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Abstract

In this survey paper several subgroup embedding properties related
to some types of permutability are introduced and studied.
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1 Introduction

All groups in the paper are finite.

The purpose of this survey paper is to show how the embedding of cer-
tain types of subgroups of a finite group G can determine the structure
of G. The types of subgroup embedding properties we consider include: S-
permutability, S-semipermutability, semipermutability, primitivity, and qua-
sipermutability:.

A subgroup H of a group G is said to permute with a subgroup K of G
if HK is a subgroup of G. H is said to be permutable in G if H permutes
with all subgroups of GG. A less restrictive subgroup embedding property is
the S-permutability introduced by Kegel and defined in the following way:
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Definition 1. A subgroup H of G is said to be S-permutable in G if H
permutes with every Sylow p-subgroup of G for every prime p.

In recent years there has been widespread interest in the transitivity of
normality, permutability and S-permutability.

Definition 2. 1. A group G is a T-group if normality is a transitive re-
lation in G, that is, if every subnormal subgroup of G is normal in G.

2. A group G is a PT-group if permutability is a transitive relation in G,
that is, if H is permutable in K and K is permutable in G, then H is
permutable in G.

3. A group G is a PST-group if S-permutability is a transitive relation in
G, that is, if H is S-permutable in K and K is S-permutable in G, then
H is S-permutable in G.

If H is S-permutable in G, it is known that H must be subnormal in
G (|1, Theorem 1.2.14(3)]). Therefore, a group G is a PST-group (respect-
ively a PT-group) if and only if every subnormal subgroup is S-permutable
(respectively permutable) in G.

Note that T implies PT and PT implies PST. On the other hand, PT
does not imply T (non-Dedekind modular p-groups) and PST does not imply
PT (non-modular p-groups). The reader is referred to [1, Chapter 2| for
basic results about these classes of groups. Other characterisations based on
subgroup embedding properties can be found in [2].

Agrawal (|1, 2.1.8]) characterised soluble PST-groups. He proved that a
soluble group G is a PST-group if and only if the nilpotent residual in G
is an abelian Hall subgroup of G on which G acts by conjugation as power
automorphisms. In particular, the class of soluble PST-groups is subgroup-
closed.

Let G be a soluble PST-group with nilpotent residual L. Then G is a PT-
group (respectively T-group) if and only if G/L is a modular (respectively
Dedekind) group ([1, 2.1.11]).

Definition 3 ([3]). A subgroup H of a group G is said to be semipermut-
able (respectively, S-semipermutable) provided that it permutes with every
subgroup (respectively, Sylow subgroup) K of G such that ged(|H|, |K]) = 1.

An S-semipermutable subgroup of a group need not be subnormal. For
example, a Sylow 2-subgroup of the nonabelian group of order 6 is semiper-
mutable and S-semipermutable, but not subnormal.



Definition 4 (see [4]). A group G is called a BT-group if semipermutability
is a transitive relation in G.

L. Wang, Y. Li, and Y. Wang proved the following theorem which showed
that soluble BT-groups are a subclass of PST-groups:

Theorem 5 ([4]). Let G be a group with nilpotent residual L. The following
statements are equivalent:

1. G s a soluble BT-group;
every subgroup of G of prime power order is S-semipermutable;
every subgroup of G of prime power order is semipermutable;

every subgroup of G is semipermutable;

AR NI

G 1s a soluble PST-group and if p and q are distinct primes not dividing
the order of L with G, a Sylow p-subgroup of G and G, a Sylow q-
subgroup of G, then [G,,G,| = 1.

Research papers on BT-groups include [4, 5, 6, 7|.
We next present an example of a soluble PST-group which is not a BT-
group.

Example 6. Let L be a cyclic group of order 7 and A = C3 x Cy be the
automorphism group of L. Here Cj (respectively, Cy) is the cyclic group of
order 3 (respectively, 2). Let G = [L]A be the semidirect product of L by A.
Let L = (z), C5 = (y) and Cy = (z) and note that [(y)*, (z)] # 1. Now G is
a PST-group by Agrawal’s theorem, but G is not a BT-group by Theorem 5.

A subclass of the class of soluble BT-groups is the class of soluble SST-
groups, which has been introduced in [8].

Definition 7 (see [9]). A subgroup H of a group G is said to be SS-
permutable (or SS-quasinormal) in G if H has a supplement K in G such
that H permutes with every Sylow subgroup of K.

