to consider an initial state or a set of inital states in the study of
non-deterministic automata, but we will not need it in our development since we will only be
interested in the coalgebraic structure of non-deterministic automata. In fact, it is easy to find
generalisations of the concepts above introduced for the case of non-deterministic automata.
To simplify the reading, we present just the notions that will appear later.

Definition 2.18. A function h : X → Y is a homomorphism between non-deterministic
coloured automata (X, c, α) and (Y, d, β) if it makes the following diagram commute:

X Y

Pω(X)A Pω(Y)A

2

h

c

α

Pω(h)

β

d

20 Chapter 2 Preliminaries

Equivalently, Pω(h)(xw) = {h(y) | y ∈ xw} = h(x)w for all x ∈ X and w ∈ A∗ and
c(x) = 1 if and only if d(h(x)) = 1 In this case, h is a (2×R)-coalgebra homomorphism.

Definition 2.19. We call a relation R ⊆ X ×Y a bisimulation of non-deterministic coloured
automata, or simply bisimulation, if for all (x, y) ∈ R and all a ∈ A, the following conditions
are satisfied

• c(x) = 1 if and only if d(y) = 1;

• If x′ ∈ xa, then there exists y′ ∈ Y with y′ ∈ ya and (x′, y′) ∈ R;

• If y′ ∈ ya, then there exists x′ ∈ X with x′ ∈ xa and (x′, y′) ∈ R.

Two states x ∈ X and y ∈ Y are said to be bisimilar when there exists a bisimulation R
between X and Y such that (x, y) ∈ R. A bisimulation R ⊆ X ×X is called a bisimulation
on X.

2.5 Lattice theory

Definition 2.20. A partially ordered set P is a pair (P,≤) where P is a set and ≤ is a binary
relation on P which is reflexive, antisymmetric and transitive. Partially ordered sets are also
called posets. We read “x ≤ y” as “x is less than or equal to y”. We will write that x 6≤ y to
indicate that it is not the case that x ≤ y. To indicate that x ≤ y but x 6= y we write x < y
and we say that “x is (strictly) less than y”.

Definition 2.21. Let P = (P,≤) be a partially ordered set, let x ∈ P , and let X ⊆ P . Then,

1. x is a maximal element of X in P if x ∈ X and there is no y ∈ X such that x < y;

2. x is a maximum element of X in P if x ∈ X and for every y ∈ X, y ≤ x;

3. x is an upper bound of X if, for every y ∈ X, y ≤ x;

4. x is a supremum of X if it is an upper bound of X with x ≤ z for any upper bound z
of X;

5. x is a minimal element of X in P if x ∈ X and there is no y ∈ X such that y < x;

6. x is a minimum element of X in P if x ∈ X and for every y ∈ X, x ≤ y;

7. x is a lower bound of X if, for every y ∈ X, x ≤ y;

8. x is an infimum of X if it is a lower bound of X with z ≤ x for any lower bound z of
X.

If X has a supremum, it is unique and we denote it by supX. Dually, if X has a infimum,
it is unique and we denote it by inf X. If P has a maximum element, it is called the top
element of P. Dually, if P has a minimum element, it is called the bottom element of P. If
these elements exist, they are unique. A partially ordered set P is bounded if it has a top and
a bottom element, usually denoted by 1 and 0 respectively.

2.5. Lattice theory 21

Definition 2.22. Recall that a non-empty subset F of a partially ordered set P is called a
filter if it satisfies:

• if x, y ∈ F , then there exists z ∈ F with z ≤ x and z ≤ y;

• if x ∈ F and x ≤ y, then y ∈ F .

If x is an element in P , the subset [x) = {y ∈ P | x ≤ y} is always a filter. A filter F is
principal if it has the form F = [x) for some element x ∈ P .

Definition 2.23. A partially ordered set L = (L,≤) is a lattice if, for every x, y ∈ L, inf{x, y}
and sup{x, y} exist. In this case we will use the notations

x ∧ y = inf{x, y}, x ∨ y = sup{x, y}.

The binary operation ∧ is called the meet operation of L and ∨ is called the join operation
of L. It follows from the definition that the operations of join and meet satisfy the following
laws for all x, y, z ∈ L.

x ∧ x = x, x ∨ x = x (Idempotent);
x ∧ y = y ∧ x, x ∨ y = y ∨ x (Commutative);
x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z (Associative);
x ∧ (x ∨ y) = z, x ∨ (x ∧ y) = x (Absoption).

Definition 2.24. A lattice as an algebra is an algebra L = (L,∧,∨) where ∧ and ∨ are two
binary operations, called respectively meet and join, that satisfy all above laws.

The relation between the two notions of lattice is stated in the following theorem

Theorem 2.25. If L = (L,≤) is a lattice, then defining the binary operations ∧ and ∨ in
L by x ∧ y = inf{x, y} and x ∨ y = sup{x, y}, then the algebra La = (L,∧,∨) is a lattice as
an algebra. Further, if La = (L,∧,∨) is a lattice as an algebra, then defining the relation ≤
in L by x ≤ y if and only if x ∧ y = x, the structure Lp = (L,≤) is a poset that is a lattice.
Moreover, (La)p = L and (Lp)a = L.

In the sequel we will move back and forth between the poset notion and the algebraic
notion of lattice without explicitly mentioning it, that is, we will identify lattices L = (L,∧,∨)
and L = (L,≤) when they correspond one to the other.

Definition 2.26. For lattices L1 = (L1,∧1,∨1) and L2 = (L2,∧2,∨2), a function h : L1 → L2

is a lattice homomorphism from L1 to L2 if for every x, y ∈ L1,

h(x ∧1 y) = h(x) ∧2 h(y), h(x ∨1 y) = h(x) ∨2 h(y).

Definition 2.27. A lattice L is called distributive if, for all x, y, z ∈ L one of the following
dual conditions holds

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Definition 2.28. A bounded lattice L = (L,∧,∨, 0, 1) is complemented if for each x ∈ L,
there exists a unique element x′ ∈ L complementing x, that is, there exists x′ ∈ L with

x ∧ x′ = 0 and x ∨ x′ = 1.

22 Chapter 2 Preliminaries

Definition 2.29. A lattice L is a Boolean lattice if it is complemented, bounded and dis-
tributive.

Definition 2.30. A Boolean algebra B is an algebra B = (B,∧,∨, ′, 0, 1) such that

• (B,∧,∨) is a Boolean lattice;

• ′ is the complement operation of that lattice;

• 1 and 0 are respectively the top and bottom elements.

The difference between Boolean algebras and Boolean lattices is that in the Boolean
algebras the operation of complementation and the bounds are part of the algebra structure
while in a Boolean lattice not. This has some effects in several notions concerning Boolean
algebras. For example for homomorphisms. An homomorphism between Boolean algebras has
to respect the complementation operation as well as the bounds, whereas an homomorphism
between the corresponding Boolean lattices does not need to.

Definition 2.31. A Boolean algebra B is called complete if every subset has both a supremum
and an infimum. An element a ∈ B is called atomic whenever, for all b ∈ B: if b ≤ a then
either b = 0 or b = a. A Boolean algebra B is called atomic if every element b ∈ B can be
expressed as the supremum of a (possibly infinite) set of atoms in B.

The class of all complete atomic Boolean algebras together with Boolean algebra homo-
morphisms preserving arbitrary infima and suprema forms a category, denoted by CABA.
Every complete atomic Boolean algebra B is isomorphic to P(S), for some set S. (As a con-
sequence, the cardinality of a finite Boolean algebra, which is always complete and atomic, is
a power of 2). More precisely, there exists the following dual equivalence between the category
Set of sets and functions, and the category CABA:

Set ' CABAop

P

At

where the functor At maps a complete atomic Boolean algebra to its set of atoms.

A la vall blanca em vaig deixar
fermes arrels i un trist record,
sembrant la terra amb les cançons
vaig caminar perdut
perseguint el meu rumb.

Camins — Obrint Pas
Pep Gimeno “Botifarra”

https://www.youtube.com/watch?v=GaA3ErjD7CI

23

CHAPTER 3

Equations and coequations: A dual equivalence

3.1 Introduction

Because of the natural isomorphism

(X ×A)→ X ∼= X → XA,

a deterministic automaton can be viewed both as an algebra [31, 32] and as a coalgebra [62, 63].
This algebra-coalgebra duality in the modelling of automata leads us to the following setting
for our investigations:

1

A∗

2

(X,α) 2A
∗

c

ε?

oc

x

ε

rx

(3.1)

In the middle, we have the automaton (X,α). A function x : 1 → X represents the choice
of a designated point, that is, an initial state, x ∈ X. Dually, a function c : X → 2 gives
us a (binary) colouring of the states in X or, equivalently, a set {x | c(x) = 1} of final or
accepting states. On the left side of our diagram, A∗ is the automaton of all words over A,
with transitions

v va
a

and with the empty word ε as initial state. Furthermore, every point x : 1→ X determines a
unique homomorphism

rx : A∗ → X, w 7→ xw,

that sends any word w to the state xw reached from the initial state x on input w. Dually,
on the right hand side of our diagram, 2A

∗
is the automaton of all languages over A, with

transitions

L La = {v ∈ A∗ | av ∈ L},a

24 Chapter 3 Equations and coequations: A dual equivalence

and colouring function ε?, asking whether the empty word belongs to a language or not

ε?(L) =

{
1, if ε ∈ L;
0, if ε 6∈ L.

Every colouring c : X → 2 determines a unique homomorphism

oc : X → 2A
∗

x 7→ {w ∈ A∗ | c(xw) = 1}

that sends a state x to the language that it accepts.
As it turns out, a pointed automaton (X,x, α) is an algebra (and not a coalgebra); a

coloured automaton (X, c, α) is a coalgebra (and not an algebra). And a pointed and coloured
automaton (X,x, c, α), which is what in the literature is usually taken as the definition of
‘deterministic automaton’, is neither an algebra nor a coalgebra.

Now sets of equations will live in the left – algebraic – part of our diagram and correspond
to the kernels of the homomorphisms rx; that is, sets of pairs of words (v, w) with xv = xw.
Dually, sets of coequations live in the right – coalgebraic – part of our diagram and correspond
to the image of the homomorphisms oc; that is, sets of languages containing oc(x), for every
x ∈ X. Satisfaction of sets of equations and coequations by the automaton (X,α) will then
be defined by quantifying over all points x : 1→ X and all colourings c : X → 2, respectively.

The main result of the present chapter will be the proof that equations and coequations
of automata are related by a dual equivalence. To this end, we will further refine diagram
(3.1) as follows:

1

A∗ free(X,α) (X,α) cofree(X,α)

2

2A
∗

cx

The new diagram includes, for every automaton (X,α) a new automaton free(X,α), which
will be shown to represent the largest set of equations satisfied by (X,α). And, dually, we
will construct an automaton cofree(X,α), which will represent the smallest set of coequations
satisfied by (X,α). The automaton free(X,α) will turn out to be isomorphic to the so-called
transition monoid from algebraic language theory [67, 55] and as a consequence, cofree(X,α)
can be viewed as its dual.

Next, we will show that the constructions of free(X,α) and cofree(X,α) are in fact func-
torial, that is, they act also on (certain) homomorphisms of automata. If we then restrict
the functor cofree to the image of the category of automata under free, we obtain our main
result: a dual equivalence. This dual equivalence relates, more precisely, two special classes
of automata: on the one hand, the class of quotients A∗/C of the automaton A∗ with respect
to a congruence relation C ⊆ A∗ × A∗; and on the other hand, the class of preformations
of languages, which in the present paper are defined as subautomata of the automaton 2A

∗

that are complete atomic Boolean algebras closed under left and right language derivatives.
As it turns out, this duality is a lifting of the well-known dual equivalence between sets
and complete atomic Boolean algebras: on congruence quotients, cofree acts as the powerset
construction, and on preformations, applying free amounts to taking the set of atoms.

We then illustrate the dual equivalence between equations and coequations by applications
to both regular languages and non-regular ones, such as context-free languages. Finally,
we introduce the notion of equational bisimulation and a corresponding coinduction proof

3.2. Setting the scene 25

principle. For a given congruence relation C, we can show that a language satisfies C and
hence belongs to the correponding preformation of languages, by constructing a suitable
equational bisimulation.

3.2 Setting the scene

The set A∗ determines a pointed automaton (A∗, ε, σ) with initial state ε and transition
function σ defined by

σ : A∗ → (A∗)A, σ(w)(a) = wa. (3.2)

Proposition 3.1. The pointed automaton (A∗, ε, σ) is initial in the following sense: for any
given automaton (X,α), every choice of initial state x : 1 → X induces a unique function
rx : A∗ → X, given by rx(w) = xw, that makes the following diagram commute:

1

A∗ X

(A∗)×A X ×A

x

rx

(rx,idA)

ε

σ̃ α̃

This property makes (A∗, ε, σ) an initial (1+G)-algebra. Equivalently, the automaton (A∗, σ)
is a free G-algebra on the set 1. The function rx maps a word w to the state xw reached from
the initial state x on input w and is therefore called the reachability map for (X,x, α).

The set 2A
∗

of languages determines a coloured automaton (2A
∗
, ε?, τ) with colouring

function ε? defined by

ε?: 2A
∗ → 2, ε?(L) =

{
1, if ε ∈ L;
0, if ε 6∈ L.

and transition function τ defined by

τ : 2A
∗ → (2A

∗
)A, τ(L)(a) = La. (3.3)

Proposition 3.2. The coloured automaton (2A
∗
, ε?, τ) is final in the following sense: for

any given automaton (X,α), every choice of colouring function c : X → 2 induces a unique
function oc : X → 2A

∗
, given by oc(x) = {w | c(xw) = 1 }, that makes the following diagram

commute:

2

2A
∗

X

(2A
∗
)AXA

ε?

oc

(oc)A

c

τα

26 Chapter 3 Equations and coequations: A dual equivalence

This property makes (2A
∗
, ε?, τ) a final (2×F)-coalgebra. Equivalently, the automaton (2A

∗
, τ)

is an F -coalgebra that is cofree on the set 2. The function oc maps a state x to the language
oc(x) accepted by x. Since the language oc(x) can be viewed as the observable behaviour of
x, the function oc is called the observability map.

Summarising, we have set the following scene for our investigations:

1

A∗ X

(A∗)A XA

2

2A
∗

(2A
∗
)A

ε?

oc

(oc)A

c

τα

x

rx

(rx)A

ε

σ

(3.4)

If the reachability map rx is surjective then we call (X,x, α) reachable. If the observability
map oc is injective then we call (X, c, α) observable. And if rx is surjective and oc is injective
then we call (X,x, c, α) (reachable and observable, or:) minimal.

Fixing the language L ∈ 2A
∗
, we obtain the following variation of the picture above:

1

A∗ 2A
∗

2

ε?

L

ε

h

L

where the lower L is in fact the characteristic function of L ⊆ A∗, and where the homomor-
phism h satisfies h(w) = Lw. As a consequence, we have

h(v) = h(w) ⇔ v ≡MN w

where on the right, we have the celebrated Myhill-Nerode equivalence, defined by

v ≡MN w ⇔ ∀u ∈ A∗, vu ∈ L⇔ wu ∈ L

A minimal automaton accepting L is now obtained by the epi-mono factorisation of h:

1

A∗ A∗/ker(h) 2A
∗

2

ε?

L

ε

L

q i

x

c

where x = q ◦ ε and c = ε? ◦ i. This minimal automaton is unique up-to isomorphism because
epi-mono factorisations are. And because A∗/ker(h) ∼= im(h), it is equal to

〈L〉 ⊆ 2A
∗

3.2. Setting the scene 27

that is, the subautomaton of (2A
∗
, τ) generated by L. All in all we have obtained the following

picture:

1

A∗ 〈L〉 2A
∗

2

ε?

L

ε

L

r i
(3.5)

with r(w) = Lw and i(K) = K, for all w ∈ A∗ and K ∈ 〈L〉. In this case, ker(r) = ≡MN.
In conclusion of this section, we observe that 〈L〉 is finite iff the language L is rational.

This fact is a version [26, 28] of Kleene’s correspondence between finite automata and rational
languages [46].

3.2.1 Equations and coequations

Let A be an alphabet. In this section we will be referring to the situation of (3.4).

Definition 3.3 (equations). A set of equations is a bisimulation equivalence relation E ⊆
A∗×A∗ on the automaton (A∗, σ). We define (X,x, α) |= E —and say: the pointed automaton
(X,x, α) satisfies E— by

(X,x, α) |= E ⇔ ∀(v, w) ∈ E, xv = xw.

Because
∀(v, w) ∈ E, xv = xw ⇔ E ⊆ ker(rx),

we have, equivalently, that (X,x, α) |= E iff the reachability map rx factors through A∗/E:

1

A∗ A∗/E X

x

ε
[ε]

q h

rx

where the homomorphisms (of pointed automata) q and h are given by

q(w) = [w] and h([w]) = rx(w),

respectively. We define (X,α) |= E —and say: the automaton (X,α) satisfies E— by

(X,α) |= E ⇔ ∀x : 1→ X, (X,x, α) |= E

⇔ ∀x ∈ X, ∀(v, w) ∈ E, xv = xw.

Note that we consider sets of equations E and that (v, w) ∈ E implies (vu,wu) ∈ E, for
all v, w, u ∈ A∗, because E is —by definition— a bisimulation relation on (A∗, σ). Still we
will sometimes consider also a single equation (v, w) ∈ A∗ ×A∗ and write

(X,α) |= v = w,

28 Chapter 3 Equations and coequations: A dual equivalence

to denote
(X,α) |= v=w,

where v=w is defined as the smallest bisimulation equivalence on A∗ containing (v, w). Fur-
thermore, we will use (X,α) |= {v = w, t = u} to denote

(X,α) |= v = w ∧ (X,α) |= t = u

Definition 3.4 (coequations). A set of coequations is a subautomaton D ⊆ 2A
∗

of the
automaton (2A

∗
, τ). We define (X, c, α) |= D —and say: the coloured automaton (X, c, α)

satisfies D— by
(X, c, α) |= D ⇔ ∀x ∈ X, oc(x) ∈ D.

Because
∀x ∈ X, oc(x) ∈ D ⇔ im(oc) ⊆ D,

we have, equivalently, that (X, c, α) |= D iff the observability map oc factors through D:

2

X D 2A
∗h i

oc

ε?

c

ε?

where the homomorphisms (of coloured automata) h and i are given by

h(x) = oc(x) and i(L) = L,

respectively. We define (X,α) |= D —and say: the automaton (X,α) satisfies D— by

(X,α) |= D ⇔ ∀c : X → 2, (X, c, α) |= D

⇔ ∀c : X → 2, ∀x ∈ X, oc(x) ∈ D.

Example 3.5. We consider the automaton (Z, γ) defined by the following diagram:

(Z, γ) = x y

a

b

b a

Here are some examples of equations:

(Z, x, γ) |= {b = ε, ab = ε, aa = a}
(Z, y, γ) |= {a = ε, ba = ε, bb = b}

Taking the intersection of the (bisimulation equivalences generated by) these sets, we obtain
that

(Z, γ) |= {aa = a, bb = b, ab = b, ba = a}

The above set of equations or, again more precisely, the bisimulation equivalence relation on
(A∗, σ) generated by it, is the largest set of equations satisfied by (Z, γ). For examples of
coequations, we consider the following 2 (out of all 4 possible) coloured versions of (Z, γ):

3.2. Setting the scene 29

(Z, c, γ) = x y

a

b

b a

(Z, d, γ) = x y

a

b

b a

(Thus c(x) = 1, c(y) = 0, d(x) = 0 and d(y) = 1.) The observability mappings oc and od map
these automata to

im(oc) = (a∗b)∗ (a∗b)+

a

b

b a

im(od) = (b∗a)+ (b∗a)∗

a

b

b a

It follows that

(Z, c, γ) |= {(a∗b)∗, (a∗b)+} (Z, d, γ) |= {(b∗a)∗, (b∗a)+}

3.2.2 Free and cofree automata

Let (X,α) be an automaton, then, on one hand, we show how to construct an automaton
that corresponds to the largest set of equations satisfied by (X,α). And, on the other hand,
we show how to construct an automaton that corresponds to the smallest set of coequations
satisfied by (X,α).

Definition 3.6. Let X = {xi | i ∈ I} be the set of states of an automaton (X,α). We define
a pointed automaton free(X,α) in two steps, as follows:

(i) First, we take the product of the pointed automata (X,xi, α) that we obtain by letting
the initial element xi range over X. This yields a pointed automaton (ΠX, x̄, ᾱ) with

ΠX =
∏

x : 1→X
Xx
∼= X |X|,

(where Xx = X), with x̄ = (xi)i∈I , and with ᾱ : ΠX → (ΠX)A defined component-wise

ᾱ((yi)i∈I)(a) = ((yi)a)i∈I .

(ii) Next we consider the reachability map rx̄ : A∗ → ΠX and define:

Eq(X,α) = ker(rx̄), free(X,α) = A∗/Eq(X,α).

This yields the pointed automaton (free(X,α), [ε], [σ]):

30 Chapter 3 Equations and coequations: A dual equivalence

1

A∗ free(X,α) ΠX

rx̄

ε
[ε]

x̄

Note that free(X,α) ∼= im(rx̄).

Definition 3.7. Let X = {xi | i ∈ I} be the set of states of an automaton (X,α). We define
a coloured automaton cofree(X,α) in two steps, as follows:

(i) First, we take the coproduct of the 2|X| coloured automata (X, c, α) that we obtain by
letting c range over the set X → 2 of all colouring functions. This yields a coloured
automaton (ΣX, ĉ, α̂) with

ΣX =
∑

c : X→2

Xc,

(where Xc = X), and with ĉ and α̂ defined component-wise.

(ii) Next we consider the observability map oĉ : ΣX → 2A
∗

and define:

coEq(X,α) = im(oĉ), cofree(X,α) = coEq(X,α).