Definition 8 (see [8]). We say that a group G is an SST-group if SS-
permutability is a transitive relation.

SS-permutability can be used to obtain a characterisation of soluble PST-
groups.

Theorem 9 ([8]). Let G be a group. Then the following statements are
equivalent:



1. G is soluble and every subnormal subgroup of G is SS-permutable in G.
2. G is a soluble PST-group.
Theorem 10 ([8]). A soluble SST-group G is a BT-group.

The following example shows that a soluble BT-group is not necessarily
an SST-group.

Example 11 ([§]). Let G = (z,y | 2° = y* = 1,2Y = 2?). The nilpotent
residual of G is the Sylow 5-subgroup (z). By Theorem 5, G is a soluble
BT-group. Let H = (y) and M = (y?). Suppose that M is SS-permutable
in G. Then G is the unique supplement of M in G. It follows that M is S-
permutable in G, and thus M < O.(G). This implies that either O(G) = H
or O2(G) = M. Since y* = yz~' and (y?)* = y?z?, neither H nor M
are normal subgroups of G. This contradiction shows that M is not SS-
permutable in G. Since M is SS-permutable in (z,y?) and this subgroup
is SS-permutable in GG, we obtain that the soluble group G cannot be an
SST-group.

A less restrictive class of groups is the class of Ty-groups which has been
studied in [5, 7, 10, 11, 12].

Definition 12. A group G is called a Ty-group if the Frattini factor group
G/®(G) is a T-group.

Theorem 13 ([11]). Let L be the nilpotent residual of the soluble Ty-group.
Then:

1. G is supersoluble;

2. L s a nilpotent Hall subgroup of G.

Theorem 14 ([10]). Let G be a soluble Ty-group. If all the subgroups of G
are Ty-groups, then G is a PST-group.

A group G is called an MS-group if the maximal subgroups of all the
Sylow subgroups of G are S-semipermutable.

Theorem 15 ([13]). If G is an MS-group, then G is supersoluble.
Theorem 16 ([7]). Let L be the nilpotent residual of an MS-group G. Then:
1. L is a nilpotent Hall subgroup of G;

2. G is a soluble Ty-group.



We now provide three examples which illustrate several properties and
differences of some of the classes presented in this paper. These examples
are from [6, 7|.

Example 17. Let C' = (x) be a cyclic group of order 7 and let A = (y) x (z)
be a cyclic group of order 6 with y an element of order 3 and 2z an element
of order 2. Then A = Aut(C). Let G = [C]A be the semidirect product of
C by A. Then [(y)*, z] # 1 and G is not a soluble BT-group. However, G is
an MS-group.

Example 18 shows that the classes of MS- and Ty-groups are not subgroup
closed.

Example 18. Let H = (z,y | 2° = y° = [2,y]’ = [z,[2,9]] = [y, [2,y]] =

1) be an extraspecial group of order 27 and exponent 3. Then H has an
automorphism a of order 2 given by z% = z7!, y* = y~! and [z,y]* = [z, y].
Put G = [H|{(a), the semidirect product of H by (a). Let z = (x,y). Then
O(G) =P(H) = (2) = Z(G) = Z(H). Note that G/®(G) is a T-group so that
G is a Ty-group. The maximal subgroups of H are normal in G and it follows
that G is an MS-group. Let K = (z, z,a). Then (zz) is a maximal subgroup
of (x, z), the Sylow 3-subgroup of K. However, (xz) does not permute with
(a) and hence (xz) is not an S-semipermutable subgroup of K. Therefore,
K is not an MS-subgroup of G. Also note that ®(K) = 1 and so K is not
a T-subgroup of G and K is not a Ty-subgroup of G. Hence the class of
soluble Ty-groups is not closed under taking subgroups. Note that G is not
a soluble PST-group.

Example 19 presents an example of a soluble PST-group which is not an
MS-group.

Example 19. Let C = (x) be a cyclic group of order 19*, D = (y) a
cyclic group of order 3%, and E = (z) is a cyclic group of order 2 such that
D x E < Aut(C). Then G = [C](D x E) is a soluble PST-group and G is
not an MS-group since [(y?)", 2] # 1.

The following notation is needed in the presentation of the next theorem
which characterises MS-groups. Let G be a group whose nilpotent residual
L is a Hall subgroup of G. Let m = (L) and let § = 7/, the complement of
7 in the set of all prime numbers. Let 6y denote the set of all primes p in 6
such that if P is a Sylow p-subgroup of G, then P has at least two maximal
subgroups. Further, let - denote the set of all primes ¢ in 8 such that if
Q@ is a Sylow g-subgroup of GG, then ) has only one maximal subgroup, or,
equivalently, @) is cyclic.