This yields the coloured automaton (cofree(X,α), ε?, τ):

2

ΣX cofree(X,α) 2A
∗

oĉ

ε?

ĉ

ε?

Note that cofree(X,α) ∼= ΣX/ ker(oĉ).

The automata free(X,α) and cofree(X,α) are free and cofree on (X,α), respectively,
because of the following universal properties:

1

free(X,α) (X,α)
∃!

∀x 2

(X,α) cofree(X,α)

∀c

∃!

For every point x : 1→ X there exists a unique homomorphism from free(X,α) to (X,x, α),
given by the “x-th” projection from the product ΠX to X. Dually, for every colouring
c : X → 2, there exists a unique homomorphism from (X, c, α) to cofree(X,α), given by the
“c-th” embedding of X into the coproduct ΣX.

The main raison d’être for the constructions of free and cofree is that they represent the
sets Eq(X,α) and coEq(X,α), which are, by construction, the largest set of equations and
the smallest set of coequations satisfied by (X,α).

3.2. Setting the scene 31

Proposition 3.8. The set Eq(X,α) is the largest set of equations satisfied by (X,α):

Eq(X,α) =
⋃
{E ⊆ A∗ ×A∗ | E is a set of equations and (X,α) |= E }.

The set coEq(X,α) is the smallest set of coequations satisfied by (X,α):

coEq(X,α) =
⋂
{D ⊆ 2A

∗ | D is a set of coequations and (X,α) |= D }.

Proposition 3.9. The set of equations Eq(X,α) is a congruence on A∗.

Proof. We already know that Eq(X,α) is a right-congruence. Let (v, w) ∈ Eq(X,α) and
u ∈ A∗. For a state x ∈ X, we have

xuv = (xu)v = (xu)w = xuw

(since equations (v, w) ∈ Eq(X,α) hold in all states of X). It follows that (uv, uw) ∈ Eq(X,α)
and we conclude that Eq(X,α) is a congruence.

Applying the picture above to the minimal automaton 〈L〉 of a given language L ∈ 2A
∗

we obtain the following refinement of (3.5):

1

A∗ free〈L〉 〈L〉 cofree〈L〉 2A
∗

2

ε?

L

r1ε

L

r2

(3.6)

We already saw in (3.5) that ker(r1) = ≡MN, the Myhill-Nerode equivalence for L. Further-
more, it follows from Proposition 3.8 and Proposition 3.9 that

Eq〈L〉 = ker(r2) = ≡L (3.7)

where ≡L is the so-called syntactic congruence of L, which is defined, for all v, w ∈ A∗, by

v ≡L w if and only if ∀u1, u2 ∈ A∗, (u1vu2 ∈ L⇔ u1wu2 ∈ L)

Corollary 3.10. For a language L ∈ 2A
∗
, the congruences Eq〈L〉 and ≡L coincide.

Proof. Let (v, w) ∈ Eq〈L〉 and let u1 be an arbitrary word in A∗. The language Lu1 is in 〈L〉
and satisfies the equation Lu1v = Lu1w, that is, for any word u2 ∈ A∗,

(u2 ∈ Lu1v ⇔ u2 ∈ Lu1w) equivalently, (u1vu2 ∈ L⇔ u1wu2 ∈ L)

that is, (v, w) ∈ ≡L. The other inclusion is proved similarly.

Example 3.11 (Example 3.5 continued). We consider our previous example

32 Chapter 3 Equations and coequations: A dual equivalence

(Z, γ) = x y

a

b

b a

The product of (Z, x, γ) and (Z, y, γ) is:

(ΠZ, (x, y), γ) =

(x,y)

(y,x)

(x,x) (y,y)

a

b

b a

ab

ab

Taking im(r(x,y)) yields the part that is reachable from (x, y):

im(r(x,y)) =

(x,y)

(x,x) (y,y)

a

b

b a

ab

We know that free(Z, γ) ∼= im(r(x,y)), which leads to the following isomorphic automaton:

free(Z, γ) =

[ε]

[b] [a]
a

b

b a

ab

Since free(Z, γ) = A∗/Eq(Z, γ), we can deduce from the above automaton that Eq(Z, γ)
consists of

Eq(Z, γ) = {aa = a, bb = b, ab = b, ba = a}

where the set on the right represents the smallest bisimulation equivalence – in fact, a con-
gruence – on (A∗, σ). The set Eq(Z, γ) is the largest set of equations satisfied by (Z, γ).

Next we turn to coequations. The coproduct of all 4 coloured versions of (Z, γ) is

(ΣZ, ĉ, γ̂) =

x1 y1

a

b

b a

x3 y3

a

b

b a

x2 y2

a

b

b a

x4 y4

a

b

b a

3.3. A dual equivalence 33

The observability map oĉ : ΣZ → 2A
∗

is given by

oĉ(x1) oĉ(y1) oĉ(x2) oĉ(y2) oĉ(x3) oĉ(y3) oĉ(x4) oĉ(y4)

∅ ∅ (a∗b)∗ (a∗b)+ (b∗a)+ (b∗a)∗ A∗ A∗

Since cofree(Z, γ) = im(oĉ), this yields

cofree(Z, γ) =

∅ a,b

A∗ a,b

(a∗b)∗ (a∗b)+

a

b

b a

(b∗a)+ (b∗a)∗

a

b

b a

(3.8)

The set of states of this automaton is cofree(Z, γ), which is the smallest set of coequations
satisfied by (Z, γ).

Summarising the present section, we have obtained, for every automaton (X,α), the
following refinement of our previous scene (3.4):

1

A∗ free(X,α) (X,α) cofree(X,α)

2

2A
∗

∀c∀x (3.9)

The automata free(X,α) and cofree(X,α) represent the largest set of equations and the small-
est set of coequations satisfied by (X,α). As we mentioned earlier, all of this applies to infinite
X as well.

3.3 A dual equivalence

In this section, we shall first show that —when suitably restricted— both constructions of
free and cofree are in fact functorial, that is, they act not only on automata but also on
homomorphisms. Next we shall see that by restricting the functors free and cofree further
still, they turn out to form a dual equivalence.

We will be using the following categories:

A: the category of automata (X,α) and automata homomorphisms;

Am: the category of automata (X,α) and automata monomorphisms;

Ae: the category of automata (X,α) and automata epimorphisms.

As it turns out, we can extend the definitions of free and cofree to monomorphisms and
epimorphisms, respectively, such that we obtain functors of the following type:

free : Am → (Ae)op, cofree : Ae → (Am)op.

Here the superscript op indicates a reversal of arrows: for monomorphisms,

34 Chapter 3 Equations and coequations: A dual equivalence

(X,α) (Y, β)
m free free(X,α),free(Y, β)

free(m)

where free(m) is defined by

free(m)([w]Eq(Y,β)) = [w]Eq(X,α).

Because m is a monomorphism, we have Eq(Y, β) ⊆ Eq(X,α), which implies that free(m) is
a well-defined epimorphism. Similarly, for epimorphisms,

(X,α) (Y, β)
e cofree cofree(X,α),cofree(Y, β)

cofree(e)

where cofree(e) is just set inclusion. Because e is an epimorphism, we have coEq(Y, β) ⊆
coEq(X,α), which implies that cofree(e) is a well-defined monomorphism.

3.3.1 Main theorems

Congruence quotients

Next we introduce the category C of congruence quotients, which is defined as follows:

objects(C) = {(A∗/C, [σ]) | C ⊆ A∗ ×A∗ is a congruence relation},
arrows(C) = {e : A∗/C → A∗/D | e is an epimorphism of automata},

where [σ] corresponds to the quotient transition derived from the transition introduced in
3.2. We observe that C is a subcategory of Ae and that it is in fact a set: C is isomorphic to
the set of all congruence relations on A∗, together with set inclusion. That is, there exists a
(unique) epimorphism e : A∗/C → A∗/D if and only if C ⊆ D.

Since congruence quotients come equipped with a canonical choice of transition function,
that is, [σ], we shall often simply write A∗/C for (A∗/C, [σ]).

Theorem 3.12. free(Am) = Cop

Proof. For every automaton (X,α), free(X,α) = A∗/Eq(X,α) is a congruence, by Proposition
3.9. For the reverse inclusion, consider a congruence C ⊆ A∗ ×A∗. One readily shows that

Eq(A∗/C) = C,

which implies free(A∗/C) = A∗/Eq(A∗/C) = A∗/C. This proves the theorem for objects.
For arrows, we already saw that free maps a monomorphism to an epimorphism of congruence
quotients. Conversely, let e : A∗/C → A∗/D be an epimorphism. We define

m : A∗/D → (A∗/C +A∗/D),

where + denotes the disjoint union of automata. Because

Eq(A∗/C +A∗/D) = C ∩D,

and because C ⊆ D, it follows that free(A∗/C+A∗/D) = A∗/(C∩D) = A∗/C, which implies
that free(m) = e.

3.3. A dual equivalence 35

Preformations of languages

We will be using the following notion of a preformation of languages.

Definition 3.13. A preformation of languages is a set V ⊆ 2A
∗

such that:

(i) V is a complete atomic Boolean subalgebra of 2A
∗
;

(ii) for all L ∈ 2A
∗
: if L ∈ V then for all a ∈ A, both La ∈ V and aL ∈ V .

We note that, being a subalgebra of 2A
∗
, a preformation V always contains both ∅ and A∗.

Next we define the category PL of preformations of languages, as follows:

objects(PL) = {(V, τ) | V ⊆ 2A
∗

is a preformation of languages},
arrows(PL) = {m : V →W | m is an monomorphism of automata}.

where τ corresponds to the transition introduced in 3.3 of language derivatives. The category
PL is a subcategory of Am; furthermore, PL is in fact a set and the arrows in PL are just
set inclusion. Since preformations of languages come equipped with a canonical choice of
transition function, that is, τ (right-derivatives of languages), we shall often simply write V
for (V, τ).

The main result of this subsection will be that

cofree(C) = (PL)op,

which we shall prove in several steps.
We begin with an elementary but useful property of colourings, which uses the following

definition. For an automaton (X,α) and state x ∈ X, we define the following (“one-point”)
colouring:

δx : X → 2, δx(y) = 1 ⇔ x = y.

Lemma 3.14. For every automaton (X,α), state y ∈ X and colouring c : X → 2,

oc(y) =
⋃
{ oδx(y) | x ∈ X and c(x) = 1 }.

The states of congruence quotients are equivalence classes of words w ∈ A∗, that is,
languages [w] ⊆ A∗. The following lemma shows that each of them occurs as the observable
behaviour of the inital state [ε], under the corresponding one-point colouring.

Lemma 3.15. For every congruence quotient A∗/C ∈ C and every [w] ∈ A∗/C,

oδ[w]
([ε]) = [w].

Proof. For all v ∈ A∗,

v ∈ oδ[w]
([ε]) ⇔ δ[w]([ε]v) = 1 ⇔ [ε]v = [w] ⇔ [v] = [w] ⇔ v ∈ [w].

The following lemma shows that all the observable behaviour of a congruence quotient
stems from its initial state.

36 Chapter 3 Equations and coequations: A dual equivalence

Lemma 3.16. For every congruence quotient A∗/C ∈ C and every L ∈ coEq(A∗/C), there
exists a colouring c : A∗/C → 2 such that

oc([ε]) = L.

Proof. If L ∈ coEq(A∗/C) then there exist a state [w] ∈ A∗/C and a colouring d : A∗/C → 2
with od([w]) = L. We define a new colouring c : A∗/C → 2, for all [v] ∈ A∗/C, by

c([v]) = d([w]v).

Note that c is well-defined because C is a (left) congruence on A∗. It now follows that

v ∈ oc([ε]) ⇔ c([ε]v) = 1 ⇔ c([v]) = 1 ⇔ d([w]v) = 1 ⇔ v ∈ od([w]) ⇔ v ∈ L,

which concludes the proof.

Combining the above, we obtain the following characterisation.

Proposition 3.17. For every congruence quotient A∗/C ∈ C,

coEq(A∗/C) = {L ∈ 2A
∗ | L =

⋃
V for some V ⊆ A∗/C }.

Therefore,
coEq(A∗/C) ∼= P(A∗/C).

Proof. There is a trivial one-to-one correspondence between colourings

c : A∗/C → 2,

and subsets V ⊆ A∗/C given by Vc = c−1(1). Using Lemma 3.14 and Lemma 3.15, we obtain,
as a consequence, that

oc([ε]) =
⋃
{ oδK ([ε]) | K ∈ A∗/C and c(K) = 1 }

=
⋃
{K | K ∈ A∗/C and c(K) = 1 }

=
⋃
Vc.

The first equality of the proposition now follows from Lemma 3.16. Since the languages
L ∈ A∗/C form a partitioning of A∗, the second identity (isomorphism) follows.

We are ready to prove the following.

Proposition 3.18. For every congruence quotient A∗/C ∈ C, coEq(A∗/C) is a preformation
of languages with A∗/C as the set of atoms.

Proof. It follows from Proposition 3.17 that coEq(A∗/C) is a complete atomic Boolean alge-
bra, with A∗/C as the set of atoms, and containing A∗ and ∅.

Because coEq(A∗/C) is a subautomaton of (2A
∗
, τ), it is closed under right derivatives.

In order to prove that it is also closed under left derivatives, consider L ∈ coEq(A∗/C)
and w ∈ A∗. By Lemma 3.16, there exists a colouring c : A∗/C → 2 with L = oc([ε]). We
define a new colouring cw : A∗/C → 2, for [v] ∈ A∗/C, by

cw([v]) = c([vw]).

3.3. A dual equivalence 37

(Note that cw is well-defined because C is a (left) congruence on A∗.) Because

v ∈ ocw([ε]) ⇔ cw([v]) = 1 ⇔ c([vw]) = 1 ⇔ vw ∈ L ⇔ v ∈ wL,

it follows that ocw([ε]) = wL. And because ocw([ε]) is in coEq(A∗/C), so is wL.

Still on our way towards a proof of cofree(C) = (PL)op, let us next fix a preformation of
languages V ∈ PL and show that it is the image under cofree of a congruence quotient on
A∗. To this end, we define the following mapping:

η : A∗ → At(V) η(w) = the unique atom L ∈ V with w ∈ L.

Since V is a complete atomic Boolean algebra containing A∗, η is well-defined and surjective.
We shall show next that it is a congruence quotient of A∗.

Lemma 3.19. The set ker(η) is a congruence on A∗ and hence η is a congruence quotient

η : (A∗, σ)→ (At(V), [σ]).

Proof. It suffices to show that, for all v, w ∈ A∗, if η(v) = η(w) then, for all u ∈ A∗,

η(uv) = η(uw) and η(vu) = η(wu)

In order to prove the first equality, we assume η(v) = η(w) and consider η(uv). Because
uv ∈ η(uv) we have v ∈ η(uv)u. Because V is closed under right derivatives, η(uv)u ∈ V and
because V is atomic, we have η(v) ⊆ η(uv)u. We have the following sequence of implications:

η(v) ⊆ η(uv)u ⇒ η(w) ⊆ η(uv)u

⇒ w ∈ η(uv)u

⇒ uw ∈ η(uv)

⇒ η(uw) ⊆ η(uv).

The same argument will prove η(uv) ⊆ η(uw), which proves the first equality. The second
equality follows by the same argument, using left instead of right derivatives.

There is also the following.

Lemma 3.20. Eq(V) = ker(η).

Proof. We have to show, for all v, w ∈ A∗, that

(for all L ∈ V : Lv = Lw) ⇔ η(v) = η(w).

From ε ∈ η(v)v = η(v)w it follows that w ∈ η(v) and hence η(v) = η(w), which proves the
above implication from left to right.

For the implication from right to left, assume η(v) = η(w). Since V is a complete atomic
Boolean algebra, it suffices to prove that Lv = Lw for L ∈ At(V), since (right) derivatives
commute with unions. So consider u ∈ A∗ and η(u) ∈ At(V). For all x ∈ A∗,

x ∈ η(u)v ⇒ vx ∈ η(u) ⇒ η(u) = η(vx) ⇒ η(u) = η(wx) ⇒ x ∈ η(u)w,

where the last but one implication follows from Lemma 3.19. This proves η(u)v ⊆ η(u)w.
The same argument proves the reverse inclusion, which concludes the proof.

38 Chapter 3 Equations and coequations: A dual equivalence

Combining the two lemma’s above now gives the following.

Proposition 3.21. free(V) = (At(V), [σ]).

Proof.
free(V) = (A∗/Eq(V), [σ]) = (A∗/ker(η), [σ]) = (At(V), [σ])

Corollary 3.22. cofree ◦ free(V) = V .

Proof. By Proposition 3.21, cofree ◦ free(V) = cofree(At(V), [σ]). And by Proposition 3.17,
cofree(At(V), [σ]) = V .

Finally, we obtain the main result of this subsection.

Theorem 3.23. cofree(C) = (PL)op.

Proof. The identity holds for objects, by Proposition 3.18 and Corollary 3.22. Furthermore,
every epimorphism of congruence quotients is mapped by cofree to the reversed inclusion of
the corresponding preformations, and conversely, every inclusion of preformations is easily
seen to stem from an epimorphism of congruence quotients.

free and cofree form a dual equivalence

We have obtained the following dual equivalence.

Theorem 3.24. The category C of congruence quotients is dually equivalent to the category
PL of preformations of languages via the functors free and cofree. That is,

cofree : C ' (PL)op : free

Proof. For a preformation of languages V ,

cofree ◦ free(V) = V,

by Corollary 3.22. For a congruence quotient A∗/C, we have

free ◦ cofree(A∗/C) = At(cofree(A∗/C)) = A∗/C,

by Proposition 3.21 and Proposition 3.18, respectively. This proves the theorem for objects.
One readily shows that this correspondence extends to arrows as well.

As a consequence of our Theorem 3.24 we deduce the following corollary.

Corollary 3.25. For every congruence C in A∗ and every language L in 2A
∗
,

L ∈ coEq(A∗/C) ⇔ C ⊆ Eq〈L〉.

Proof. If L ∈ coEq(A∗/C), then 〈L〉 is completely included in coEq(A∗/C). By Theorems
3.12 and 3.24 there exists an epimorphism from A∗/C to free〈L〉, that is, C ⊆ Eq〈L〉. On
the contrary, if C ⊆ Eq〈L〉, there exists an epimorphism from A∗/C to free〈L〉. By Theo-
rem 3.24, coEq(A∗/Eq〈L〉) is completely included in coEq(A∗/C). Recall that the colouring
δL : A∗/Eq〈L〉 → 2, given by δL([w]) = 1 iff w ∈ L, is a well-defined function and the equation
oδL([ε]) = L holds, therefore L ∈ coEq(A∗/C).

Corollary 3.26. Let L be a language in 2A
∗
, then L ∈ coEq(A∗/Eq〈L〉).

3.3. A dual equivalence 39

3.3.2 Illustrating the duality

We illustrate the duality Theorem 3.24 with some examples.

Example 3.27 (Example 3.11, continued). We consider our previous example

(Z, γ) = x y

a

b

b a

for which we had computed

free(Z, γ) =

[ε]

[b] [a]
a

b

b a

ab

We recall that the transition structure of the automaton free(Z, γ) is inherited from the
automaton (A∗, σ) and hence satisfies

[w] [wa].
a

(In particular, transitions between these states are not given, as in (2A
∗
, τ), by right deriva-

tives.) By Lemma 3.15, each of the languages [ε], [a] and [b] can be explicitly computed as
the behaviour of the initial state [ε], under the corresponding one-point colouring. This gives:

free(Z, γ) =

1

(a∗b)+ (b∗a)+

a

b

b a

ab

By a computation similar to the one in Example 3.11, we obtain

cofree ◦ free(Z, γ) =

1 ∅
a,b

a,b

A+ A∗ a,b
a,b

(a∗b)∗ (a∗b)+

a

b

b a

(b∗a)+ (b∗a)∗

a

b

b a

(3.10)

By Proposition 3.18, the automaton cofree ◦ free(X,α) is a preformation of languages. In
particular, it is a Boolean subalgebra of 2A

∗
, which we can represent as follows (indicating

40 Chapter 3 Equations and coequations: A dual equivalence

language inclusion by edges):

cofree ◦ free(Z, γ) =

∅

1

A+

A∗

(b∗a)+ (a∗b)+

(b∗a)∗ (a∗b)∗

(3.11)

(Note that cofree ◦ free(Z, γ) ∼= P(free(Z, γ)). Since free ◦ cofree ◦ free = free, we obtain the
following picture, in which we have included an example of an epimorphism e and its image,
to illustrate the action of free and cofree on arrows:

[ε]

[b] [a]

a

b

b a

ab

∅

1

A+

A∗

(b∗a)+ (a∗b)+

(b∗a)∗ (a∗b)∗

e
free

cofree

m

[ε]

[a]a,b

a,b

∅

A∗

1 A+

(Although it is made superfluous by the duality theorem, it is an interesting little exercise to
apply free to the automaton cofree ◦ free(Z, γ) ‘by hand’, that is, by using the definition of
free.)

Example 3.28. Here is an example of an application of the duality Theorem 3.24 to a
language that is not regular. Let A = {a, b} and let, for w ∈ A∗,

|w|a = number of a’s occurring in w;
|w|b = number of b’s occurring in w.

We consider the context-free language L defined by

L = {w ∈ A∗ | |w|a ≥ |w|b }.

Its minimal automaton 〈L〉, which is the smallest subset of 2A
∗

that contains L and is closed
under right derivatives, looks as follows:

〈L〉 = · · · L−1

a

b

L0

a

b

L1

a

b

L2

a

b

· · ·
a

b

3.3. A dual equivalence 41

where Ln = {w ∈ A∗ | |w|a + n ≥ |w|b }, for all n ∈ Z. If we define a transition function
α : Z→ ZA by na = n+ 1 and nb = n− 1, then we obtain an isomorphism 〈L〉 ∼= (Z, α). It is
easy to see that free〈L〉 ∼= 〈L〉. If we next define a transition function β : P(Z)→ P(Z)A, for
all K ⊆ Z, by

Ka = K + 1 = {n+ 1 | n ∈ K}, Kb = K − 1 = {n− 1 | n ∈ K}.

then it follows that cofree〈L〉 ∼= (P(Z), β).

Example 3.29. In this example, which is taken from [29], we shall illustrate how the duality
Theorem 3.24 can be used for the equational definition of interesting classes of languages.
Let A = {a, b} and let ab=ba denote the smallest congruence on A∗ containing the equation
(ab, ba). It is easy to prove that, for all v, w ∈ A∗,

(v, w) ∈ ab=ba ⇔ |v|a = |w|a and |v|b = |w|b.

As a consequence, languages [w] in the congruence quotient A∗/ab=ba satisfy

[w] = { v ∈ A∗ | v is a permutation of w },

(with the usual definition of permutation of words). By the duality Theorem 3.24, we have
that V = cofree(A∗/ab=ba) is a preformation of languages. We now call a language L
commutative whenever L ∈ V . This terminology is justified by the following equivalences:

L ∈ V ⇔ L is the union of permutation equivalence classes [w]

⇔ 〈L〉 |= ab = ba.

The first equivalence follows from the fact that V is a preformation with atoms [w]; the second
from the fact that free(V) = A∗/ab=ba, whence Eq(V) = ab=ba.

3.3.3 Equational bisimulations

This section introduces the notion of equational bisimulation and we show how it can be used
to prove that a language satisfies a given set of equations. First of all, recall the following
property on coloured bisimulations (see Chapter 2 and [62]), which follows from the fact that
2A
∗

is a final (2× F)-coalgebra.

Proposition 3.30 ([62]). Let R ⊆ 2A
∗ × 2A

∗
be a coloured bisimulation on (2A

∗
, ε?, τ). If

(K,L) ∈ R then K = L.

It follows that no non-trivial coloured bisimulation can be defined on 2A
∗
. The above

property is often called the coinduction proof method: in order to show that K = L, it
suffices to define a coloured bisimulation R with (K,L) ∈ R. We refer to [62] for examples
that illustrate the usefulness of this proof method. In [23], it is shown how variations on the
above proof method lead to surprisingly efficient algorithms for proving the equivalence of
non-deterministic finite automata.

Here we generalise the notion of bisimulation for languages as follows. Let C ⊆ A∗ × A∗
be a congruence. We call a relation R ⊆ 2A

∗ × 2A
∗

an equational bisimulation with respect
to C, or C-bisimulation for short, if, for all (K,L) ∈ R,

(i) ε ∈ K ⇔ ε ∈ L;

42 Chapter 3 Equations and coequations: A dual equivalence

(ii) ∀(v, w) ∈ C, (Kv, Lw) ∈ R.

We have the following corresponding proof principle.

Proposition 3.31. Let C ⊆ A∗ × A∗ be a congruence and let R ⊆ 2A
∗ × 2A

∗
be a C-

bisimulation. For all (K,L) ∈ R,

(i) K = L;

(ii) 〈K〉 |= C.

Proof. Since (a, a) ∈ C, for all a ∈ A, any C-bisimulation is trivially also an ordinary bisimu-
lation. Thus (1) follows from Proposition 3.30. For (2), let (K,L) ∈ R and consider any state
Ku ∈ 〈K〉 and any pair (v, w) ∈ C. Since (K,K) = (K,L) ∈ R and R is a C-bisimulation,
and since (uv, uw) ∈ C, it follows that (Kuv,Kuw) ∈ R. By (1), we have Kuv = Kuw and
thus (Ku)v = (Ku)w, which proves (2).

Example 3.32. Let K = aA∗ + b(a∗b)∗ + b(b∗a)+. We shall use Proposition 3.31 to show
that K is commutative. Referring to Example 3.29, we need to prove that 〈K〉 |= ab = ba.
Let

M = A∗, N = (a∗b)∗ + (b∗a)+, O = (a∗b)+ + (b∗a)∗,

and let
R = {〈K,K〉} ∪ {M,N,O}2

Then R is an (ab=ba)-bisimulation. Thus 〈K〉 |= ab = ba, by Proposition 3.31.

Example 3.33. For a next example, we return to the context-free language of Example 3.28:

L = {w ∈ A∗ | |w|a ≥ |w|b },

and show that also L is commutative. Let Ln = {w ∈ A∗ | |w|a + n ≥ |w|b } and let

S = {〈Ln, Ln〉 | n ∈ Z }.

Then S is an (ab=ba)-bisimulation and thus 〈L〉 |= ab = ba, by Proposition 3.31.

3.4 Discussion and future work

The algebra-coalgebra duality of diagram (3.1) is a modern rendering of the duality between
reachability and observability of automata [10, 9], which ultimately goes back to Kalman’s
duality between controllability and observability in system theory [44, 45]. Our work builds
on [22] and [21], using the combined algebra-coalgebra perspective on automata that was
used there to give a new proof and various generalisations of Brzozowski’s [26] minimisation
algorithm. Our work is remotely related to [5], where the same perspective plays a role, albeit
in a rather different manner. None of these papers, however, —nor for that matter any other
paper we know of— discusses the relation between equations and coequations for automata.

In algebraic language theory (cf. [31, 32, 55, 58]), regular languages are typically studied
in terms of so-called syntactic monoids and congruences. For every set, there is the monoid
(XX , ·, 1X) defined by

XX = {φ | φ : X → X }, 1X(x) = x, φ · ψ = ψ ◦ φ.

3.4. Discussion and future work 43

It can be used to define for every automaton (X,α) a pointed automaton

(XX , 1X , α̃), α̃(φ)(a)(x) = φ(x)a,

where φ(x)a = α(φ(x))(a), as usual. Now the transition monoid [58] for (X,α):

(trans(X,α), 1X , α̃),

is defined by trans(X,α) = im(r1X), where r1X is the reachability map of (XX , 1X , α̃):

1

A∗ trans(X,α) XX

ε
1X

1X

rx̄

Theorem 3.34. For an automaton (X,α),

(free(X,α), x̄, ᾱ) ∼= (trans(X,α), 1X , α̃).

Proof. Let X = {x1, . . . , xn}. For every ȳ ∈ free(X,α) we define

φȳ : X → X φȳ(xi) = yi

Then φ(ȳ) = φȳ defines an isomorphism of pointed automata.

We have defined free(X,α) by using the product space ΠX rather than the function space
XX , because it allows us to define the automaton cofree(X,α) using the coproduct ΣX.
As a consequence, cofree(X,α) can be seen as the dual of free(X,α) or, equivalently, of the
transition monoid. If (X,α) = 〈L〉, the minimal automaton for a fixed language L ∈ 2A

∗
:

1

A∗ free〈L〉 ∼= trans〈L〉
r1X

ε
1X

then the kernel of the reachability map r1X is the syntactic congruence ≡L of L, as we already
observed in (3.6) and (3.7). Interestingly, the fact that free(X,α) carries a monoid structure
(which it inherits from the concatenation of words in A∗) does not play any role in our proof
of the duality between free and cofree.

The way we have obtained the dual equivalence, namely, as a restriction of the (more
generally defined) constructions of free and cofree – or, in other words, the constructions of
the syntactic monoid and its dual – seems to be new. For the case of finite automata, our
duality as such coincides with the use of Stone duality in [37, Theorem 1]. There all automata
A = (Q,A, δ, I, F) are finite. Consequently, the language recognised by A, denoted L(A), is
regular. For a finite alphabet A, the concatenation operation on A∗ gives rise to a residuated
family of operations on the set of all languages of A∗ as follows. Complex concatenation on
P(A∗) is given by

44 Chapter 3 Equations and coequations: A dual equivalence

• KL = {uv | u ∈ K and v ∈ L}

The residuals of this operation are uniquely determined by the residuation laws:

• ∀K,L,M ∈ P(A∗) KM ⊆ L ⇔ M ⊆ K\L ⇔ K ⊆ L/M

In particular, for any word w ∈ A∗, the following operations coincide

{w}\L = Lw and L/{w} = wL

We will make use of the following Lemmas about regular languages.

Lemma 3.35 ([37, Proposition 1]). If L is a regular language over A, then the set of right
and left derivatives {yLx | x, y ∈ A∗} is finite.

Lemma 3.36 ([15, Proposition 2.14]). If L is a regular language over A, then every class [w]
in A∗/Eq〈L〉 can be expressed as follows

[w] =
⋂
{yLx | w ∈ yLx} \

⋃
{yLx | w 6∈ yLx}. (3.12)

Definition 3.37 ([37, Definition 4]). Let A be a finite alphabet and L ⊆ A∗ a language over
A. Let B(L) be the Boolean subalgebra of P(A∗) generated by the set {yLx | x, y ∈ A∗}.
We will call B(L) the quotienting ideal generated by L. More generally a quotienting ideal of
P(A∗) is a Boolean subalgebra which is closed under the quotienting operations ()x and y()
for all x, y ∈ A∗.

The following theorem is one of the most important results of [37].

Theorem 3.38 ([37, Theorem 1]). Let L be a language recognised by an automaton. The
extended dual of the Boolean algebra with additional operations (B(L), \, /) is the syntactic
monoid of L. In particular, it follows that the syntactic monoid of L is finite and is effectively
computable.

The next proposition states that the dual object to the syntactic monoid of a regular
language L coincides with the preformation of languages cofree ◦ free〈L〉 we described in the
present paper. To prove it, we will use a previous lemma stating that every class [w] in
A∗/Eq〈L〉 belongs to the Boolean algebra generated by the set {yLx | x, y ∈ A∗}.

Proposition 3.39. For a regular language L over an alphabet A∗, the Boolean algebra with
additional operations (B(L), \, /) and cofree ◦ free〈L〉 coincide.

Proof. We will use the following abbreviation V = cofree ◦ free〈L〉. Let (v, w) ∈ Eq〈L〉, then
for all x ∈ A∗, we have that Lxv = Lxw. Therefore, for y ∈ A∗ we deduce the equations

yLxv = yLxw. It follows that Eq〈L〉 ⊆ Eq〈yLx〉. By Corollary 3.25 yLx is included in V .
Since V is a variety of languages, we conclude that B(L) is included in V . Recall that for
any pair of languages K,M in 2A

∗
, the equations K\M =

⋂
w∈KMw and M/K =

⋂
w∈K wM

hold. Hence, V is closed under residuals. Now, let [u] be an element in A∗/Eq〈L〉. Since
L is regular, every atom in V can be defined according to Lemmas 3.35 and 3.36 using
finitely many Boolean operations. Thus, it belongs to the Boolean algebra generated by the
derivatives of L. It follows that V is included in B(L).

3.4. Discussion and future work 45

Recall that, for regular languages, the set B(L) is a finite lattice and it is, therefore,
complete and atomic. We can say that, for finite automata, our duality coincides with that
obtained by Stone duality in Theorem 3.38. It is interesting to note that our result emerges
from an structural study of automata and, so far, no direct appeal to Stone duality is required.

The present chapter already contains some contributions that encourage us to continue
working along these lines. The first relevant insight is that we are able to deal with infinite
automata and non-regular languages. It lies in the fact that the duality we have found is the
(conceptually simpler) discrete duality between sets and complete atomic Boolean algebras.
The latter duality is also used in [61], where it was lifted to a dual equivalence between
deterministic automata and the so-called Boolean automata. We hope to retrieve some of the
results presented in the papers [6, 7, 56, 38, 36, 37], specially Reiterman’s characterisation
in terms of profinite equations. Further limit constructions of non-necessarily finite monoids
need to be investigated.

A second useful approach we have presented here is the categorical description of the
duality presented in Theorem 3.24 and its more manageable Corollary 3.25. Because we
are working within the algebra-coalgebra duality, we can use both algebraic notions, such
as congruence, and coalgebraic notions, such as bisimulations. Our notion of equational
bisimulation, which is a generalisation of the standard notion, seems to be new and so does
the corresponding coinduction proof principle. Within this context of the algebra-coalgebra
duality, we also want to study the notions of varieties and covarieties of automata. In [65],
some initial results are mentioned but with the present duality in place, we expect that more
can be said. The notion of equational bisimulation and its corresponding coinduction proof
principle deserve further study, both the present instance for automata and its coalgebraic
generalisations.

Finally, it would be interesting to investigate to what extent our duality can be further
generalised to other dynamical systems, such as Moore automata and probabilistic automata.
The algebra-coalgebra duality as such has already been extended to such automata in [22, 21],
leading to generalisations of Brzozowszki’s algorithm. In [69], for example, the authors devel-
oped an extension based on our Theorem 3.24 for the case of weighted automata. Weighted
automata are a generalisation of non-deterministic automata introduced by Schützenberger
[70]. Every transition carries a cost of its execution, this being an element in a semiring.
Thus, paths labelled with words also carry a total cost representing resources, probabilities
or time of execution. In addition, we plan to study the connections with [18] and [4], where
dualities for generalised rational structures have been studied.

I reconeixes una força antiga
i sense discussió t’hi entregaràs
i furgaràs els seus racons
per revelar el poder que s’hi amaga.

Teresa Rampell — Manel

https://www.youtube.com/watch?v=LMiqw-EvDB0

47

CHAPTER 4

Eilenberg’s theorem revisited

4.1 Introduction

One of the most important results in the algebraic study of formal languages and automata
is Eilenberg’s variety theorem [32] establishing a one-to-one correspondence between varieties
of regular languages, which are classes of regular languages closed under Boolean operations,
derivatives, and preimages under monoid morphisms, and varieties of finite monoids, which
are classes of finite monoids closed under finite products, submonoids, and homomorphic
images. At the heart of Eilenberg’s variety theorem lie the characterisation of varieties of
regular languages by their syntactic monoids and the closure properties of the corresponding
classes of finite monoids.

Several extensions of Eilenberg’s theorem, obtained by replacing monoids by other alge-
braic structures [17] or by modifying the closure properties on the definition of variety of
languages, are known in the literature. In this context, we mention a local version of Eilen-
berg’s theorem proved by Gehrke, Grigorieff, and Pin [38] working with a fixed finite alphabet
and considering only regular languages on it, and the extension of this result up to the level
of an abstract duality of categories by Adámek, Milius, Myers, and Urbat [4].

Another further step in this research programme is to replace varieties of finite monoids
by the more general notion of formation, that is, a class of finite monoids closed under taking
epimorphic images and finite subdirect products. Formations of finite groups are important
for a better understanding of the structure of finite groups, and the more general notion of
formation of algebraic structures, introduced and studied by Shemetkov and Skiba in [72],
plays a central role in universal algebra. Therefore it seems quite natural to seek an Eilenberg
type theorem establishing a connection between formations of finite monoids and formations
of regular languages, which are classes of regular languages closed under Boolean operations
and derivatives with a weaker property on the closure under inverse monoid morphism. This
was established in [15]. The weaker closure conditions for formations lead to more possibilities
than for varieties as more general classes of languages can be described and understood.

Our principal aim here is to extend the main theorem of [15] to the level of general
monoids. Our results are motivated by the significant role played by formations of non-

48 Chapter 4 Eilenberg’s theorem revisited

necessarily finite groups in the structural study of the groups and some interesting families
of non-regular languages that have recently appeared in the literature.

The main result of this Chapter is an Eilenberg type theorem which states a bijection
between formations of non-necessarily finite monoids and formations of non-necessarily regular
languages. This result is the most general correspondence known to us. The approach we use
benefits from the dual equivalence presented in the previous Chapter. In fact, this Chapter
provides one of the best possible examples of the expressiveness of the functors free and cofree.
The coalgebraic approach used in this result highlights the fundamental role of duality in
algebraic automata theory. Furthermore, this dual equivalence generalises a recent line of
work that shows the correspondence between local varieties of regular languages and local
pseudovarieties of monoids [38]. This result is called the local Eilenberg’s theorem in [4].

Our approach depends heavily on the notion of a formation of congruences, which is
a function that assings every alphabet A to a filter on the set of all congruences on A∗

closed under taking kernels of surjective monoid homomorphisms. We prove that there is
a bijective correspondence between formations of monoids and formations of congruences
(Theorem 4.16), and that formations of languages are in a one-to-one correspondence with
formations of congruences (Theorem 4.19).

As an interesting case, we extend the original result by Eilenberg to varieties of monoids.
Although similar, the notion of pseudovariety differs from the notion of variety introduced
by Birkhoff [19]. A class of monoids is a variety of monoids if it is closed under taking
substructures, quotients and (not necessarily finite) products. Thus, infinite objects are
allowed in a variety.

We end the Chapter by showing an example of an application to relatively disjunctive
languages. The generalised disjunctive languages have been considered by some authors in
the literature, e.g., Guo, Reis, and Thierrin ([41, 81, 58]). A language L is relatively disjunctive
if there exists a dense language intersecting finitely many times on each class of the syntactic
congruence associated to L. It has been shown in [49] that this condition is equivalent to L
having a non relatively regular syntactic monoid, that is, a monoid not containing a finite
ideal. In this paper, we prove that the set of all non-r-disjunctive languages is a formation of
languages and consequently, we see that it is Boolean algebra closed under derivatives.

Accordingly, Section 4.2 recovers the various definitions on the original Eilenberg’s variety
theorem and we present an alternative definition for variety of regular languages founded
on equations and coequations. Section 4.3 contains our main results, Theorem 4.16 and
Theorem 4.19. It also contains an example of an application of our main theorems to relatively
disjunctive languages and a discussion on the particular case of varieties of monoids. Finally,
in Section 4.4 we relate our work to other existing results.

4.2 Eilenberg’s variety theorem

Eilenberg’s variety theorem [32] is a fundamental result in computer science. It underscores
the importance of varieties of finite monoids or pseudovarieties in the study of regular lan-
guages. We recall in this sections the definitions used in the classical Eilenberg’s variety
theorem. We do this to better understand the results we will prove below.

Definition 4.1. A variety of finite monoids, or pseudovariety, is a set of finite monoids H
satisfying the following conditions:

(i) every homomorphic image of a monoid of H belongs to H;

4.2. Eilenberg’s variety theorem 49

(ii) every submonoid of a monoid of H belongs to H;

(iii) the direct product of a finite family of monoids of H also belongs to H.

Definition 4.2. A variety of regular languages is a function H that assigns to every alphabet
A a set of regular languages satisfying

(i) for each alphabet A, H(A) is closed under Boolean operations and derivatives;

(ii) if L is a language of H(B), then for each monoid homomorphism ϕ : A∗ → B∗ the
language ϕ−1(L) belongs to H(A).

Recall that the syntactic morphism is just the quotient homomorphism η : B∗ → free〈L〉
(See Corollary 3.10). However, at first sight, no other relation with monoids seems to appear
in the definition of variety of regular languages. Despite this, it was Eilenberg [32] who proved
the following striking theorem.

Theorem 4.3 ([32]). There is a one-to-one correspondence between varieties of finite monoids
and varieties of regular languages.

In order to prove the above result, Eilenberg associates to each variety of finite monoids
H, the set H(A) of all recognisable languages of A∗ whose syntactic monoid belongs to H.
Conversely, to each variety of regular languages H, he associates the variety of finite monoids
H generated by the syntactic monoids of every regular language L in H(A), for certain
alphabet A. These constructions define mutually inverse bijective correspondences between
varieties of finite monoids and varieties of regular languages.

With this in mind, we will next give an alternative characterisation of varieties of regular
languages based on equations and coequations. Thus, we introduce the following definition.

Definition 4.4. An EC-variety of regular languages is a function H that assigns to every
alphabet A a set of regular languages satisfying the following conditions:

(i)’ for each alphabet A, if L is a language in H(A), then coEq(A∗/Eq〈L〉) is included in
H(A);

(ii)’ for each alphabet A, if coEq(A∗/C1), coEq(A∗/C2) are included in H(A), then so is
coEq(A∗/C1 ∩ C2);

(iii)’ for every two alphabets A and B, if L is a language inH(B) and η : B∗ → free〈L〉 denotes
the quotient homomorphism, then for each monoid homomorphism ϕ : A∗ → B∗, the
set coEq(A∗/ker(η ◦ ϕ)) belongs to H(A).

Here, EC stands for equations-coequations. The above definition underscores the impor-
tance of congruences in the study of these kind of correspondences; moreover, its connection
with varieties of finite monoids seems much more natural. Our main result in this subsection
states that varieties of regular languages and EC-varieties of regular languages are equivalent
notions. This result can be regarded as an equational-coequational version of Eilenberg’s
theorem. The proof of our result depends on the Lemmas 3.35 and 3.36.

Theorem 4.5. Let H be a function that assigns to every alphabet A a set of regular languages.
Then, H is a variety of regular languages if and only if it is an EC-variety of regular languages.

50 Chapter 4 Eilenberg’s theorem revisited

Proof. We start showing that every variety of regular languages H is an EC-variety of regular
languages.

(i)’ Let L be a regular language in H(A) and consider a class [w] in A∗/Eq〈L〉 then, by
Lemmas 3.35 and 3.36, this class is a finite Boolean combination of languages inH(A). It
follows that [w] is an element in H(A). Recall that every language K ∈ coEq(A∗/Eq〈L〉)
is expressed as K =

⋃
w∈K [w] by Proposition 3.17. Recall that this union is finite as

L is regular and there are finitely many such classes [w]. Hence, as every atom [w] is
included in H(A), we conclude that coEq(A∗/Eq〈L〉) is completely included in H(A).

(ii)’ Now, assume that coEq(A∗/C1) and coEq(A∗/C2) are included in H(A). Then, for any
word w ∈ A∗, the languages [w]C1 and [w]C2 are regular languages in H(A). As H(A)
is a Boolean algebra, the language [w]C1∩C2 = [w]C1 ∩ [w]C2 is in H(A). As every atom
[w]C1∩C2 is included in H(A), so is coEq(A∗/C1 ∩ C2).