Theorem 20 ([6]). Let G be a group with nilpotent residual L. Then G is
an MS-group if and only if G satisfies the following:

1. G is a Ty-group.
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. L is a nilpotent Hall subgroup of G.

8. If p € m and P € Syl (G), then a mazimal subgroup of P is normal
mn G.

4. Let p and q be distinct primes with p € Oy and q € . If P € Syl (G)
and Q € Syl (G), then [P,Q] = 1.

5. Let p and q be distinct primes with p € 0¢ and q € 0. If P € Syl (G)
and Q € Syl (G) and M is the mazimal subgroup of P, then QM =
M@ is a nilpotent subgroup of G.

Theorem 21 ([6]). Let G be a soluble PST-group. Then G is an MS-group
if and only iof G satisfies 4 and 5 of Theorem 20.

Theorem 22 ([6]). Let G be a soluble PST-group which is also an MS-group.
If ¢ is the empty set, then G is a BT-group.

Definition 23 ([14]). A subgroup H of a group G is called primitive if it
is a proper subgroup in the intersection of all subgroups containing H as a
proper subgroup.

All maximal subgroups of GG are primitive. Some basic properties of
primitive subgroups include:

Proposition 24. 1. Every proper subgroup of G is the intersection of a
set of primitive subgroups of G.

2. If X is a primitive subgroup of a subgroup 7" of G, then there exists a
primitive subgroup Y of G such that X =Y NT.

Johnson [14] proved that a group G is supersoluble if every primitive
subgroup of G has prime power index in G.

The next results on primitive subgroups of a group G indicate how such
subgroups give information about the structure of G.

Theorem 25 ([15]). Let G be a group. The following statements are equi-
valent:

1. every primitive subgroup of G containing ®(G) has prime power index;



2. G/®(G) is a soluble PST-group.

Theorem 26 ([16]). Let G be a group. The following statements are equi-
valent:

1. every primitive subgroup of G has prime power index;

2. G = [L|M is a supersoluble group, where L and M are nilpotent Hall
subgroups of G, L is the nilpotent residual of G and G = LNg(L N X)
for every primitive subgroup X of G. In particular, every mazimal
subgroup of L is normal in G.

Let X denote the class of groups G such that the primitive subgroups of G
have prime power index. By Proposition 24 (1), it is clear that X consists of
those groups whose subgroups are intersections of subgroups of prime power
indices.

The next example shows that the class X is not subgroup closed.

Example 27. Let P = (z,y | 2° = y° = [x,y]> = 1) be an extraspecial group
of order 125 and exponent 5. Let z = [z, y] and note that Z(P) = ®(P) = (z).
Then P has an automorphism a of order four given by 2% = 22, y* = 2, and
2¢ =2 = 271, Put G = [P](a) and note that Z(G) = 1, ®(G) = (z), and
G/®(G) is a T-group. Thus G is a soluble Ty-group. Let H = (y, z,a) and
notice that ®(H) = 1. Then H is not a T-group since the nilpotent residual
L of H is (y, z) and a does not act on L as a power automorphism. Thus H
is not a Ty-group, and hence not a soluble PST-group. By Theorem 25, G
is an X-group and H is not an X-group.

Theorem 28 ([17]). Let G be a group. The following statements are equi-
valent:

1. G is a soluble PST-group;
2. every subgroup of G is an X-group.

We bring the paper to a close with the quasipermutable embedding which
is defined in the following way.

Definition 29. A subgroup H is called quasipermutable in G provided there
is a subgroup B of G such that G = Ng(H)B and H permutes with B and
with every subgroup (respectively, with every Sylow subgroup) A of B such
that ged(|H|, |A]) = 1.

Theorem 30 contains new characterisations of soluble PST-groups with
certain Hall subgroups.



Theorem 30 ([18]). Let D = G™ be the nilpotent residual of the group G
and let m = w(D). Then the following statements are equivalent:

1.

2.
3.

/.

D is a Hall subgroup of G and every Hall subgroup of G is quasiper-
mutable in G;

G s a soluble PST-group;
every subgroup of G is quasipermutable in G;

every mw-subgroup of G and some minimal supplement of D in G are
quasipermutable in G.
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