(iii)’ Now, let L be a language in H(B), let η : B∗ → free〈L〉 denote the quotient homo-
morphism, and let ϕ : A∗ → B∗ be a monoid homomorphism. As L is a language in
H(B) then, for all pair of words x, y ∈ B∗, the language yLx is in V(B). It follows that
ϕ−1(yLx) is a language in H(A), for all x, y ∈ B∗. By item EC(i) in this proof, the
preformation of languages coEq(A∗/Eq〈yLx〉) is completely included in H(A). As L is
regular, there are finitely many such derivatives yLx. Therefore, by several applications
of item EC(ii), the set coEq(A∗/

⋂
x,y∈B∗ Eq〈yLx〉) is included in H(A). We claim that⋂

x,y∈B∗ Eq〈yLx〉 is included in ker(η ◦ ϕ). Assume towards a contradiction that a pair
(v, w) of

⋂
x,y∈B∗ Eq〈yLx〉 is not included in ker(η◦ϕ), therefore there exists some x ∈ B∗

with Lxϕ(v) 6= Lxϕ(v). Therefore, we can find some y ∈ B∗ with y ∈ Lxϕ(v) such that
y 6∈ Lxϕ(w). We have the following chain of implications

y ∈ Lxϕ(v) ⇒ xϕ(v)y ∈ L ⇒ ϕ(v) ∈ yLx
⇒ v ∈ ϕ−1(yLx) ⇒ ε ∈ [ϕ−1(yLx)]v
⇒ ε ∈ [ϕ−1(yLx)]w ⇒ w ∈ ϕ−1(yLx)
⇒ ϕ(w) ∈ yLx ⇒ xϕ(w)y ∈ L
⇒ y ∈ Lxϕ(w),

that is, we have obtained a contradiction. It follows that
⋂
x,y∈B∗ Eq〈yLx〉 is included

in ker(η ◦ ϕ). Using the duality Theorem 3.24, we conclude that coEq(A∗/ker(η ◦ ϕ)) is
included in coEq(A∗/

⋂
x,y∈B∗ Eq〈yLx〉) and therefore it is included in H(A).

Now, assume that H is an EC-variety of regular languages and let us show that it is a variety
of regular languages.

(i) Let L be a language in H(A), then coEq(A∗/Eq〈L〉) is in included in H(A). Note that
the complement of L is in coEq(A∗/Eq〈L〉) and so is every derivative. Now, let L and
K be two languages in H(A). Then coEq(A∗/Eq〈L〉) and coEq(A∗/Eq〈K〉) are included
in H(A) and, therefore, so is coEq(A∗/D) for D = Eq〈L〉 ∩ Eq〈K〉. As D ⊆ Eq〈L〉, by
Corollary 3.25, we conclude that L is in coEq(A∗/D). With a similar prove we conclude
that K also belongs to coEq(A∗/D). Therefore K ∩ L and K ∪ L are both included in
coEq(A∗/D) as it is a preformation of languages.

4.3. Eilenberg’s formation theorem 51

(ii) Let L be a language in H(B) and consider a monoid homomorphism ϕ : A∗ → B∗. If
η : B∗ → free〈L〉 denotes the quotient homomorphism, we have that coEq(A∗/ker(η◦ϕ))
is included in H(A). Consider the following coloration on A∗/ker(η ◦ ϕ)

ξ : A∗/ker(η ◦ ϕ) −→ 2

[w] 7−→
{

1, if ϕ(w) ∈ L;
0, if ϕ(w) 6∈ L.

In fact, if (v, w) is a pair in ker(η◦ϕ), then (ϕ(v), ϕ(w)) belongs to Eq〈L〉. In particular,

ϕ(w) ∈ L ⇔ ε ∈ Lϕ(w) ⇔ εLϕ(v) ⇔ ϕ(v) ∈ L.

Thus, the colouring ξ is well-defined. Now, the language oξ([ε]) is a language in
coEq(A∗/ker(η ◦ ϕ)) and, consequently, it belongs to H(A). Note that

v ∈ oξ([ε]) ⇔ ξ([ε]v) = 1 ⇔ ϕ(v) ∈ L ⇔ v ∈ ϕ−1(L).

From the last theorem and the Eilenberg’s theorem we obtain, as direct consequence, the
following corollary.

Corollary 4.6. There is a one-to-one correspondence between varieties of finite monoids and
EC-varieties of regular languages.

4.3 Eilenberg’s formation theorem

4.3.1 Formations

In this section we define the notions of formations that we will use in what follows. For the
sake of simplicity, we write (A∗/C) instead of (A∗/C, [σ]) and 〈L〉 instead of (〈L〉, τ).

Formations of monoids

Definition 4.7. Following [40, p. 78], we say that a monoid M is a subdirect product of a
product of a family of monoids (Mi)i∈I if M is a submonoid of the direct product

∏
i∈IMi and

each induced projection πi from M onto Mi is surjective. A monoid P which is isomorphic
to such a submonoid M is also called a subdirect product of the family of monoids (Mi)i∈I .
In this case, the projections separate the elements of M , that is, if πi(x) = πi(y) for all i ∈ I,
then x = y.

In fact, we have the following proposition.

Proposition 4.8 ([40, Proposition 3.1]). A monoid M is a subdirect product of a family of
monoids (fi : Mi)i∈I if and only if there is a family of surjective morphisms (M → Mi)i∈I
which separates the elements of M .

Subdirect products allow us to introduce the notion of formation of monoids, which is
a particular case of the most general notion of formation of algebraic structures, introduced
and studied by Shemetkov and Skiba in [72].

52 Chapter 4 Eilenberg’s theorem revisited

Definition 4.9. A formation of monoids is a set of monoids F satisfying:

(i) if A ∈ F and B ∼= A, then B ∈ F;

(ii) every quotient of a monoid of F also belongs to F;

(iii) the subdirect product of a finite family of monoids of F also belongs to F.

We present some examples of interesting formations of monoids.

Example 4.10.

1. Any pseudovariety of monoids H is a formation of monoids. In particular, the pseu-
dovariety of all finite monoids, denoted by Fin, is a formation of monoids.

2. If F is a formation of monoids, then Fω defined as the class of all monoids in F that
are finite is again a formation.

3. We say that a monoid M has a zero if there exists an element 0 ∈ M , such that for
every element m ∈ M , the equation m0 = 0m = 0 holds. Such an element is unique
and thus, one speaks of the zero element. The class Z of all monoids with zero is a
formation of monoids.

4. A monoid M is called relatively regular (r-regular for short) (see [49]) if it contains
a finite ideal. The class R of all r-regular monoids is a formation of monoids. Usual
integers with multiplication (Z, ·, 1) is r-regular as it is a monoid with zero. The set Z∗
of nonzero integers is a submonoid of Z without finite ideals. Therefore, R is not closed
under substructures.

5. A monoid M is called cyclic if it is generated by one element m ∈M . That is M consists
of all powers mk of m (here we use the notation m0 = 1). If all these powers are distinct,
then M is isomorphic to the additive monoid of all natural numbers (N,+, 0). For a
finite cyclic monoid M = 〈m〉 there is a smallest number n with the property mn = mk,
for some k > n; n is called the index of the element m (of M). In this connection, if
r is the smallest nonzero number with the property mn = mn+r, then r is called the
period of m (of M). The pair (n, r) is called the type of m (of M). For any type (n, r)
with n, r ∈ N and r ≥ 1, the relation:

θn,r = ∆N ∪ {(p, q) ∈ N× N | p, q ≥ n and p ≡ q mod r}

is a congruence on N. The resulting quotient N/θn,r is a finite cyclic monoid with type
(n, r). Every finite cyclic monoid M with type (n, r) is isomorphic to the quotient
N/θn,r. A monoid is called periodic if all its cyclic submonoids are finite. The class P
of all periodic monoids is a formation of monoids. A monoid M is called aperiodic if
there exists a natural number k ∈ N satisfying mk = mk+1 for all m ∈ M . Obviously,
aperiodic monoids are periodic. The class A of all aperiodic monoids is also a formation
of monoids.

6. A locally finite monoid is a monoid in which every finitely generated submonoid is
finite. Obviuosly, locally-finite monoids are periodic. The converse is false: there are
even torsion groups that are not locally finite (see Burnside problem). The class of all

4.3. Eilenberg’s formation theorem 53

locally-finite monoids, denoted by LFin is a formation of monoids. In general, if F is
a formation of finite monoids. A locally F monoid is a monoid in which every finitely
generated submonoid belongs to F. The class LF of all locally F monoids is a formation
of monoids.

Definition 4.11. For a monoid M , its residual with respect to a formation of monoids F,
written CMF , is defined as

CMF =
⋂
{C ∈ Con(M) |M/C ∈ F}.

The above family is not empty as the total relation ∇M is always included.

Remark. In general, the quotient M/CMF does not necessarily belongs to the formation F. In
fact, for the formation Zω of all finite monoids with zero, the set N of all natural numbers
including zero with the usual multiplication is a monoid whose residual with respect to Zω is
the diagonal relation. However, N is not finite.

Formation of congruences

Definition 4.12. A formation of congruences is a function F that assigns to a set A, a set
of congruences on A∗ satisfying the following conditions.

(i) for each set A, the set F(A) is a filter in Con(A∗);

(ii) for every two sets A and B, and for every congruence E ∈ F(B) with quotient morphism
η : B∗ → B∗/E, if there exists a monoid homomorphism ϕ : A∗ → B∗ such that the
composition η ◦ ϕ : A∗ → B∗/E is a surjective monoid homomorphism, then ker(η ◦ ϕ)
is a congruence in F(A). It can be depicted as follows:

A∗

B∗

A∗/ker(η ◦ ϕ)

B∗/E

ϕ

η

Formations of languages

Definition 4.13. A formation of languages is a function F that assigns to every alphabet A
a set of formal languages satisfying the following conditions.

(i) for each alphabet A, if L is a language in F(A), then coEq(A∗/Eq〈L〉) is included in
F(A);

(ii) for each alphabet A, if both coEq(A∗/C1), coEq(A∗/C2) are included in F(A), then so
is coEq(A∗/C1 ∩ C2);

(iii) for every two alphabets A and B, if L is a language in F(B) and η : B∗ → free(〈L〉)
denotes the quotient morphism, then for each monoid morphism ϕ : A∗ → B∗ such that
η ◦ ϕ is surjective, the set coEq(A∗/ker(η ◦ ϕ)) belongs to F(A).

54 Chapter 4 Eilenberg’s theorem revisited

The above definition was completely given in terms of equations and coequations and from
the very beginning it clearly underscores the relation between languages and congruences.
This will have an impact on the later appearing results as it simplifies most of the steps in
the proofs. The unique difference between this notion and Definition 4.4 is that in third item,
the composition η ◦ ϕ needs to be surjective. Moreover, in this new notion we do not require
the languages to be regular.

4.3.2 Eilenberg’s theorem for formations of monoids

We are now in position to show three different Eilenberg relations for formations. We first show
that formations of monoids are in one-to-one correspondence with formations of congruences.
After this result, we show that formations of congruences are in one-to-one correspondece
with formations of languages. Consequently, formations for monoids and languages have also
this correspondence.

Monoids vs congruences

Proposition 4.14. Every formation of monoids F determines, in a canonical way, a formation
of congruences F.

Proof. Consider the assignment:

F : A 7−→ {C ∈ Con(A∗) | A∗/C ∈ F}.

Let C1 and C2 be congruences in F(A), then A∗/C1 and A∗/C2 are monoids in F. Note that
C1∩C2 is included in Ci for i = 1, 2. If we consider the corresponding quotient homomorphisms
πi : A

∗/C1 ∩ C2 → A∗/Ci for i = 1, 2, we have that {π1, π2} is a family of surjective morphisms
separating the elements of A∗/C1 ∩ C2. It follows from Proposition 4.8 that A∗/C1 ∩ C2 is a
subdirect product of two monoids in F. Therefore C1 ∩ C2 is a congruence in F(A). Now, if
C is a congruence in F(A) and D is a congruence on A∗ with C ⊆ D, we have that A∗/D
is a quotient of A∗/C. It follows that A∗/D is a monoid in F, and we conclude that D is a
congruence in F(A). Therefore, F(A) is a filter in Con(A∗).

Let A and B be two sets, and let E be a congruence in F(B) with quotient morphism
η : B∗ → B∗/E. Let ϕ : A∗ → B∗ be a monoid homomorphism such that the composition
η ◦ϕ : A∗ → B∗/E is a surjective monoid homomorphism. Hence, A∗/ker(η ◦ ϕ) is isomorphic
to B∗/E, which is a monoid in F. It follows that A∗/ker(η ◦ ϕ) is in F and ker(η ◦ ϕ) is a
congruence in F(A).

Proposition 4.15. Every formation of congruences F determines, in a canonical way, a
formation of monoids F.

Proof. We take F to be the class of all monoids M for which there exists a set A and a
congruence C ∈ F(A) satisfying M ∼= A∗/C. We claim that this set is a formation of monoids.

Let f : M → N be the surjective monoid homomorphism defined on a monoid M in F.
Then there exists a set A and a congruence C ∈ F(A) satisfying M ∼= A∗/C. Let γ : A∗ →M
be a monoid homomorphism with kernel C. Then f ◦ γ : A∗/C → N is a surjective monoid
homomorphism. Moreover, C ⊆ ker(f ◦ γ), which implies that ker(f ◦ γ) is a congruence in
F(A). Finally, A∗/ker(f ◦ γ) is isomorphic to N , and so N belongs to F.

4.3. Eilenberg’s formation theorem 55

Now, let M be a monoid that can be expressed as the subdirect product of a finite
family (Mi)i∈n of monoids in F. Therefore, for each index i ∈ n there exists a set Ai and a
congruence Ci ∈ Con(Ai) satisfying Mi

∼= A∗i /Ci. Let us denote the corresponding quotient
homomorphisms as ηi : A

∗
i → A∗i /Ci. Consider the setB =

⋃
i∈nAi. By the universal property

of the free monoid, we can construct a monoid epimorphism ϕi : B
∗ → A∗i for all i ∈ n. Thus,

ηi◦ϕi : B∗ → A∗i /Ci is a surjective monoid homomorphism for all i ∈ n. As F is a formation of
congruences, the congruence Di = ker(ηi ◦ϕi) belongs to F(B) for all i ∈ n. Note that M can
be expressed as the subdirect product of the finite family of monoids {B∗/Di | i ∈ n}. Since
B generates each monoid in the family, M is generated by B. It follows that M ∼= B∗/F for
some congruence F on B∗. Since M is a subdirect product of the monoids B∗/Di, we have
that

⋂
i∈nDi ⊆ F . Note that

⋂
i∈nDi is a congruence in F(B) as it is a finite intersection of

congruences in F(B). Finally, F is a congruence in F(B) and M belongs to F.

Theorem 4.16. The mappings F 7→ F and F 7→ F define mutually inverse correspondences
between formations of congruences and formations of monoids.

Proof. Consider a formation of monoids F. The first correspondence gives us the formation of
congruences F that assigns to each set A the set {C ∈ Con(A∗) | A∗/C ∈ F} of all congruences
whose quotient belongs to F. Let H be the class of all monoids M for which there exists
a set A and a congruence C ∈ F(A) satisfying M ∼= A∗/C. It immediately follows that H
is included in F. The other inclusion follows easily since every monoid can be written as a
quotient of a free monoid.

Now, let F be a formation of congruences. The first correspondence gives us F, which is
equal to the class of all monoids M for which there exists a set A and a congruence C ∈ F(A)
satisfying M ∼= A∗/C. Let H denote the formation of congruence quotients that assigns to
each set A the set {C ∈ Con(A∗) | A∗/C ∈ F}. For a fixed set A, if C is a congruence in
F(A), then A∗/C is a monoid in F and C belongs to H(A). Let C be a congruence in H(A),
then A∗/C is a monoid in F. Therefore, there exists a set B and a congruence D ∈ F(B)
satisfying A∗/C ∼= B∗/D. Let η : B∗ → B∗/D and δ : A∗ → A∗/C be the corresponding
quotient homomorphisms. Let ρ : A∗/C → B∗/D be the corresponding monoid isomorphism.
It follows that γ = ρ ◦ δ is a monoid epimorphism from A∗ onto B∗/D. By Proposition 2.11,
there exists a monoid homomorphism ϕ : A∗ → B∗ with η ◦ ϕ = γ. Summarising,

A∗

B∗

A∗/C

B∗/D

ϕ

δ

γ

η

ρ

As F is a formation of congruences, ker(η ◦ ϕ) belongs to F(A). Finally, C is in F(A) as
ker(η ◦ ϕ) = ker(γ) = ker(ρ ◦ δ) = C.

Congruences vs languages

Proposition 4.17. Every formation of congruences F determines, in a canonical way, a
formation of languages F .

56 Chapter 4 Eilenberg’s theorem revisited

Proof. Consider the assignment:

F : A 7−→
⋃
{coEq(A∗/C) | C ∈ F(A)}.

Let L be a language in F(A), then there exists a congruence C in F(A) for which L is a
language in coEq(A∗/C). By Proposition 3.25, we have that C ⊆ Eq〈L〉. Thus, Eq〈L〉 is a
congruence in F(A). Hence, coEq(A∗/Eq〈L〉) is included in F(A). Now, if coEq(A∗/C1) and
coEq(A∗/C2) are included in F(A), then the congruences C1, C2 are in F(A). By assumption,
the congruence C1 ∩ C2 also belongs to F(A). Thus, coEq(A∗/C1 ∩ C2) is in F(A). Let L be
a language of F(B) with quotient morphism η : B∗ → free(〈L〉). Let ϕ : A∗ → B∗ such that
η ◦ϕ is surjective, then ker(η ◦ϕ) is a congruence in F(A). Thus, coEq(A∗/ker(η ◦ ϕ)) belongs
to F(A). Hence, F is a formation of languages.

Proposition 4.18. Every formation of languages F determines, in a canonical way, a for-
mation of congruences F.

Proof. Consider the assignment:

F : A 7−→ {C ∈ Con(A∗) | coEq(A∗/C) ⊆ F(A)}.

Let C be a congruence in F(A). If D is a congruence on A∗ with C ⊆ D, then, by Theo-
rem 3.24, coEq(A∗/D) is included in coEq(A∗/C), which is included in F(A) by assumption.
Now, let C1 and C2 be two congruences in F(A), then coEq(A∗/C1) and coEq(A∗/C2) be-
long to F(A). As F is a formation of languages, then coEq(A∗/C1 ∩ C2) is included in F(A).
Hence, C1∩C2 is a congruence in F(A). Hence, F maps each alphabet A to a filter in Con(A∗).

Let A and B be two sets and let C be a congruence in F(B). Consider the corresponding
quotient homomorphism η : B∗ → B∗/C. Let ϕ : A∗ → B∗ be a monoid homomorphism such
that the composition η ◦ ϕ : A∗ → B∗/C is a surjective monoid homomorphism. Since F is a
formation of languages, coEq(A∗/ker(η ◦ ϕ)) is included in F(A). It follows that ker(η ◦ ϕ) is
a congruence in F(A).

Theorem 4.19. The mappings F 7→ F and F 7→ F define mutually inverse correspondences
between formations of congruences and formations of languages.

Proof. It immediately follows from the assignments we have chosen.

Languages vs monoids

Proposition 4.20. Every formation of languages F determines, in a canonical way, a for-
mation of monoids F.

Proof. Just consider the composition of the correspondences given by Propositions 4.18
and 4.15. Hence, we take F to be the class of all monoids M that are isomorphic to A∗/C
for some congruence C on A∗ satisfying that coEq(A∗/C) ⊆ F(A).

Proposition 4.21. Every formation of monoids F determines, in a canonical way, a formation
of languages F .

4.3. Eilenberg’s formation theorem 57

Proof. Just consider the composition of the correspondences given by Propositions 4.14
and 4.17. Hence, for a set A we take the set of languages

F(A) =
⋃
{coEq(A∗/C) | A∗/C ∈ F}.

Theorem 4.22. The assignments F 7→ F and F 7→ F define mutually inverse correspon-
dences between formations of monoids and formations of languages.

Proof. It immediately follows from Theorems 4.16 and 4.19.

4.3.3 An application to relatively disjunctive languages

In this subsection we present a direct application of our last results. The following results can
be found in [81]. All the notation appearing there has been translated to our notation. We
denote the cardinality of a language L over A by |L|. We call a language L over A disjunctive
if Eq〈L〉 is the diagonal relation on A∗. We call a language L over A dense if A∗wA∗ ∩L 6= ∅
for every w ∈ A∗; otherwise, the language L is said to be thin. According to Reis and Shyr,
a language L is dense if and only if L contains a disjunctive language [58]. We shall call a
language over A relatively f-disjunctive [relatively disjunctive] (rf-disjunctive [r-disjunctive]
for short) if there exists a dense language D over A such that for all w ∈ A∗∣∣∣[w]Eq〈L〉 ∩D

∣∣∣ < ℵ0,
[∣∣∣[w]Eq〈L〉 ∩D

∣∣∣ ≤ 1
]
.

It has been shown in [41] that L is rf-disjunctive if and only if L is r-disjunctive, if and only
if either A∗ has no dense Eq〈L〉-classes or has infinitely many dense Eq〈L〉-classes. The next
result can be found in [49]. It relates r-disjunctive languages and r-regular monoids.

Theorem 4.23. A language L over A is r-disjunctive if and only if free(〈L〉) is not r-regular.

We shall denote by F(A) the set of all non-r-disjunctive languages over A. As a conse-
quence of our previous section, we have a result on disjunctive languages that does not follow
immediately from the definition.

Corollary 4.24. The assignment F : A→ F(A) is a formation of languages.

Proof. It follows from Theorem 4.22 and the contrapositive version of Theorem 4.23.

4.3.4 Varieties of monoids

We present in this subsection some algebraic definitions in order to show a variant of Eilen-
berg’s variety theorem [32]. Here, varieties of finite monoids are replaced by varieties of
monoids (as stated by Birkhoff [19]) and varieties of regular languages are replaced by vari-
eties of languages. The definition of variety of languages is given in terms of equations and
coequations as we did in Definitions 4.4 and 4.13.

Definition 4.25. A variety of monoids is a set of monoids V satisfying the following condi-
tions.

(i) every homomorphic image of a monoid of V belongs to V;

58 Chapter 4 Eilenberg’s theorem revisited

(ii) every submonoid of a monoid of V belongs to V;

(iii) the direct product of every family of monoids of V also belongs to V.

There are two points in which this definition differs from that of pseudovariety (Definition
4.1). One is that all monoids in V are not assumed to be finite. The second one is that V is
closed under arbitrary direct products. Birkhoff proved two main results; the characterisation
of varieties by sets of identities and the closure conditions a class of algebras must satisfy in
order to be a variety. As a consequence, varieties of monoids are equationally defined classes
of monoids [52, 19]. The following theorem of Kogalovskĭı [47] (see also [52, 39]) characterises
varieties of monoids in terms of quotients and subdirect products.

Theorem 4.26. A class of monoids V is a variety if and only if it is closed under taking
arbitrary subdirect products and quotients.

Consequently, the main difference between varieties of monoids and formations of monoids
is that in a variety, arbitrary subdirect products are allowed. In fact, Kogalovskĭı proves that
from the closure under under quotients and arbitrary subdirect products we retrieve closure
under submonoids. To mimic this property and bearing in mind an Eilenberg result for
varieties, we present the following definition.

Definition 4.27. A variety of languages is a function V that assigns to every alphabet A a
set of formal languages satisfying the following conditions.

(i) for each alphabet A, if L is a language in V(A), then coEq(A∗/Eq〈L〉) is included in
V(A);

(ii) for each alphabet A, if the set {coEq(A∗/Ci) | i ∈ I} is included in V(A), then so is
coEq(A∗/

⋂
i∈I Ci);

(iii) for every two alphabets A and B, if L is a language in F(B) and η : B∗ → free(〈L〉)
denotes the quotient morphism, then for each monoid morphism ϕ : A∗ → B∗ such that
η ◦ ϕ is surjective, the set coEq(A∗/ker(η ◦ ϕ)) belongs to F(A).

Here, we require closure under arbitrary intersection of congruences to mirror the respec-
tive closure under arbitrary products in the definition of variety of monoid. We can show that
varieties of languages are in one-to-one correspondence with varieties of monoids. This proof
was included in the paper [14]. We decided not to include it here because it is just a slight
modification of the correspondences above. Consequently, we adopted the name “variety of
languages” to emphasize this property. As expected, different classes of monoids are related
with different assignments of languages. This definition differs form Definition 4.4 as we do
not require the languages to be regular. The second item requires also conditions on arbitrary
families of congruences. This is also a shared difference with Definition 4.13.

These differences has also a counterpart in the congruence side. Among other particulari-
ties for varieties, the residual of a monoid is always a congruence whose quotient is a monoid
in the variety.

Proposition 4.28. If V is a variety of monoids, then for every monoid M , the quotient
M/CMV is a monoid in V.

Proof. Note that M/CMV is the subdirect product of the family of all quotients of M in V.
Kogalovskĭı’s Theorem 4.26 guarantees us that this subdirect product is in V.

4.4. Discussion and future work 59

As a consequence, if V is a variety of monoids, the assignment of Proposition 4.14 maps
each alphabet A to a principal filter. In this case, the principal filter generated by the residual
of A∗ over V

V : A 7−→ {C ∈ Con(A∗) | A∗/C ∈ V} = [CA
∗

V).

In the case of varieties, Theorem 4.16 gives a correspondence between varieties V and
formations of congruences V satisfying that for all A, the set V(A) is a principal filter in
Con(A∗).

4.4 Discussion and future work

The theorems presented in this chapter follow a long standing tradition of results relating
classes of monoids with the languages they can recognize. Scattered results in this direction
appeared in the mid-sixties. Schützenberger [71], for example, proved that star-free languages
are in one-to-one correspondence with aperiodic monoids. The success of Eilenberg’s theorem
relies on the generality of the result; he understood that finite aperiodic monoids are just
an example of a pseudovariety. We can find further instances of this result: the rational
languages, for example, are associated with the variety of all finite monoids [32, 46] and the
piecewise testable languages with the variety of finite J -trivial monoids [75]. A great deals
of analogous results have been established over the past years. These results strengthen the
relation between monoids, automata, and languages.

Several attempts to generalize this result appear in the literature; see for instance [54, 79,
33]. These papers aimed at extending Eilenberg’s result by relaxing some conditions on the
class of monoids or on the class of languages. A strong attempt to embrace all these results in
a common categorical framework was made in [5], where the authors introduced varieties of
languages in a category C , and proved their correspondence with pseudovarieties of monoids
in a closed monoidal category D , provided that C and D are dual on finite objects. In any
case, all the results involve classes of finite monoids.

A strong attempt to present a general result aiming at generalising varieties to the more
general notion of formation was made in [15], altought it was still made for formations of
finite monoids. Since this result clearly relates to the theorems presented here, we will specify
the existing connections. Possibly, the biggest difference with this work is the definition of
“formation of language” adopted by them, much more in the original spirit of Eilenberg’s con-
cept. We reproduce their definition to see that, for regular languages, the following definition
and definition 4.13 coincide. In order to avoid confusion, we will rename that concept.

Definition 4.29. A formation of regular languages is a function R that assigns to every
alphabet A a set of regular languages over A satisfying:

(i)’ for each alphabet A, R(A∗) is closed under Boolean operations and derivatives;

(ii)’ for every two alphabets A and B, if L is a language in R(B) and η : B∗ → free〈L〉
denotes the quotient morphism, then for each monoid morphism ϕ : A∗ → B∗ such that
η ◦ ϕ is surjective, the language ϕ−1(L) belongs to R(A).

Clearly, this definition relates with Definition 4.2, the main difference being that here the
composition η ◦ ϕ needs to be surjective. We will prove that if F is a formation of languages
(in the sense of Definition 4.13) assigning to each alphabet A a set of regular languages, then

60 Chapter 4 Eilenberg’s theorem revisited

this is equivalent to being a formation of regular languages (in the sense of Definition 4.29).
To do so, we will need the following Lemma

Lemma 4.30. Let R be an formation of regular languages. For an alphabet A, if C is a
congruence on A∗ with finite quotient A∗/C, then

coEq(A∗/C) ⊆ R(A) if and only if [w]C ∈ R(A) for all w ∈ A∗.

Proof. Let w be a word in A∗, for the coloration cw : A∗/C → 2, given by cw([u]C) = 1 if and
only if [u]C = [w]C , we have that [w]C = ocw([ε]) is a language in coEq(A∗/C) which is included
in R(A). On the converse, let L be language in coEq(A∗/C), then L =

⋃
{[w]C | w ∈ L}. As

A∗/C is finite, L is a finite union of languages in R(A). Hence, L belongs to R(A).

Theorem 4.31. Let F be a formation of languages assigning a set of regular languages to
each alphabet, then F is a formation of regular languages. Conversely, if R is a formation of
regular languages, then R is a formation of languages assigning a set of regular languages to
each alphabet.

Proof. Assume F is a formation of languages (see Definition 4.13) assigning a set of regular
languages to each alphabet.

(i)’ Let L be a language in F(A), then coEq(A∗/Eq〈L〉) is included in F(A). As coEq(A∗/Eq〈L〉)
is a preformation of languages containing L, then the complement and every derivative
of L belong to it. Let L1 and L2 be two languages in in F(A), then coEq(A∗/Eq〈L1〉)
and coEq(A∗/Eq〈L2〉) are included in F(A). It follows that

D = coEq(A∗/[Eq〈L1〉 ∩ Eq〈L2〉])

is also included in F(A). By Proposition 3.25, we have that L1 and L2 are languages in
D, which is a preformation of languages, then L1 ∩L2 and L1 ∪L2 are languages in D.

(ii)’ Now, consider two alphabets A and B, and let L be a language in F(B). Let η denote
the quotient morphism η : B∗ → free〈L〉 and let ϕ : A∗ → B∗ be a monoid morphism
such that η ◦ ϕ is surjective. Then coEq(A∗/ker(η ◦ ϕ)) is included in F(A). Let L′ be
a language in 〈ϕ−1(L)〉, then there exists some word u ∈ A∗ with L′ = [ϕ−1(L)]u. Let
(v, w) be a pair in ker(η ◦ ϕ), then

L′v = [ϕ−1(L)]uv = {x ∈ A∗ | uvx ∈ ϕ−1(L)} = {x ∈ A∗ | ϕ(uvx) ∈ L}
= {x ∈ A∗ | ϕ(u)ϕ(v)ϕ(x) ∈ L} = {x ∈ A∗ | ϕ(x) ∈ Lϕ(u)ϕ(v)}.

Recall that Lϕ(u) is a language in 〈L〉, and (ϕ(v), ϕ(w)) is a pair in Eq〈L〉, therefore:

L′v = {x ∈ A∗ | ϕ(x) ∈ Lϕ(u)ϕ(v)} = {x ∈ A∗ | ϕ(x) ∈ Lϕ(u)ϕ(w)} = L′w.

It follows that ker(η ◦ ϕ) ⊆ Eq〈ϕ−1(L)〉. Again by Proposition 3.25, we have ϕ−1(L) is
a language in coEq(A∗/ker(η ◦ ϕ)).

Consequently, F is a formation of regular languages.

Now, let R be a formation of regular languages (see Definition 4.29).

4.4. Discussion and future work 61

(i) Let L be a language in R(A). It is well known that a language L over an alphabet A
is regular if and only if the set {vLw | v, w ∈ A∗} is finite. Let [u] be an element in
A∗/Eq〈L〉, then it holds by 3.36 that

[u] =
⋂
{vLw | u ∈ vLw} \

⋃
{vLw | u 6∈ vLw}.

That is, every atom in coEq(A∗/Eq〈L〉) belongs to the Boolean algebra generated by
the derivatives of L. It follows from Lemma 4.30 that coEq(A∗/Eq〈L〉) is included in
R(A).

(ii) Now, assume that coEq(A∗/C1) and coEq(A∗/C2) are both included in R(A). Let
[w]C1∩C2 be an atom in coEq(A∗/C1 ∩ C2). The equation [w]C1∩C2 = [w]C1 ∩ [w]C2

trivially holds. Note that [w]Ci is a language in coEq(A∗/Ci) for i = 1, 2, and hence,
included in R(A). We conclude that [w]C1∩C2 is a language in R(A). By Lemma 4.30,
coEq(A∗/C1 ∩ C2) is included in R(A).

(i) Finally, consider two alphabets A and B, and let L be a language in R(B). Let η
denote the quotient morphism η : B∗ → free〈L〉 and let ϕ : A∗ → B∗ be a monoid
morphism such that η ◦ ϕ is surjective. We have that ϕ−1(L) is a language in R(A),
hence, by the first item of this proof, we have that coEq(A∗/Eq〈ϕ−1(L)〉) is included in
R(A). Let us check ker(η ◦ ϕ) = Eq〈ϕ−1(L)〉. We will only check that Eq〈ϕ−1(L)〉 is
included in ker(η ◦ϕ); for the other inclusion, see the proof done in the first part of this
Theorem. Let (v, w) be a pair in Eq〈ϕ−1(L)〉, we claim that (ϕ(v), ϕ(w)) is a pair in
Eq〈L〉. As η ◦ ϕ is surjective, for every word u ∈ B∗, there exists some word u′ ∈ A∗,
with (u, ϕ(u′)) ∈ Eq〈L〉. Let Lu be a language in 〈L〉.

Luϕ(v) = Lϕ(u)ϕ(v) (η ◦ ϕ surjective)

= Lϕ(uv) (monoid homomorphism)

= {x ∈ B∗ | ϕ(u′v)x ∈ L}
= {x ∈ B∗ | ε ∈ Lϕ(u′v)x}
= {x ∈ B∗ | ε ∈ Lϕ(u′v)ϕ(x′)} (η ◦ ϕ surjective)

= {x ∈ B∗ | ϕ(u′vx′) ∈ L} (monoid homomorphism)

= {x ∈ B∗ | u′vx′ ∈ ϕ−1(L)}
= {x ∈ B∗ | u′wx′ ∈ ϕ−1(L)} ((v, w) ∈ Eq〈ϕ−1(L)〉)
= · · ·
= Luϕ(w),

thus, ker(η ◦ ϕ) = Eq〈ϕ−1(L)〉.

Finally, R is a formation of languages.

Therefore, our work subsumes the Eilenberg result for formations of finite monoids pre-
sented in [15] as we do not require the monoids to be finite nor the languages to be regular.

To better summarise all the notions and relations presented in this Chapter we will in-
troduce a schematic representation of all the results. In this diagram, notions are presented
inside boxes. A box drawn with dashed lines indicates that the notion inside the box is de-
fined using equations and coequations. Two concepts are bound with an arrow if there exists
a relation between these concepts. A double arrow labelled as follows

62 Chapter 4 Eilenberg’s theorem revisited

A B
X

indicates the existence of an Eilenberg’s theorem between concepts A and B that is proven
in X. A dashed arrow labelled as follows

A B
K

X

indicates that concepts A and B under conditions K are equivalent notions by a result proven
in X. The notions related with languages appear on the left hand side of the diagram. The
notions involving congruences are situated in the middle column of the diagram and, finally,
all the notions related with monoids appear on the right hand side of the diagram. There
is also a conceptual separation in the files of this diagram; concepts on the lower half of the
diagram involve regularity on the languages and finiteness on the monoids, whereas the upper
half does not assume this restrictions.

4.4. Discussion and future work 63

Variety
of languages

(Definition 4.27)

Variety
of monoids

(Definition 4.25)

Formation
of languages

(Definition 4.13)

Formation
of monoids

(Definition 4.9)

Formation
of congruences

(Definition 4.12)

Formation of
regular languages
(Definition 4.29)

Formation of
finite monoids

(See Definition 4.9)

Variety of
regular languages
(Definition 4.2)

Variety of
finite monoids
(Definition 4.1)

EC-Variety of
regular languages
(Definition 4.4)

Theorem 4.22

Theorem 4.19 Theorem 4.16

Ballester-Bolinches

et al. [15]

F
in

iten
ess

b
y

D
efi

n
itio

nR
eg

u
la

ri
ty

T
h
eo

re
m

4
.3

1
C

lo
sed

u
n
d
er

ta
k
in

g
a
rb

itra
ry

S
u
b

d
irect

P
ro

d
u
cts

K
o
g
a
lov

sk
ĭi

[4
7
]

T
h
eo

rem
4
.2

6

C
lo

se
d

u
n
d
er

ta
k
in

g
a
rb

it
ra

ry
fa

m
il
ie

s
o
f

C
o
n
g
ru

en
ce

s

b
y

D
efi

n
it

io
n

Ballester-Bolinches

et al. [14]

Theorem4.5

Eilenberg [32]

Corollary 4.6

η
◦
ϕ

su
rj

ec
ti

v
e

b
y

D
efi

n
it

io
n

C
lo

sed
u
n
d
er

ta
k
in

g
S
u
b
m

o
n
o
id

s

b
y

D
efi

n
itio

n

A first look at the diagram shows that every class of languages considered in all the
Eilenberg results presented in this dissertation is defined in terms of equations and coequations
or it is equivalent, under some conditions, to a class of languages defined in terms of equations
and coequations. This underscores the importance of these constructions in the study of
Eilenberg’s related results. The differences appearing in the different classes of monoids have
a counterpart in the classes of languages that are better explained in terms of congruences.

Regarding this issue, less is known about congruences. We made a significant step for the

64 Chapter 4 Eilenberg’s theorem revisited

recognition of the role that monoids have in this kind of results. A description of the lattice
structure of these families of congruences must clearly be a priority.

For example, if M is a monoid generated with one element, we know that M is isomorphic
to a quotient N/θn,r on the free monoid N on one letter, with n and r natural numbers, r ≥ 1
and the congruence θn,r defined as

θn,r = ∆N ∪ {(p, q) ∈ N× N | p, q ≥ n and p ≡ q mod r},

where (n, r) denotes the type of the monoid M . For this kind of congruences, since they
have a closed form, we can determine many relations in terms of the parameters. Note that
for any possible parameter considered n, r the quotient N/θn,r represents a finite monoid.
Degenerated cases include (n ≥ 0, r = 1) or (n = 0, r ≥ 1) . Those particular cases are finite
monoids with zero and finite cyclic groups, respectively.

Given n,m, r, s ∈ N with r, s ≥ 1. It holds:

θm,s ⊆ θn,r ⇔ n ≤ m and r | s.

From the last description we can derive the following equations:

θm,s ∩ θn,r = θmax(m,n),lcm(r,s), θm,s ∨ θn,r = θmin(m,n),gcd(r,s),

where max(m,n) stands for the maximum between m and n and lcm(r, s) stands for the least
common multiple between r and s. On the right hand side, min(m,n) stands for the minimum
between m and n and gcd(r, s) stands for the greatest common divisor between r and s.

We don’t have references for the congruences on arbitrary free monoids with more than
one generator whose quotient is finite. That’s why we cannot expect such closed results on
arbitrary formations of monoids. However, we should investigate how some conditions on the
classes of monoids have a counterpart in the corresponding lattices of congruences. All in all,
this research line deserves further attention.

Gran!
Eres tan gran
que les absències et dignifiquen,
et fan més gran.

Gran — Senior i el Cor Brutal

https://www.youtube.com/watch?v=Wx_F1nV1-i0

65

CHAPTER 5

A description based on languages of the final non-deterministic automaton

5.1 Introduction

The study of the behaviour of non-deterministic automata has traditionally focused on the
languages which can be associated to the different states. We can assign to every state of an
automaton an associated language, consisting of all words which send this state to a final or
terminal state. Traditionally, many authors have considered as the behaviour of a state of
an automaton simply its associated language. Contrarily to what happens with deterministic
automata, it is well-known that is not possible to describe the behaviour of non-deterministic
automata from one state by considering just the language associated to that state. This is a
consequence of ignoring the different decisions that may be taken from each state. However,
when we take into account the different branches or decisions that may be taken at every
state, the behaviour problem becomes manageable.

From this point of view, automata are regarded as labelled transition systems or coalgebras
for suitable endofunctors on the category Set. In this scope, the idea of the behaviour of the
states of the coalgebra is related to the notion of bisimilarity. We can say that two states
have the same behaviour when they are bisimilar. Under very general hypotheses, which
hold for automata, when a category of coalgebras possesses a final object, two states are
bisimilar if and only if both states have the same image by the unique homomorphism into
the final object. This motivates the interest in studying the final objects in some categories
of coalgebras, like automata.

In this chapter we present a description of a final object for the category of non-deterministic
automata with the help of some structures defined in terms of languages that take into ac-
count the different decisions which can be made at every state, that is, the branches that can
be taken. Our construction emphasises the role of languages as natural objects to describe
the behaviour of automata. In this case, the behaviour of the automata can be described
with the help of the concept of bisimilarity.

Up to now, most known descriptions of final coalgebras are of a very general theoretical
nature or are given as a quotient of a coalgebra by the bisimilarity relation (see [16, 25, 73, 74]).
When they are applied to the functor 2×R associated to non-deterministic automata, it seems

66 Chapter 5 A description based on languages

that they do not give a clear idea of the role of languages, which are incontestably a central
notion in this theory, in the final automaton. Hence the question of whether languages can be
used to describe the behaviour of non-deterministic automata as labelled transition systems
remains open. The aim of this chapter is to give a positive answer to this question. This
also allows us to characterise bisimilarity of states of automata in terms of languages, which
has been a long-standing unsolved problem in this theory. As a consequence, we obtain a
characterisation of bisimilarity of states of automata in terms of languages and a method to
minimise non-deterministic automata with respect to bisimilarity of states.

We have done our best to keep the chapter self-contained. Accordingly, Section 5.2 intro-
duces known results on bisimulations and final coalgebras. Our main result is presented in
Theorem 5.16. We conclude the chapter by justifying why our description is the most natural
one and by establishing some questions for future research.

5.2 Final non-deterministic automata

It seems desirable to find, like in the case of deterministic automata, a description which
emphasises the role of languages as natural objects to describe bisimilarity of states in non-
deterministic automata. This is the aim of this Section. Intuitively, we can say that two states
of two automata are bismilar when they are not distinguishable from the observer point of
view, in other words, when the “observable behaviours” of both automata from both states
are the same. The following result summarises some of the properties of bisimulations in
automata. This is a particular case of some general results about coalgebras presented in
[63].

Theorem 5.1. Let (X,α), (Y, β), and (Z, γ) be three automata over the same alphabet A.

1. The union of a family of bisimulations between X and Y is again a bisimulation;

2. The relational composition of two bisimulations between X and Y , and Y and Z, repec-
tively, is a bisimulation between X and Z;

3. The diagonal relation ∆X = {(x, x) | x ∈ X} is a bisimulation on X;

4. The relational inverse of a bismulation between X and Y is a bismulation between Y
and X.

As a consequence, there exists a largest bisimulation between two automata over the same
alphabet, namely the union of all bisimulations between them.

Theorem 5.2 ([63, Theorem 2.5]). Let (X, c, α) and (Y, d, β) be two non-deterministic coloured
automata over the same alphabet. A map f : X → Y is a homomorphism between non-
deterministic automata if and only if its graph G(f) = {(x, f(x)) | x ∈ X} is a bisimulation
between X and Y .

Theorem 5.3 ([63, Theorem 2.5]). Let (X, c, α) and (Y, d, β) be two non-deterministic coloured
automata over the same alphabet. A map f : X → Y is a homomorphism between non-
deterministic automata if and only if its graph G(f) = {(x, f(x)) | x ∈ X} is a bisimulation
between X and Y .

5.2. Final non-deterministic automata 67

Theorem 5.4 ([63, Theorem 9.2]). Every bisimulation of the final non-deterministic coloured
automaton (T, e, τ) is contained in the diagonal ∆T = {(t, t) | t ∈ T}. In other words, two
bisimilar states are equal.

An automaton satisfying the above condition (two bisimilar states are equal) is called
simple. A way to check bisimilarity between two states of two automata is to check whether
both states have the same images under the unique homomorphisms into the final automaton.

Theorem 5.5. Let (X, c, α) and (Y, d, β) be two non-deterministic coloured automata and let
(T, e, τ) denote the final non-deterministic coloured automaton with homomorphisms ! and !′

from X and Y , respectively, to T . Two states x ∈ and y ∈ Y are bisimilar if and only if
!(x) =!′(y).

Proof. Suppose that !(x) =!′(y) = t, then (x, t) ∈ R = G(!) and (y, t) ∈ R′ = G(!′). Hence,
(x, y) belongs to the bisimulation (R′)−1 ◦ R by Theorem 5.1 and so x and y are bisimilar.
Conversely, suppose that x and y are bisimilar, that is (x, y) belongs to a bisimulation V .
Denote by R = G(!) and R′ = G(!′) the graphs of ! and !′ respectively. Hence (!(x), !′(y))
belongs to the bisimulation R′ ◦ V ◦R on T by Theorem 5.1. By Theorem 5.4 !(x) =!′(y), as
desired.

In Section 3.2 we presented the final deterministic automaton (2A
∗
, ε?, τ) of languages over

a fixed alphabet A. In particular it is shown that two states of a deterministic automaton are
bisimilar if and only if the corresponding accepted languages coincide.

Consider now non-deterministic automata. It is easy to see that bisimilar states accept the
same language: Suppose that x and y are bisimilar states of the non-deterministic coloured
automata (X, c, α) and (Y, d, β), respectively, and w = a1a2 · · · an ∈ oc(x), the language
associated to x in the first automaton. Then there exists a finite sequence of states

(x0, x1, · · · , xn)

such that x0 = x, xi ∈ (xi−1)ai for 1 ≤ i ≤ n, and c(xn) = 1. By bisimilarity, there exists a
sequence of states y0, y1, · · · , yn such that y0 = y and yi ∈ (yi−1)ai such that xi is bisimilar
to yi for 1 ≤ i ≤ n. By definition of bisimulation then either xi and yi are both final or
none of them is final. Since xn is final, it follows that yn is also final and so w ∈ od(y),
the language associated to the y in the second automaton. A similar argument shows that
od(y) ⊆ oc(x) and so oc(x) = od(y). However, this is not sufficient to identify bisimilar states,
as the following example shows.

Example 5.6. For a set X = {1, 2, 3, 4} with four elements, consider the non-deterministic
coloured automaton (X, c, α) over an alphabet A = {a} with a single letter, with transitions
given by 1a = X, 2a = {1, 2, 3}, 3a = {3, 4}, and 4a = ∅, and 4 as the unique final state. This
automaton is depicted below

1 2

4 3

a

a

a
a a

a

a a

a

68 Chapter 5 A description based on languages

We can see that oc(1) = oc(3) = aa∗, oc(2) = a2a∗, and oc(4) = ε (as we did in Chapter 3
we identify the regular languages with their corresponding regular expressions). However, 1
and 3 are not bisimilar. To see this, we note that from 1 we can make a transition to 2, with
language a2a∗, but from 3 we can only make transitions to 3 and 4, with respective languages
aa∗ and ε. However, by the previous remark, 2 cannot be bisimilar to neither 3 nor 4.

In order to construct the final non-deterministic automaton we need to introduce the
following concepts.

Definition 5.7. A language sequence over an alphabet A is a finite sequence of the form

(L0, a1, L1, a2, L2, · · · , Lr−1, ar, Lr)

where Li are languages in 2A
∗

for 0 ≤ i ≤ r, ai ∈ A for 1 ≤ i ≤ r, and aiLi ⊆ Li−1 for
1 ≤ i ≤ r. The number r is called the length of the language sequence. A sequence formed
by a unique language L0 will be called a language sequence of length zero.

Definition 5.8. A language sequence (L0, a1, L1, · · · , Lr−1, ar, Lr) over A is said to be a
prefix of the language sequence (K0, b1,K1, · · · ,Ks−1, bs,Ks) over the same alphabet A when
r ≤ s and Lj = Kj for 0 ≤ j ≤ r and aj = bj for 1 ≤ j ≤ r.

Definition 5.9. A language tree is a (possible empty) set of language sequences T satisfying
the following conditions:

1. Every prefix of a language sequence in T belongs to T .

2. Given a language sequence s = (L0, a1, L1, · · · , Lr−1, ar, Lr) in T , the set

Ns = {z ∈ T | z is of length k + 1 and s is a prefix of z}

is finite and

Lk \ {ε} =
⋃
{ak+1Lk+1 | (L0, a1, L1, · · · , Lr−1, ar, Lr) ∈ Ns} (5.1)

when Ns = ∅, this union is understood to be ∅, and so Lk = {ε} or Lk = ∅.

3. If T is not empty, then there is a unique language sequence in T of length zero. This
language is called initial language of the language tree.

Definition 5.10. A chain of language trees over an alphabet A is a finite sequence

(T0, a0, T1, a1, T2, . . . , Tr−1, ar, Tr)

in which Ti is a non-empty language tree over A for 0 ≤ i ≤ r, ai ∈ A for 1 ≤ i ≤ r such that
{(L0, a0, L1, . . . , Lt) | (L1, . . . , Lt) ∈ T1} ⊆ T0. The initial language of a chain of language
trees (T0, a0, T1, . . . , Tr) is the initial language of the first language tree T0. The number r
is called the length of the chain of language trees. The sequence T0 of a single non-empty
language tree over A will be considered a chain of language trees of length zero.

5.2. Final non-deterministic automata 69

Definition 5.11. A chain of language trees (T0, a1, T1, . . . , Tr−1, ar, Tr) over A is said to be
a prefix of the chain of language trees

(U0, b1, U1, . . . , Us−1, bs, Us)

over the same alphabet A when r ≤ s and Tj = Uj for 0 ≤ j ≤ r and aj = bj for 1 ≤ j ≤ r.

Now we are in a position to define the states of the final automaton.

Definition 5.12. A tree of chains of language trees over an alphabet A is a set of chains of
language trees T satisfying:

1. Every prefix of a chain of language trees in T is also in T .

2. Given a chain of language trees U = (T0, a1, T1, . . . , Tk−1, ak, Tk) ∈ T , the set

NU = {V ∈ T | V is of length k + 1 and U is a prefix of V }

is finite and

Tk =
⋃
{c(Lk, ak+1, Tk+1) | (T0, a1, T1, . . . , Tk, ak+1, Tk+1) ∈ NU}

where Lk is the initial language of Tk and

c(Lk, ak+1, Tk+1) = {(Lk, ak+1,M0, b0,M1, . . . ,Mr) |
(M0, b0,M1, . . . ,Mr) ∈ Tk+1}.

3. There is a unique chain of language trees in T of length zero. Its initial language is
called the initial language of T and denoted by Init(T).

Definition 5.13. The language tree automaton over the alphabet A is the non-deterministic
coloured automaton

(XL, ε?, τ)

such that:

1. XL is the set of all possible trees of chains of language trees over A,

2. a tree of chains of language trees T satisfies ε?(T) = 1 if and only if the empty word ε
belongs to Init(T), and

3. given a tree of chains of language trees T and a1 ∈ A, Ta1 consists of all trees U of
chains of language trees of the form

U = {(T1, a2, T2, . . . , Tk−1, ak, Tk) |
(T0, a1, T1, a2, T2 . . . , Tk−1, ak, Tk) ∈ T },

where all chains of language trees of T begin with the language tree T0.

70 Chapter 5 A description based on languages

Our next goal is to show that the language tree automaton over the alphabet A is a final
object for the category of automata over the alphabet A. This will require checking that
given an automaton (X, c, α), there exists a unique homomorphism between (X, c, α) and
(XL, ε?, τ). We begin by introducing this homomorphism.

Definition 5.14. Let (X, c, α) be a non-deterministic coloured automaton. Let x0 ∈ X. A
sequence

(x0, a1, x1, a2, x2, . . . , xr−1, ar, xr)

with xi ∈ X, 0 ≤ i ≤ r, ai ∈ A, 1 ≤ i ≤ r, and xi ∈ (xi−1)ai for 1 ≤ i ≤ r will be called a
state sequence in (X, c, α).

Construction 5.15. Let (X, c, α) be a non-deterministic coloured automaton. For each state
x ∈ X, let Lx = oc(x) denote the language accepted by X when it starts from x. For each
state sequence

(x0, a1, x1, a2, x2, . . . , xr−1, ar, xr),

Consider the language sequence (Lx0 , a1, Lx1 , a2, Lx2 , . . . , Lxr−1 , ar, Lxr). Let Tx0 be the
set of all possible sequences which can be obtained in this way from all sequences of states
starting with x0. Note that Tx0 is a language tree because Lx\{ε} =

⋃
{aLy | y ∈ xa, a ∈ A} in

an automaton for every state x. Now for each state sequence (x0, a1, x1, a2, x2, . . . , xr−1, ar, xr)
we consider

(Tx0 , a1, Tx1 , a2, Tx2 , . . . , Txr−1 , ar, Txr),

which is a chain of language trees. Then the set Qx0 of all chains of language trees which can
be obtained from all possible state sequences starting with x0 is a tree of chains of language
trees.

Theorem 5.16. Let (X, c, α) be a non-deterministic coloured automaton. The map φ : X −→
XL which assigns to each state x ∈ X the tree of chains of language trees Qx presented in
Construction 5.15 induces a homomorphism of automata between (X, c, α) and (XL, ε?, τ).

Proof. It is clear that if y ∈ xa, then Qy ∈ (Qx)a. Conversely, suppose that U ∈ (Qx)a.
Then U is a tree of chains of language trees that has been obtained by removing the first
element and a in all language sequences in the chains of language trees in Qx which begin
with (Tx0 , a). But then we get that U is one of the trees of chains of language trees Qy
with y ∈ xa. Therefore the map φ respects the transitions. Now assume that c(x0) = 1.
Then ε ∈ Lx0 . Moreover Init(Qx0) = Lx0 and since ε is one of the elements of this language,
ε?(Qx0) = 1. On the other hand, if Qx is a final state, then ε ∈ Init(Qx). Hence ε is in the
language accepted by (X, c, α) when it starts from x and so c(x) = 1.

Theorem 5.17. Let Ψ be a homomorphism between an automaton (X, c, α) and (XL, ε?, τ).
Then Ψ coincides with the homomorphism Φ of Theorem 5.16. As a consequence, (XL, ε?, τ)
is a final object in the category of automata over the alphabet A.

Proof. For each state x ∈ X, we will use the shorthand Lx = oc(x) for the language accepted
by X starting from x. The proof will consist of checking that for every state x0 ∈ X,
Lx0 = Init(Q0), where Q0 = ψ(x0). This will be used later to prove that ψ and φ coincide.
For the reader’s convenience, we break the proof into separately stated steps.

5.2. Final non-deterministic automata 71

1. Let x0 ∈ X. Then Lx0 ⊆ Init(Q0).

Let w be a word in Lx0 . If w = ε, then x0 is a final state and so ψ(x0) is also a final
state; in particular, ε ∈ Init(Q0) where Q0 = ψ(x0). Suppose that w = a1a2 . . . ar.
Then there exists a state sequence

(x0, a1, x1, a2, x2, . . . , xr−1, ar, xr)

such that xr is final. Then (Q0, a1,Q1, a2,Q2, . . . ,Qr−1, ar,Qr), where Qi = ψ(xi),
0 ≤ i ≤ r, is a state sequence in XL and Qr is final. Hence ε ∈ Init(Qr) and so
ar ∈ Init(Qr−1), ar−1ar ∈ Init(Qr−2), and, by induction, we see that w = a1a2 . . . ar ∈
Init(Q0). Therefore Lx0 ⊆ Init(Q0).

2. Conversely, Init(Q0) ⊆ Lx0 .

Consider w ∈ Init(Q0). If w = ε, then Q0 is final and so x0 is final. Therefore ε ∈ Lx0 .
Suppose now that w = a1a2 . . . ar. Note that Q0 is a tree of language trees and so Q0 is
composed of chains of language trees (T0, b1, T1, . . . , Ts−1, bs, Ts) satisfying the conditions
of Definition 5.12. Now each Ti is a language tree and so it is composed by language
sequences (L0, c1, L1, . . . , Lt−1, ct, Lt−1) satisfying the conditions of Definition 5.10. Let
T0 be the unique prefix of length zero of all chains of language trees of Q0 and let
L0 be the unique prefix of length zero of T0. By the condition of Equation (5.1) in
Definition 5.9, there exists a language L1 such that a2 . . . ar ∈ L1, and the language
sequence (L0, a1, L1) is in T0, there exists a language L2 such that a3 . . . ar ∈ L2 and
(L0, a1, L1, a2, L2) ∈ T0, and, by induction, we see that there exists a language Lr
such that the empty word ε is in Lr and (L0, a1, L1, a2, L2, . . . , Lr−1, ar, Lr) ∈ T0. By
Definition 5.12 (2), we obtain that there exists a language tree T1 such that the language
sequence (L1, a2, L2, . . . , Lr−1, ar, Lr) is in T1 and (T0, a1, T1) is a chain of language trees
in Q0, and, once again by induction, we find that there exists a language tree Tr such
that the language sequence (Lr) belongs to Tr and (T0, a1, T1, a2, T2, . . . , Tr−1, ar, Tr) is
a chain of language trees in Q0. By Definition 5.13 (3), there exists a tree of chains of
language trees Q1 such that (T1, a2, T2, . . . , Tr−1, ar, Tr) is a tree of chain of language
trees in Q1 and (Q0, a1,Q1) is a state sequence in XL, and so on, with another inductive
argument, we find the existence of a tree of chains of language trees Qr such that
(Tr) ∈ Qr and (Q0, a1,Q1, . . . ,Qr−1, ar,Qr) is a state sequence in XL. The state Qr is
final, because ε ∈ Lr = Init(Qr). Since ψ is a homomorphism of automata, there exists a
state sequence (x0, a1, x1, . . . , xr−1, ar, xr) in X such that ψ(xi) = Qi for 1 ≤ i ≤ r and
xr is final, because Qr is final. It follows that w ∈ Lx0 . This shows that Init(Q0) ≤ Lx0

for all x0 ∈ S.

3. The homomorphism ψ coincides with φ.

Now let (x0, a1, x1, . . . , xr−1, ar, xr) be a state sequence in X. Since ψ is a homomor-
phism of automata,

(ψ(x0), a1, ψ(x1), . . . , ψ(xr−1), ar, ψ(xr))

is a state sequence in XL. By using an argument similar to the one used in the previous
paragraph and the fact that the initial language of ψ(x) is Lx, we see that the tree of
language sequences T0 of the prefix of length zero of Q0 = ψ(x0) contains the language

72 Chapter 5 A description based on languages

sequence (Lx0 , a1, Lx1 , . . . , Lxr−1 , ar, Lxr). Now let (L0, a1, L1, . . . , Lr−1, ar, Lr) be a lan-
guage sequence in the tree of language sequences T0 of the prefix of length zero of ψ(x0).
The ideas of the previous paragraph show that there is a chain of trees of language trees
(T0, a1, T1, . . . , Tr−1, ar, Tr) in which the initial language of Ti is Li for 0 ≤ i ≤ r, and
that there exists a state sequence in XL of the form (Q0, a1,Q1, . . . ,Qr−1, ar,Qr) with
Init(Qi) = Li for 0 ≤ i ≤ r. The fact that ψ is a homomorphism implies that there exists
a state sequence (x0, a1, x1, . . . , xr−1, ar, xr) in X with Qi = ψ(xi) and so the language
sequence (L0, a1, L1, . . . , Lr−1, ar, Lr) coincides with (Lx0 , a1, Lx1 , . . . , Lxr−1 , ar, Lxr). It
follows that ψ = φ.

Theorems 5.5 and 5.17 yield the following result.

Corollary 5.18. Given two automata (X, c, α) and (Y, d, β) over the same alphabet A, two
states x ∈ X and y ∈ Y are bisimilar if and only if the trees of chains of language trees
obtained from x and y according to Construction 5.15 coincide.

Example 5.19. One might think that the final automaton could be constructed in an easier
way with the trees of language sequences. This is false. To see this, we consider the automaton
of Example 5.6. We cannot determine from the chain of languages (aa∗, a, aa∗, . . . , aa∗, a, aa∗)
whether it corresponds to the state sequence (1, a, 1, a, . . . , 1, a, 1), to (1, a, 1, a, . . . , 1, a, 3), or
to (3, a, 3, a, . . . , 3, a, 3). We can represent the images of the states of (X, c, α) in (XL, ε?, τ)
as follows.

T1 : aa∗

aa∗

a2a

aa∗

ε

aa∗

a2a∗

aa∗

ε

aa∗

a2a∗

aa∗

aa∗

ε

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

a

a

a

a

a

a

a

a

a

a

a

a

a

T2 : a2a∗

aa∗

a2a

aa∗

aa∗

a2a∗

aa∗

ε

aa∗

a2a∗

aa∗

aa∗

ε

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

a

a

a

a

a

a

a

a

a

a

a

a

T3 : aa∗ aa∗

ε

aa∗

ε

· · ·a

a

a

a

T4 : ε

5.2. Final non-deterministic automata 73

Intuitively, what we do to obtain the images in (XL, ε?, τ) of each state is to substitute each
element of the tree by the complete tree which can be formed from this element. It can be
depicted as follows

Q1 : T1

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T3

T4

···

···

···

···

···

···

···

a

a

a

a

a

a

a

a

a

a

a

a

a

Q2 : T2

T1

T2

T3

T1

T2

T3

T4

T1

T2

T3

T3

T4

···

···

···

···

···

···

···

a

a

a

a

a

a

a

a

a

a

a

a

Q3 : T3 T3

T4

T3

T4

···
a

a

a

a

Q4 : T4

Example 5.20. Consider now the automaton (X, c, α) , with X = {1, . . . , 11}, A = {a, b}, 4
and 6 as final states, and transition structure represented in the following diagram

1 2 3

4567

8 9 10

11

a

a

b

b

a

a,ba

bb
a

a,b

a,b

a,b

b

a

b a
a

a

We can use the Automata package [30] of the computer algebra system GAP [34] to check

74 Chapter 5 A description based on languages

that the languages associated with each of the states are

L1 = L7 = (a+ b)2(a+ b)∗,

L2 = ((a+ b)a)∗(a+ b)ba∗,

L3 = L5 = (a(a+ b))∗ba∗,

L4 = L6 = a∗,

L8 = (a+ b)(a+ b)∗,

L9 = L10 = L11 = ∅.

As we did above, Li = oc(i) for 1 ≤ i ≤ 11. The trees of language sequences corresponding
to each state are represented below. A branch labelled with more than one letter is an
abbreviation of a multiple branch of the form

L2 L3

a,b
⇔ L2

L3

L3

a

b

T1 : L1

L2

L8

L3

L4

∅

L4

L2

L4

∅

L4

L3

L4

∅

L4

L4

L2

L4

∅

· · ·

· · ·

· · ·

· · ·

· · ·

L8 L4

∅

L8

L4

∅

L4

∅

· · ·

L4

∅

L4

∅

· · ·

· · ·

· · ·

· · ·

b

a,b

a,b

a,b

b

a,b

b

a

a

a

a

a,b

a

a

a

b

a

a

a

a

a

a,b

a

a

a,b

b

a,b

a

a

a,b

b

a,b

a

a

a

a

a

a

a

a

5.2. Final non-deterministic automata 75

T2 : L2

L3

L4

L2

L4

L3

L4

L4

L2

· · ·

· · ·

· · ·
a,b

b

a

a

a,b

a

b

a

a

a

a,b

T3 = T5 : L3

L4

L2

L4

L3

L4

L4

L2

· · ·

· · ·

· · ·
b

a

a

a,b

a

b

a

a

a

a,b

T4 = T6 : L4 L4 L4 L4 L4 · · ·a a a a a

T7 : L1 L8 L4

∅

L8

L4

∅

L4

∅

· · ·

L4

∅

L4

∅

· · ·

· · ·

· · ·

· · ·

a,b a,b

b

a,b

a

a

a,b

b

a,b

a

a

a

a

a

a

a

a

T8 : L8 L4

∅

L8

L4

∅

L4

∅

· · ·

L4

∅

L4

∅

· · ·

· · ·

· · ·

· · ·

a,b

b

a,b

a

a

a,b

b

a,b

a

a

a

a

a

a

a

a

76 Chapter 5 A description based on languages

T9 = T10 : ∅ ∅ ∅ ∅ ∅ · · ·a a a a a

T11 : ∅

Although the language sequences reachable from the states 9 and 10 are the same, these
two states cannot be bisimilar, because from 9 we can make a transition with a to the state
11, which has no transitions, but from 10, the only state we can reach is 10, which has a
transition labelled with a to this state. This distinction appears when we consider the trees
of chains of language trees, which are given below

Q1 : T1

T2

T8

T3

T4

T9

T4

T2

T4

T9

T4

T3

T4

T9

T4

T4

T2

T4

T9

· · ·

· · ·

· · ·

· · ·

· · ·

T8 T4

T9

T8

T4

T9

T4

T9

· · ·

T4

T9

T4

T9

· · ·

· · ·

· · ·

· · ·

T11

T11

T11

a

a

a

b

a,b

a,b

a,b

b

a,b

b

a

a

a

a

a,b

a

a

a

b

a

a

a

a

a

a,b

a

a

a,b

b

a,b

a

a

a,b

b

a,b

a

a

a

a

a

a

a

a

5.2. Final non-deterministic automata 77

Q2 : T2

T3

T4

T2

T4

T3

T4

T4

T2

· · ·

· · ·

· · ·
a,b

b

a

a

a,b

a

b

a

a

a

a,b

Q3 = Q5 : T3

T4

T2

T4

T3

T4

T4

T2

· · ·

· · ·

· · ·
b

a

a

a,b

a

b

a

a

a

a,b

Q4 = Q6 : T4 T4 T4 T4 T4 · · ·a a a a a

Q7 : T1 T8 T4

T9

T8

T4

T9

T4

T9

· · ·

T4

T9

T4

T9

· · ·

· · ·

· · ·

· · ·

T11

T11

a,b

a

a

a,b

b

a,b

a

a

a,b

b

a,b

a

a

a

a

a

a

a

a

78 Chapter 5 A description based on languages

Q8 : T8 T4

T9

T8

T4

T9

T4

T9

· · ·

T4

T9

T4

T9

· · ·

· · ·

· · ·

· · ·

T11

T11

a

a

a,b

b

a,b

a

a

a,b

b

a,b

a

a

a

a

a

a

a

a

Q9 =: T9 T9 T9 T9 T9

T11

· · ·a a a a a

a

Q10 =: T9 T9 T9 T9 T9 · · ·a a a a a

Q11 : T11

The image of (X, c, α) in the final automaton under the homomorpishm introduced in
Theorem 5.17 can be depicted as follows (the states which are not image of any state of A
are not shown).

Q1 Q2 Q3 Q4

Q7 Q8 Q9 Q10

Q11

a

a

b b
a

a,b

a,b

a,b

a,b

b a
a

a

Note that the only final state is Q4, because the only language containing ε was L4, the
initial language of Q4. Of course, this also follows from the fact that the final states of
X, 4 and 6, are mapped into Q4. This atuomaton can be regarded as the smallest simple
automaton showing the same state behaviour as X.

Of course, the subautomaton of X composed by the states 9, 10 and 11 and the corre-
sponding transitions is enough to show that the trees of language sequences are not enough
to describe the final automaton. We have presented this more complicated example to show
how to work with alphabets consisting of more than one letter.

5.3. Discussion and future work 79

Example 5.21. Consider now the automaton (X, c, α) given by X = {1, 2, 3, 4}, A = {a},
1a = {1, 2, 3, 4}, 2a = {1, 2, 3}, 3a = {3, 4}, 4a = ∅, and no final states. This automaton is
like the one in Example 5.6, but with no final states. Obviously, all states have associated
the empty language ∅. The trees of languages associated to this automaton are like the
ones represented in Example 5.6, but with all languages replaced by ∅. In this case, only
the branching information of the automaton is used. The corresponding images in the final
automaton look like the ones represented there with the trees Ti coming from the ones of
Example 5.6. The automaton is also simple.

This technique of considering non-deterministic automata for a language of one letter and
no final states can be used to simulate coalgebras for the finite power-set functor Pω. Since
all languages are empty, the languages turn out to be irrelevant in our discussion for this kind
of automata.

5.3 Discussion and future work

We have obtained a description for the final object in the category of non-deterministic
coloured automata in terms of languages. We have also proved that the observational be-
haviour of an automaton (bisimilarity) can be described in terms of the languages accepted
from each state. In our approach, it is just an equality of sets obtained from the languages
associated with the states of the automaton. This generalises a known fact for deterministic
automata, as the language automaton (2A

∗
, ε?, τ) introduced in the beginning of Chapter 3,

but which did not seem evident for non-deterministic automata as we have seen in Exam-
ple 5.6.

In the following paragraphs, we shall present some descriptions of final coalgebras for
some functors in the category Set. Bonsangue, Rutten, and Silva (see [25, 73, 74]) have
considered categories of coalgebras for Kripke polynomial functors in the category Set of sets
and functions, which include automata, and have described the subcoalgebra of the final
coalgebra containing the images of the corresponding finite coalgebras. In their description,
they construct a set of expressions based on the elementary components of the functor and an
equivalence relation between these expressions. The quotient set of these expressions modulo
this equivalence relation admits a structure of a coalgebra for this functor which turns out to
be the subcoalgebra of the final coalgebra containing the images of the finite coalgebras.

The finite power-set functor Pω and other related functors on the category Set have
deserved special attention. A non-ordered finitely branching tree is said to be extensional
if subtrees rooted at distinct children are not isomorphic. From one tree, it is possible to
obtain an extensional quotient by identifying two identical subtrees of nodes of the tree and
repeating it for a possibly transfinite number of steps. We say that two trees are extensionally
equivalent when they reduce to the same extensional tree, and are similar when the trees of
depth n obtained by truncation are extensionally equivalent for all n. Barr [16] described
the final Pω-coalgebra as the quotient coalgebra of the coalgebra composed of all extensional
finitely branching trees modulo this relation of similarity. Another relevant description of the
final coalgebra for the power-set functor was given by Worrell in [80] (see also Adámek et al.
[3]). Let us call a tree t strongly extensional if for every n there exists m ≥ n such that the
truncation of depth n of t coincides with the truncation of depth n of the result of taking the
truncation of depth m of t and collapsing it with respect to extensional equivalence. The set
T of all finitely branching, strongly extensional trees has a coalgebra structure α : T → Pω(T)

80 Chapter 5 A description based on languages

assigning to every tree the set of all maximal proper subtrees. This Pω-coalgebra is final.
Kozen [48] has presented a combinatorial description of final coalgebras on Set. In his

work, the role of the functor is played by what he calls a type signature, which is a directed
multigraph whose nodes are designated as universal or existential. Universal nodes, denoted
by rectangles, correspond to product constructors, while existential nodes, denoted by dia-
monds, correspond to coproduct constructors. If F is a type signature, an F-realisation is a
directed multigraph G together with a multigraph homomorphism l : G→ F , called a typing,
satisfying the following properties:

• If l(u) is existential, then there is exactly one edge of G with source u.

• If l(u) is universal, then l is a bijection between the edges of G with source u and the
edges of F with source l(u).

A homomorphism of F-realisations is a multigraph homomorphism that commutes with the
types. Let F be a type signature with nodes VF . An F-coalgebra is a VF -indexed collection
of pairs (Xs, αs), where the Xs are sets and the αs are set functions

αs : Xs −→
{ ∑

src e=sXtgt e, if s is existential,∏
src e=sXtgt e, if s is universal,

where src e and tgt e denote, respectively, the source and the target of the arc e.
A morphism of F-coalgebras is a VF -indexed collection of set maps hs that commute with

the αs in the usual way. This corresponds to the traditional definition of a coalgebra for an
endofunctor on SetV . If the type signature is accessible, that is every node is accessible from
a fixed node, then it is possible to find an endofunctor F on Set such that the categories of
F -coalgebras and F-coalgebras are naturally isomorphic.

Kozen showed the existence of a pair of functors between the category of F-coalgebras
and the category of F-realisations, one in each direction, that are inverses up to natural
isomorphisms. He proves that these two categories are equivalent and, as a consequence, we
can obtain a description of the final F-coalgebra from the final F-realisation.

The final object for the category of F-realisations is showed to be the realisation (RF , lF)
defined as follows. A node of RF is a set Y of finite paths in F such that:

1. Y is non-empty and prefix-closed;

2. all paths in Y have the same first node, called lF (Y);

3. if p is a path in Y of length n and its tail node is existential, then there exists exactly
one path of length n+ 1 in Y extending p;

4. if p is a path in Y of length n and its tail node is universal, then all paths of length
n+ 1 extending p are in Y .

The arcs of RF are defined as follows. Let Y be a set of paths in F and e an arc of F . The
Brzozowski derivative of Y with respect to e is the set De(Y) of paths obtained by removing
the initial edge e from all paths in Y starting with that edge. If Y is a node of RF and
De(Y) is non-empty, we add exactly one edge 〈Y, e〉 from Y to De(Y) in RF and we make
lF (〈Y, e〉) = e. As shown in [48, Theorem 3.2], this realisation is a final object in the category
of F-realisations.

5.3. Discussion and future work 81

We have not found in [48] the description of a type signature corresponding to non-
deterministic automata. Nevertheless, from the examples in this paper we see that a possible
signature type for non-deterministic automata is the graph drawn on below, where the nodes
with label t, 0, 1, and xi, i ∈ N∪ {0}, are universal and the node labelled as 2 and the nodes
wa, a ∈ A, are existential; for every a ∈ A there exists an arc xa from t to wa and an arc v
from t to 2; there is an arc v0 from 2 to 0 and an arc v1 from 2 to 1; from wa to xi, i ∈ N∪{0},
there is an arc xai, and from xi to t, i ∈ N, there are i arcs labelled as xaij , 1 ≤ j ≤ i.

wa x0

x1

x2

x3

...

t 2

0

1

xa

(|A|)

xa0

xa1

xa2

xa3

xa11 (1)

xa2i (2)

xa3i (3)

v

v0

v1

In the following we will describe a non-deterministic coloured automaton (X, c, α) as an
F-realisation (G, l). We introduce a procedure to construct a multigraph starting from the
graph of the automaton. To every state x in the graph, depending on its nature, we will add
the following multigraphs:

• If x is not a final state, we add:

x x2 0
v v0

• If x is a final state, we add:

x x2 1
v v1

• For every input letter a ∈ A, if x has n a-labelled outgoing arcs, we replace them by:

x xwa xwan

· · ·

· · ·
...
· · ·

xa xan

xan1

xan2

xann

• If x has no a-labelled outgoing arcs, we add:

x xwa xwa0
xa xa0

82 Chapter 5 A description based on languages

This procedure will give us a multigraph. To complete the description of the realisation
we specify its typing l on the final realisation as follows:

xwa 7−→ wa x2 7−→ 2 x 7−→ t

xwan 7−→ xn 1 7−→ 1 0 7−→ 0

Example 5.22. Let us exemplify the last procedure on the small automaton (X, c, α) with
set of states X = {1, 2, 3}, alphabet A = {a}, 3 as the unique final state, and transitions
depicted below.

1 2

3

a
a

a a

The result of the previous procedure is represented on the following diagram.

1 2

3

12

1wa

0

1wa2

22

2wa

32

3wa

0

2wa2

1

3wa0

v

1a

v

1a2

1a21

1a22

v

2a

v

3a

v0

2a2

v0

2a2

2a21

2a22

The previous description of the final F-realisation applied to this signature type is the
first description we know for the final object for the category of non-deterministic automata
that is not given in terms of equivalence classes of a bisimilarity relation, in the sense that
in the final automaton, bisimilarity is just a set equality. Kozen also shows at the end of the
paper [48] how to characterise the elements of the final realisation as labelled trees.

As we have mentioned, automata can be regarded as F-realisations in the sense of Kozen
[48] for the type signature F presented above. We now outline how to pass from Kozen’s
description to our description and vice versa. The nodes of the final F-realisation can be
regarded as trees like in the example below, which corresponds to the image in the final
automaton for the alphabet A = {a, b, c} of a final state with two transitions labelled by a, a
transition labelled by b and no transitions labelled by c.

5.3. Discussion and future work 83

t

wa

wb

wc

2

x2

x1

x0

1

t

t

t

· · ·

· · ·

· · ·

xa

xb

xc

v

xa2

xb1

xc0

v1

xa21

xa22

xb11

We can associate to this state the language corresponding to all words a1 . . . ak such that
there exists a path starting with t whose edges are labelled

(xa1 , xa1i1 , xa1i1j1 , . . . , xak , xakik , xakikjk , v, v1).

We can generate the corresponding language tree by replacing each t by the corresponding
language, the path composed by three edges (xa, xai, xaij) by a and by deleting the paths
composed by the edges (v, v0) or (v, v1), as well as the paths composed by the edges (xa, xa0).
By substituting each state t by the corresponding language tree, we get the tree of chains of
language trees of our construction. Conversely, given a state of the language tree automaton
and a letter a ∈ A, we can associate to it the following paths:

• First, the path composed by (v, v1) if ε belongs to its initial language and (v, v0) other-
wise.

• Let a ∈ A.

– If there are no transitions labelled with a from this state, we simply add the path
(xa, xa0).

– If there are i transitions labelled with a from this state, we assign the paths whose
edges have the labels (xa, xai, xaij), for 1 ≤ j ≤ i, followed by all paths correspond-
ing to the images of the transition of this state by a obtained with this method.

The coinduction principle (see Rutten [63]) guarantees that this construction is possible.

Our structures derive from the branching information of the automata, with the states
substituted by their corresponding languages and, in some sense, follow the same ideas of
Barr [16] and Worrell [80] about the branching information. However, even some natural
candidates for the states of the final non-deterministic automaton, as the one presented in
Example 5.19, based only on the branching information of the automata with the states
replaced by their corresponding languages, are not good enough for our purposes.

A slight modification of this type signature, drawn below, gives the type signature corre-
sponding to the Pω-coalgebras, where Pω is the finite power-set functor.

84 Chapter 5 A description based on languages

x0 x1 x2 x3 · · ·t

Its final realisation can be obtained from the strongly extensional trees of Worrell [80]
by replacing the edges of the form x → y by a path t → xi → t, where i is the number of
children of x, and a leaf x is replaced by a path t→ x0. Hence the strongly extensional trees
are recovered with this description. This construction can be compared with the interesting
construction of Example 5.21. In fact, the description of infinite trees modulo bisimilarity
presented by Barr in [16] or the strongly extensional trees of Worrell in [80], are recovered
with our description.

Barr [16] and Worrell [80] have presented a description of final objects in Pω-coalgebras by
means of suitable infinite trees modulo bisimilarity, which exploit their branching information.
However, if we want to describe bisimilarity by means of the final object, this approach is
not sufficient, because it could be like a petitio principii. A precise description of the relation
is achieved in this chapter by means of the description of the language tree automaton and
the homomorphism from a given automaton to the language tree automaton. Nevertheless,
as we have mentioned in the previous section, we obtain trees isomorphic to the strongly
extensional trees of Worrell [80] when we use automata to simulate Pω-coalgebras.

Some recent descriptions of minimisations of non-deterministic automata have been pre-
sented by Brzozowski and Tamm [27] and Adámek, Bonchi et al. [2]. We mention them here
because they are based on the languages associated to every state of the automaton. How-
ever, their way of minimising automata differs from ours, since they only pay attention to
the languages associated to every state instead of bisimilarity, as we do. We present them
here in order to show the differences with our approach. The problem considered there is the
following. Given a regular language L over an alphabet A, minimal deterministic automata
can be considered as canonical acceptors of the given language L. The question is whether it
is possible to find an analogous canonical non-deterministic automaton. In [27], the quotients
L1, L2, . . . , Ln of the form Lw of a given regular language L are considered. The non-empty
intersections of languages of the form L̂1 ∩ · · · ∩ L̂n such that L̂i is equal to Li or to its
complement Li in which at least one of the Li is not complemented are called the atoms of
L. The non-deterministic automaton having the atoms of L as languages as states is called
the átomaton of L.

For a non-deterministic finite automaton, its determinisation is the deterministic finite
automaton obtained by the well-known subset construction, where only subsets (including
the empty subset) reachable from the initial state of the automaton X are used. In [27], the
authors show that the determinisation of the átomaton of a regular language L coincides with
the minimal deterministic automaton associated to this language.

In [2], a coalgebraic point of view of this kind of description is presented. However, non-
deterministic automata are considered there as coalgebras for the functor A×Id+1: Rel −→
Rel, where Rel denotes the category of sets and relations. The final object in this category is
A∗, and the unique morphism is the relation which assigns to each state all the words sending

5.3. Discussion and future work 85

this state to an accepting state. Under this interpretation, bisimilarity is just language equal-
ity. This point of view is different from the one used in this chapter. Equivalent descriptions
of this automaton can be found in both papers and in the references inside them.

For the case of automata, regarded as labelled transition systems, the description presented
here do not give, in our opinion, a clear idea of the role of languages in the final automaton.
The description of the language tree automaton is indeed a generalisation of the description
of the language automaton. In the case of a deterministic automaton (X, c, α), for each state
x and each letter a ∈ A, there exists a unique transition

x xa
a

and the corresponding languages satisfy the relation oc(xa) = oc(x)a. This property also holds
in the language automaton (2A

∗
, ε?, τ), in which the transitions have the form

L La
a

This implies that the language sequences associated to state sequences in a deterministic
automaton are uniquely determined by their initial languages. The same can be affirmed
about language trees, chains of language trees, and trees of chains of language trees associated
to state sequences of deterministic automata, which are also uniquely determined by their
initial languages.

The computation of the image of a non-deterministic automaton in the language tree
automaton solves a problem of minimisation of automata by Corollary 5.18. The image of
a given automaton is a simple automaton, that is, given two different states, they are not
bisimilar. The corresponding minimisation problem for deterministic automata is solved by
means of the equality of the languages recognised from the states. Other known algorithms
are available to identify bisimilarity and so to construct this image into the final automaton,
like state partition algorithms (see, for instance, [1]).

We must observe that our automata are not necessarily finite. In fact, the final automaton
is infinite. The same thing happens with the final deterministic automaton, whose states are
all languages: it is infinite and non-regular languages can appear as states. However, the set
of all states reachable from one state by the action of one letter is kept finite in order to make
sure that the states of the final object form a set.

A future research line in this subject could be to apply these techniques to study final
coalgebras for other structures which can have languages associated with the states in a
natural way. This could be an alternative approach to the descriptions of [16, 24, 25, 48, 73,
74, 80]. For instance, the ideas of Example 5.21 show a possible way to construct the final
object for the category of all coalgebras associated with the finite power-set functor.

Another possible future research line could be finding alternative semantics for other
structures admitting a coalgebra structure. As an example of what we mean, we might
consider the Hennessy-Milner logic. Let (X, c, α) be a non-deterministic coloured automaton.
We can define a multi-modal logic M(X, c, α) with an atomic proposition p whose semantics
is given by set of formulas L defined by the grammar

φ ::= tt | ¬φ | φ1 ∧ φ2 | 3aφ | p

where a varies over A. This logic is called Hennessy-Milner logic because it was introduced
by Hennessy and Milner in [42, 43] (see also [76] for more details). The usual interpretation
of the formulas is given by the modelling relation |= ⊆ X × L defined by

• x |= tt,

86 Chapter 5 A description based on languages

• x |= φ1 ∧ φ2 if and only if x |= φ1 and x |= φ2,

• x |= ¬φ if and only if ¬(x |= φ),

• x |= 3aφ if and only if there exists y ∈ xa such that y |= φ,

• x |= p if and only if c(x) = 1,

The extension of the Hennessy-Milner logic with fixed point operators is the modal µ-
calculus. A detailed study of the Hennessy-Milner logic and the modal µ-calculus, as well
as bisimilarity and different semantics for them, can be found in [76]. The trees of chains of
language trees over X defined from the underlying automaton (X, c, α) could be used to give
an alternative semantics for the Hennessy-Milner logic.

Ell va dir que en casos com aquest
no es tracta de ser més guapo
o de ser més lleig,
sinó d’estar convençut de fer-ho.

Jean-Luc — Els Amics de les Arts

https://www.youtube.com/watch?v=A3Yl3Fsj7tw

87

CHAPTER 6

Conclusions

Automata are very interesting mathematical objects that had engaged the attention of re-
searchers over the past few decades. These structures can be studied from many perspectives
as they are located at the crossroads between several growing mathematical fields, mainly
boosted from Computer Science; researchers in formal language theory, representation theory,
computation and monoid theory, among many other examples, may benefit from automata
theory. Despite its apparent simplicity, these structures had already proven succesful in the
study of several interesting problems.

In our work, we wanted to highlight the dual nature of these structures that are, at the
same time, an example of algebra and coalgebra. In this thesis we introduced the ground
notions to what we wanted to be a systematic study of automata both from an algebraic and
a coalgebraic perspective. Accordingly, in Chapter 2 we introduced some related notation,
terminology and basic well-known results used in this thesis.

In Chapter 3 we introduced the algebra-coalgebra description of an automaton. The
interesting cases of the free monoid with concatenation and the set of all languages with the
Brzozowski derivative were shown to be the initial algebra and the final coalgebra, respectively,
for the case of deterministic automata. The notions of equations and coequations were there
defined and from these concepts we constructed the free and cofree automata associated to a
given automaton. They represent, respectively, the largest set of equations and the smallest
set of coequations satisfied by the automaton considered. When suitably restricted, these
constructions based on equations and coequations are proved to be functorial. The main
contribution of Chapter 3 is Theorem 3.24, which presents a description of a dual equivalence
between the categories of congruence quotients with epimorphisms, living in the algebraic
side, and preformations of languages with monomorphisms, living in the coalgebraic side. For
working purposes, this duality gives rise to the concise expression of Corollary 3.25

L ∈ coEq(A∗/C) ⇔ C ⊆ Eq〈L〉

for every congruence C in A∗ and every language L in 2A
∗
. In Chapter 3 we also present some

examples of the usefulness of these constructions and we introduced the notion of equational
bisimulations, which is a method that can be implemented to prove that a language satisfies

88 Chapter 6 Conclusions

a given set of equations. Moreover, the syntactic monoid, the Myhill-Nerode relation and the
syntactic congruence associated to a formal language, among other scattered notions already
appearing in the literature, are presented within a common framework.

In Chapter 4 we have seen how Theorem 3.24 relates to the Eilenberg’s variety theorem.
In the first place, we gave an alternative definition of the original notion of variety of regular
languages in terms of equations and coequations. This new definition clearly underscores the
role of congruences in this kind of results. An appropiate variation of this definition can be
used to prove an Eilenberg’s theorem for formations of non-necessarily finite monoids. In
this case we relate three concepts that are proven to be equivalent; formations of monoids,
formations of congruences, and formations of languages.

The relation between formation of monoids and formations of congruences, although natu-
ral, seems completely new and it opens up a truly new research line relating classes of monoids
and lattices of congruences in the free monoids. The second correspondence is given for for-
mations of congruences and formations of languages. In this case, we have seen that most
of the steps in the proofs heavily depend on the use of Corollary 3.25. This Chapter clearly
underscores the deep relation between monoids, congruences in the free monoid (identities
between words), and languages. These bindings, already presented in Chapter 3 for objects,
also hold for classes. As we mentioned earlier, we see Chapter 4 as the best possible example
to show how useful the duality result is. We give and end to this Chapter by showing that
varieties of monoids, in the sense of Birkhoff, can also have an Eilenberg’s like theorem. What
we see is that these classes are a very special kind of formation. From an algebraic point of
view they are clearly determined by the existence of a locally-free object for each alphabet,
given by the quotient under the residual. This residual, in turn, being the smallest possible
congruence whose quotient is in the variety. It follows that the corresponding formation of
congruences is, for each alphabet, a principal filter. And, finally, on the langauge side, cofree
of the congruence quotient under the residual is shown to be the greatest preformation of
languages containing all languages whose syntactic monoid is in the variety.

The last Chapter contains an incursion to the coalgebraic study of non-deterministic
automata. Although some other authors have been given descriptions of the final non-
deterministic automata, we saw that none of them explicitly showed their relation with lan-
guages recognised by an automaton. For the case of deterministic automata this connection
is clearly presented; the automata homomorphism of an automaton in the final object is given
by its observations under the different colourings. This is not the case for non-deterministic
automata (see example 5.6) and more complex structures need to be considered. In our case,
we show that bisimilarity in a non-deterministic automaton is captured with trees of chains of
language trees. This characterisation, althought based on languages, does not seem to work
for a duality result as we did in Chapter 3. Non-determinism seems to vanish the strong
connection between colourings and considering sets of states in the automaton.

6.1 Further research directions

This dissertation on automata is, by all means, not extensive and some recent results on the
field have not been added to the present study.

One of the main topics for further research is related with the use of topological techniques
on duality results. Stone duality, for example, is used to obtain further stronger results for
regular languages and finite monoids. The connection between profinite words and Stone

6.2. Derived works 89

spaces was already discovered by Almeida [6, 7]. However, it was Pippenger in [56] the first
to formulate it in terms of Stone duality. They both observed that the Boolean algebra of
regular languages over A∗ is dual to the Stone space Â∗ of profinite words. This duality
extends to a one-to-one correspondence between Boolean algebras of regular languages and
quotients of Â∗.

On the other hand, the modern rendering of the “implicit identities” as stated by Reiter-
man [59] appear in the work done by Gehrke [36, 37] and Pin [38] as profinite identities. In
their work they show that lattices of languages are precisely those classes of regular languages
being defined by profinite identities [38]. It follows from these works the strong connection
between classes of regular languages, finite monoids and sets of profinite identities. This
approach is also very useful to establish effective decision procedures.

This correspondence strongly depends on profinite techniques. Recall that the profinite
monoid Â∗ can be constructed both as the completion of an ultrametric defined on A∗ or as the
projective limit of all finite monoids whose generators are in A (See [38] and [8], respectively).
Indeed, our results in the monoid side refer to objects (A∗/C, for some congruence C on
A∗) and the results on [56], [38], [36] and [37] refer to limit constructions (profinite monoid).

Indeed, the monoid Â∗ cannot be written as A∗/C for some congruence C on A∗ and, therefore,
our results per se do not apply.

However, the functorial approach we present here could be used to retrieve a similar
situation. Projective limits (the profinite monoid Â∗) and inductive limits (the set of all
regular languages Reg(A∗)) are categorical limits in which all arrows involved are epi or
mono, respectively. So far, we know that the category Am has inductive limits, whereas Ae
require an additional argument to guarantee that the mediating map from the limit to the
monoids is epi. At this point, it seems necessary to appeal to topological arguments (see for
instance [60, Lemma 3.1.27]). If such limits in both Am and Ae exist, our equivalence will
preserve both limits and colimits and we will retrieve a similar result on limit constructions.
All in all, this line of future work deserves further study.

The present paper already contains some contributions that encourage us to continue
working along these lines. The first relevant insight is that we are able to deal with infinite
automata and non-regular languages. It lies in the fact that the duality we find is the (con-
ceptually simpler) discrete duality between sets and complete atomic Boolean algebras. The
latter duality is also used in [61], where it was lifted to a dual equivalence between deter-
ministic automata and so-called Boolean automata. We hope to retrieve some of the results
presented in the papers [6, 7, 56, 38, 36, 37], specially Reiterman’s characterisation in terms
of profinite equations.

In connection with this research line, it would be interesting to see how some conditions
on formations reflect on the corresponding filters of congruences, as we discussed at the end of
Chapter 4. Specially, finiteness conditions seems to be good candidates for retrieving similar
situations as those we found in the papers on profinite techniques. All in all, further limit
constructions of non-necessarily finite monoids need to be investigated.

6.2 Derived works

Some of the main contributions appearing in this dissertation have been submitted or ac-
cepted for publication as research papers. The corresponding bibliographical references are
enumerated below.

90 Chapter 6 Conclusions

• [65] J.J.M.M. Rutten, A. Ballester-Bolinches, and E. Cosme-Llópez. Varieties and
covarieties of languages (preliminary version). In D. Kozen and M. Mislove,
editors, Proceedings of MFPS XXIX, volume 298 of Electron. Notes Theor. Comput.
Sci., pages 7–28, 2013.

• [11] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. A descrip-
tion based on languages of the final non-deterministic automaton. Theoretical
Computer Science, 536(0):1 – 20, 2014.

• [14] A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equivalence
of equations and coequations for automata. Information and Computation, 244:49
– 75, 2015.

• [13] A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero, and J. Rutten. For-
mations of monoids, congruences, and formal languages. 2015. Submitted.

During the development of this thesis, other relevant problems have been addressed. We
present these other works for any possible reference purposes. Although not directly, they
also deal with problems related with those presented here.

• [68] J. Salamanca, A. Ballester-Bolinches, M.M. Bonsangue, E. Cosme-Llópez, and
J.J.M.M. Rutten. Regular varieties of automata and coequations. In Ralf Hinze
and Janis Voigtländer, editors, Mathematics of Program Construction, volume 9129 of
Lecture Notes in Computer Science, pages 224–237. Springer International Publishing,
2015.

• [12] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. Group exten-
sions and graphs. Expositiones Mathematicae, 2015. Accepted manuscript (unedited
version) available online: 20th July 2015.

• A. Ballester-Bolinches, E. Cosme-Llópez, and P. Jiménez-Seral. Some contributions
to the theory of transformation monoids. Submitted, 2015.

• A. Ballester-Bolinches, E. Cosme-Llópez, and S. F. Kamornikov. On subgroup func-
tors of finite soluble groups. Submitted, 2015.

Has esgarrat un feix d’hores cercant
un mitjà que t’empente en avant, però
et disperses perquè no hi ha horitzons,
ni confins, et rellisca en les mans, i ho
tems, estrany, perquè no és real, no hi
ha final, no, torna a ser tot igual.

Russell — Sitja

https://vimeo.com/105749115

Bibliography 91

Bibliography

[1] L. Aceto, A. Ingolfsdottir, and J. Srba. The algorithmics of bisimilarity. In D. Sangiorgi
and J. Rutten, editors, Advanced Topics in Bisimulation and Coinduction, pages 100–
172. Cambridge University Press, 2012.

[2] J. Adámek, F. Bonchi, M. Hülsbusch, B. König, S. Milius, and A. Silva. A Coalgebraic
Perspective on Minimization and Determinization. In Foundations of Software Science
and Computational Structures - 15th International Conference, FOSSACS 2012, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, pages 58–73, 2012.

[3] J. Adámek, S. Milius, S. Moss, and L. Sousa. Power-set functors and saturated trees.
In M. Bezem, editor, Computer Science Logic (CSL’11)- 25th International Workshop
20th Annual Conference of the EACSL, volume 12 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 5–19. Leibniz-Zentrum für Informatik., 2011.

[4] J. Adámek, S. Milius, R. Myers, and H. Urbat. Generalized Eilenberg Theorem I: Local
Varieties of Languages. In A. Muscholl, editor, Foundations of Software Science and
Computation Structures, volume 8412 of LNCS, pages 366–380, 2014.

[5] J. Adamek, S. Milius, R. Myers, and H. Urbat. Varieties of Languages in a Category.
ArXiv e-prints, Jan. 2015.

[6] J. Almeida. Residually finite congruences and quasi-regular subsets in uniform algebras.
Portugaliae mathematica, 46(3):313–328, 1989.

[7] J. Almeida. Finite Semigroups and Universal Algebra. Series in algebra. World Scientific,
1994.

[8] J. Almeida. Profinite semigroups and applications. In Structural theory of Automata,
Semigroups, and Universal Algebra, pages 7–18, 2003.

[9] M. Arbib and E. Manes. Adjoint machines, state-behaviour machines, and duality. Jour-
nal of Pure and Applied Algebra, 6:313–344, 1975.

[10] M. Arbib and H. Zeiger. On the relevance of abstract algebra to control theory. Auto-
matica, 5:589–606, 1969.

92 Bibliography

[11] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. A description based
on languages of the final non-deterministic automaton. Theoretical Computer Science,
536(0):1 – 20, 2014.

[12] A. Ballester-Bolinches, E. Cosme-Llópez, and R. Esteban-Romero. Group extensions
and graphs. Expositiones Mathematicae, 2015. Accepted manuscript (unedited version)
available online: 20th July 2015.

[13] A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero, and J. J. M. M. Rutten.
Formations of monoids, congruences, and formal languages. CWI Technical Report FM-
1504, CWI, June 2015. Submitted.

[14] A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equivalence of equa-
tions and coequations for automata. Information and Computation, 244:49 – 75, 2015.

[15] A. Ballester-Bolinches, J.-É. Pin, and X. Soler-Escrivà. Formations of finite monoids and
formal languages: Eilenberg’s theorem revisited. Forum Math., 26(6):1731–1761, 2012.

[16] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Comput. Sci.,
114(2):299–315, 1993.

[17] C. Behle, A. Krebs, and S. Reifferscheid. Typed monoids: An eilenberg-like theorem for
non regular languages. In Proceedings of the 4th International Conference on Algebraic
Informatics, CAI’11, pages 97–114, Berlin, Heidelberg, 2011. Springer-Verlag.

[18] N. Bezhanishvili, C. Kupke, and P. Panangaden. Minimization via duality. In C.-H. L.
Ong and R. J. G. B. de Queiroz, editors, WoLLIC, volume 7456 of LNCS, pages 191–205,
2012.

[19] G. Birkhoff. On the Structure of Abstract Algebras. Mathematical Proceedings of the
Cambridge Philosophical Society, 31:433–454, 1935.

[20] F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A coalgebraic perspective
on linear weighted automata. Information and Computation, 211:77–105, 2012.

[21] F. Bonchi, M. Bonsangue, H. Hansen, P. Panangaden, J. Rutten, and A. Silva. Algebra-
coalgebra duality in Brzozowski’s minimization algorithm. ACM Transactions on Com-
putational Logic, 15(1), 2014.

[22] F. Bonchi, M. Bonsangue, J. Rutten, and A. Silva. Brzozowski’s algorithm
(co)algebraically. In R. Constable and A. Silva, editors, Logic and Program Semantics.,
volume 7230 of LNCS, pages 12–23, 2012.

[23] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to congruence.
In Proc. POPL, pages 457–468, 2013.

[24] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. Coalgebraic logic and synthesis of
Mealy machines. In R. M. Amadio, editor, FoSSaCS08, volume 4962 of Lecture Notes in
Computer Science, pages 231–245. Springer, 2008.

[25] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. An algebra for Kripke polynomial
coalgebras. In A. Pitts, editor, LICS 2009, volume 5504 of Lecture Notes in Computer
Science, pages 49–58. IEEE Computer Society, 2009.

Bibliography 93

[26] J. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–494,
1964.

[27] J. Brzozowski and H. Tamm. Theory of Átomata. In G. Mauri and A. Leporati, editors,
Developments in Language Theory, volume 6795 of Lecture Notes in Computer Science,
pages 105–116. Springer Berlin Heidelberg, 2011.

[28] J. Conway. Regular Algebra and Finite Machines. Dover Books on Mathematics. Dover
Publications, 2012.

[29] M. Dekkers. Stone duality. An application in the theory of formal languages. Master’s
thesis, Radboud Universiteit Nijmegen, the Netherlands, December 2008.

[30] M. Delgado, S. Linton, and J. J. Morais. Automata (version 1.13), 2004.
http://cmup.fc.up.pt/cmup/mdelgado/automata/.

[31] S. Eilenberg. Automata, languages and machines (Vol. A). Pure and applied mathemat-
ics. Academic Press, 1974.

[32] S. Eilenberg. Automata, languages and machines (Vol. B). Pure and applied mathemat-
ics. Academic Press, 1976.

[33] Z. Ésik and M. Ito. Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybern., 16(1):1–28, 2003.

[34] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.7, 2015.

[35] W. Gaschütz and U. Lubeseder. Kennzeichnung gesättigter formationen. Mathematische
Zeitschrift, 82(3):198–199, 1963.

[36] M. Gehrke. Stone duality and the recognisable languages over an algebra. In K. et al.,
editor, Algebra and Coalgebra in Computer Science (CALCO 2009), volume 5728 of
LNCS, pages 236–250, 2009.

[37] M. Gehrke. Duality and recognition. In Murlak and Sankowski, editors, Mathematical
Foundations of Computer Science, volume 6907 of LNCS, pages 3–18, 2011.

[38] M. Gehrke, S. Grigorieff, and J.-É. Pin. Duality and equational theory of regular lan-
guages. In Proceedings ICALP, volume 5126 of LNCS, pages 246–257, 2008.

[39] G. Grätzer. Universal Algebra. Mathematics and Statistics. Springer, 2008.

[40] P. Grillet. Semigroups: an introduction to the structure theory. Marcel Dekker, Inc.,
New York, 1995.

[41] Y. Q. Guo, C. M. Reis, and G. Thierrin. Relatively f-disjunctive languages. Semigroup
Forum, 37:289–299, 1988.

[42] M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency. In Pro-
ceedings of the 7th Colloquium on Automata, Languages and Programming, pages 299–
309, London, UK, 1980. Springer-Verlag.

94 Bibliography

[43] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency. J.
ACM, 32(1):137–161, Jan. 1985.

[44] R. Kalman. On the general theory of control systems. IRE Transactions on Automatic
Control, 4(3):110–110, 1959.

[45] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical Systems Theory.
McGraw Hill, 1969.

[46] S. Kleene. Representation of events in nerve nets and finite automata. In Shannon and
McCarthy, editors, Automata Studies, pages 3–41. Princeton Univ. Press, 1956.

[47] S. P. Kogalovskĭı. On Birkhoff’s theorem. Uspekhi Mat. Nauk, 20(5):206–207, 1965.

[48] D. Kozen. Realization of Coinductive Types . Electronic Notes in Theoretical Com-
puter Science , 276(0):237 – 246, 2011. Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVII) .

[49] Y. Liu, K. P. Shum, and Y. Q. Guo. Relatively regular languages and thin codes.
European J. Combin., 29:261–267, 2008.

[50] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts
in Mathematics. Springer-Verlag, New York-Heidelberg-Berlin, second edition, 1998.

[51] E. Manes and M. Arbib. Algebraic Approaches to Program Semantics. The AKM Series
in Theoretical Computer Science. Springer New York, 1986.

[52] H. Neumann. Varieties of Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer-Verlag, 1967.

[53] J.-É. Pin. Varieties of formal languages. North Oxford, London and Plenum, New York,
1986. Translation of Variétés de langages formels, Masson, 1984.

[54] J.-É. Pin. A variety theorem without complementation. Russian Mathematics (Izvestija
vuzov. Matematika), 39:80–90, 1995.

[55] J.-É. Pin. Mathematical Foundations of Automata Theory, 2014.

[56] N. Pippenger. Regular languages and stone duality. Theory of Computing Systems,
30(2):121–134, 1997.

[57] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM J. Res.
Dev., 3(2):114–125, Apr. 1959.

[58] C. M. Reis and H. J. Shyr. Some properties of disjunctive languages on a free monoid.
Information and Control, 37(3):334–344, 1978.

[59] J. Reiterman. The Birkhoff theorem for finite algebras. Algebra universalis, 14(1):1–10,
1982.

[60] J. Rhodes and B. Steinberg. The q-theory of finite semigroups. Springer Monographs in
Mathematics. Springer, New York, 2009.

Bibliography 95

[61] F. Roumen. Canonical automata via duality. Master’s thesis, Radboud Universiteit
Nijmegen, the Netherlands, 2011.

[62] J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorgi and
R. de Simone, editors, Proceedings of CONCUR’98, volume 1466 of LNCS, pages 194–
218, 1998.

[63] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000. Fundamental Study.

[64] J. Rutten. Behavioural differential equations: a coinductive calculus of streams, au-
tomata, and power series. Theoretical Computer Science, 308(1–3):1–53, 2003.

[65] J. Rutten, A. Ballester-Bolinches, and E. Cosme-Llópez. Varieties and covarieties of
languages (preliminary version). In D. Kozen and M. Mislove, editors, Proceedings of
MFPS XXIX, volume 298 of Electron. Notes Theor. Comput. Sci., pages 7–28, 2013.

[66] J. J. Rutten. Automata, Power Series, and Coinduction: Taking Input Derivatives Seri-
ously (Extended Abstract). Technical report, CWI (Centrum Wiskunde & Informatica),
Amsterdam, The Netherlands, 1999.

[67] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[68] J. Salamanca, A. Ballester-Bolinches, M. Bonsangue, E. Cosme-Llópez, and J. Rutten.
Regular varieties of automata and coequations. In R. Hinze and J. Voigtländer, edi-
tors, Mathematics of Program Construction, volume 9129 of Lecture Notes in Computer
Science, pages 224–237. Springer International Publishing, 2015.

[69] J. Salamanca, M. M. Bonsangue, and J. J. M. M. Rutten. Equations And Coequations
For Weighted Automata. In Proceedings of International Symposium on Mathematical
Foundations of Computer Science 2015 (MFCS 15), Lecture Notes in Computer Science,
pages 1 – 21. Springer, 2015.

[70] M. Schützenberger. On the definition of a family of automata. Information and Control,
4(2–3):245 – 270, 1961.

[71] M. Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190–194, 1965.

[72] L. A. Shemetkov and A. N. Skiba. Formations of algebraic systems. Modern Algebra,
Moscow, 1989. In Russian, with an English summary.

[73] A. Silva. Kleene coalgebra. PhD thesis, Radboud Universiteit Nijmegen, Dec. 2010.

[74] A. Silva, M. M. Bonsangue, and J. J. M. M. Rutten. Non-deterministic Kleene coalgebra.
Log. Meth. Comput. Sci., 6(3):23/1–39, 2010.

[75] I. Simon. Piecewise Testable Events. In Proceedings of the 2Nd GI Conference on
Automata Theory and Formal Languages, pages 214–222, London, UK, 1975. Springer-
Verlag.

96 Bibliography

[76] C. Stirling. Bisimulation and logic. In D. Sangiorgi and J. Rutten, editors, Advanced
Topics in Bisimulation and Coinduction, pages 173–196. Cambridge University Press,
2012.

[77] M. H. Stone. Applications of the theory of Boolean rings to general topology. Trans.
Amer. Math. Soc., 44:375–481, 1937.

[78] M. H. Stone. The representation of Boolean algebras. Bull. Amer. Math. Soc., 44:807–
816, 12 1938.

[79] H. Straubing. On logical descriptions of regular languages. In S. Rajsbaum, editor,
LATIN 2002: Theoretical Informatics, volume 2286 of Lecture Notes in Computer Sci-
ence, pages 528–538. Springer Berlin Heidelberg, 2002.

[80] J. Worrell. On the final sequence of a finitary set functor. Theoret. Comput. Sci.,
338:184–199, 2005.

[81] D. Zhang, Y. Guo, and K. P. Shum. On some decompositions of r-disjunctive languages.
Bull. Malays. Math. Sci. Soc., 2(3):727–746, 2014.

Index 97

Index

(2A
∗
, ε?, τ), 25

(A∗, ε, σ), 25
coEq(X,α), 30
cofree(X,α), 30
Eq(X,α), 29
free(X,α), 29

Algebra, 12
homomorphism, 12
initial, 12

Alphabet, 14
Aperiodic, 52
Automata

deterministic, 15
bisimulation, 17
homomorphism, 16

non-deterministic, 19
bisimulation, 20
homomorphism, 19

Boolean algebra, 22
atomic, 22
complete, 22

Category, 11
duality, 12
equivalence, 12
opposite, 11

Chain of language trees, 68
Coalgebra, 12

final, 12
homomorphism, 12

Coequation, 28
Congruence quotient, 34
Cyclic, 52

Equation, 27

Filter, 21
principal, 21

Formation
of congruences, 53
of languages, 53
of monoids, 51
of regular languages, 59

Functor, 11

Graph, 66

Index, 52

Language, 14
accepted, 16
derivative, 15
regular, 15
sequence, 68
tree, 68
tree automaton, 69

Lattice, 21
as an algebra, 21
Boolean, 22
complemented, 21
distributive, 21
homomorphism, 21

Letter, 14
Locally

F, 53
finite, 52

Monoid, 13
congruence, 13
homomorphism, 13

98 Index

submonoid, 13

Observability map, 26

Partially ordered set, 20
Period, 52
Periodic, 52
Prefix, 68
Preformation of languages, 35
Pseudovariety, 48

Reachability map, 25
Relatively regular, 52
Residual, 53

Simple, 67
Subdirect product, 51

Tree of chains of language trees, 69
Type, 52

Variety
EC, 49
of finite monoids, 48
of languages, 58
of monoids, 57
of regular languages, 49

Word, 14

Zero, 52

Mante, qui t’ha parit que t’aguante!!

Faré que tota sa meva vida
sigui un viatge com aquest,
en de dia trec sa barca,
en sa nit arròs de peix.
No puc demanar res més;
he resolt tots els problemes
dient “tanmateix”.

En s’estiu — Antònia Font

https://www.youtube.com/watch?v=5XzMUcXNnEI

